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S1 GLLiM for i.i.d. data

The GLLiM implementation of Deleforge et al. (2015) is adapted to account for the fact
that for each parameters values, the observations may be available as R i.i.d. realizations.
The link to the setting where the covariance matrices of the direct model are bloc diagonal
is explained. The resulting GLLiM-iid algorithm is detailed. This new procedure can also
be useful when dealing with long stationary time series by cutting them into smaller series
neglecting dependencies between the sub-series.

S1 .1 Likelihood and posterior approximations with Gaussian mixtures

The Gaussian Locally Linear Mapping (GLLiM) model of Deleforge et al. (2015) is first
recalled but note that to match the notation in the manuscript, the notation of Deleforge
et al. (2015) has been changed. GLLiM provides probability distributions selected in a
family of mixture of Gaussian distributions. An attractive approach for modeling non
linear relationships, between some parameters θ ∈ R` and observations y ∈ Rd, is to use a
mixture of linear models. We assume that each observed y is the noisy image of parameter
θ obtained from a K-component mixture of affine transformations. This is modeled by
introducing a latent variable z ∈ {1, . . . ,K} such that

y =

K∑
k=1

1I{z=k}(Ãkθ + b̃k + ε̃k) (1)

where 1I is the indicator function, Ãk a d × ` matrix and b̃k a vector of Rd that define an
affine transformation. Variable ε̃k corresponds to an error term which is assumed to be zero-
mean and not correlated with θ capturing both the observation noise and the reconstruction
error due to the affine approximation. To make the affine transformations local, the latent
variable z should also depend on θ.

For the posterior distribution p(θ | y) and the likelihood p(y | θ) to be easily derived,
it is important to control the nature of the joint p(y,θ). Once a family of tractable joint
distributions is chosen, we can look for one that is compatible with (1). In Deleforge
et al. (2015) the GLLiM model is derived assuming that the joint distribution is a mixture
of Gaussian distributions. Using a subscript G to specify the model, it is assumed that
ε̃k ∼ Nd(0, Σ̃k) and that θ is distributed as a mixture of K Gaussian distributions specified
by

pG(θ|z = k) = N`(θ; c̃k, Γ̃k), (2)
and pG(z = k) = πk . (3)

When informative, we specify the dimension of the Gaussian variable (e.g. d) in the notation
Nd. The model parameters are then denoted by φ̃ = {πk, c̃k, Γ̃k, Ãk, b̃k, Σ̃k}k=1:K .
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One interesting property of such a parametric model is that both conditional distribu-
tions are available in closed form :

pG(y|θ; φ̃) =
K∑
k=1

η̃k(θ)Nd(y; Ãkθ + b̃k, Σ̃k) with η̃k(θ) =
πkN`(θ; c̃k, Γ̃k)∑K
j=1 πjN`(θ; c̃j , Γ̃j)

(4)

pG(θ|y,φ) =
K∑
k=1

ηk(y)N`(θ;Aky + bk,Σk) with ηk(y) =
πkNd(y; ck,Γk)∑K
j=1 πjNd(y; cj ,Γj)

. (5)

A different notation φ is used in (5) but parameters φ are easily deduced from φ̃ as follows
(the πk’s are unchanged):

ck =Ãkc̃k + b̃k, Γk = Σ̃k + ÃkΓ̃kÃ
>
k

Σk =
(
Γ̃−1
k + Ã>k Σ̃−1

k Ãk

)−1
(6)

Ak =ΣkÃ
>
k Σ̃−1

k , bk = Σk

(
Γ̃−1
k c̃k − Ã

>
k Σ̃−1

k b̃k

)
.

The expressions above depend on the value of the parameters φ̃ that needs to be spec-
ified. In Deleforge et al. (2015), parameters φ̃ are estimated using a maximum likelihood
principle with an EM algorithm applied to a learning set of N couples DN = {(θn,yn), n ∈
[N ]}. Once estimated, the parameters lead to an analytical expression of the form (5)
denoted by pG(θ|y;φ∗K,N ), which is a mixture of Gaussian distributions and can be seen as
a parametric mapping from y values to the pdfs on θ. φ∗K,N can be kept the same for all
conditional distributions and does not need to be re-estimated for each new θ or y to be
inverted.

In practice when d is much larger than `, it is more efficient to estimate φ̃ from the
available data DN to then deduce φ∗K,N and subsequently the conditional distribution of
interest (5). The reason is that the size of φ̃ can be significantly reduced by choosing
constraints on matrices Σ̃k without oversimplifying the target conditional (5). The number
of parameters depends on the exact variant learned but is in O(dK`). Typically, diagonal
covariance matrices Σ̃k can be used with a drastic gain. More specifically for the case of
diagonal covariances Σ̃k, the number of parameters is K − 1 +K(`+ `(`+ 1)/2 + d`+ 2d)
which for K = 100, ` = 4 and d = 10 leads to 7499 parameters and to 61499 parameters if
d = 100. In addition to the diagonal case, other constraints are implemented in Deleforge
et al. (2015), e.g. isotropic, full (no constraint), or equal across k, Σ̃k’s. All details are
provided in Deleforge et al. (2015).

In this work, we aim at adapting the GLLiM model and inference to the case of i.i.d.
observations. It requires the use of another type of constraint, not treated in Deleforge
et al. (2015), that induces a bloc diagonal shape for the Σ̃k’s. In the next section we recall
the main EM algorithm steps and explain how to modify them to account for this new
constraint.
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S1 .1.1 GLLiM model parameter estimation

The main updating steps are recalled below.

E-step. The E-step consists in updating the assignments probabilities of each pair (θn,yn)
to each of the K components, namely for each k ∈ [K] and n ∈ [N ],

rnk ∝ πk Nd(yn; Ãkθn + b̃k, Σ̃k) N`(θn; c̃k, Γ̃k). (7)

M-step. Denoting rk =
∑N

n=1 rnk, the M-step consists of updating the parameters and
decomposes in 3 steps updating successively the πk’s, the c̃k, Γ̃k’s and the Ãk, b̃k, Σ̃k’s.

πk =
rk
N

(8)

c̃k =
1

rk

N∑
n=1

rnkθn (9)

Γ̃k =
1

rk

N∑
n=1

rnk(θn − c̃k)(θn − c̃k)T (10)

Ãk = YkT
T
k (TkT

T
k )−1 (11)

b̃k = ȳk − Ãkc̃k (12)

Σ̃k =
1

rk

N∑
n=1

rnk(yn − Ãkθn − b̃k)(yn − Ãkθn − b̃k)T . (13)

The updating of Ãk and b̃k requires in addition the following quantities depending on the
rnk’s and the data set,

ȳk =
1

rk

N∑
n=1

rnkyn

Tk =
1
√
rk

[
√
r1k(θ1 − c̃k) . . .

√
rNk(θN − c̃k)]

Yk =
1
√
rk

[
√
r1k(y1 − ȳk) . . .

√
rNk(yN − ȳk)].

We now explain how these steps are modified in the i.i.d. case.

S1 .2 GLLiM-iid

S1 .2.1 Estimation with bloc constraints

In this section, we consider the case where for a given parameter θ, a sample of R observa-
tions {y1, . . . ,yR} is generated independently from the likelihood p(y | θ). Therefore, we

5



have p(y1, . . . ,yR | θ) =
∏R
r=1 p(y

r | θ) and we are interested in computing the posterior
p(θ | y1, . . . ,yR). If R = 1 we recover the setting handled by standard GLLiM. If R > 1,
we define a new model and procedure referred to as GLLiM-iid as follows. Note that a
key point for our GLLiM-ABC procedure is that the posterior p(θ | y1, . . . ,yR) still be
approximated by a mixture.

Considering the joint p(y1, . . . ,yR,θ) = p(y1, . . . ,yR | θ) p(θ) = p(θ)
∏R
r=1 p(y

r | θ),
we approximate it by using for p(θ) the same mixture model as in standard GLLiM in (2),
(3) and for p(y1, . . . ,yR | θ) we assume also a mixture form (we use a different notation
qG to emphasize that it is a particular case of pG:

qG(y1, . . . ,yR | θ) =
K∑
k=1

(
η̃k(θ)

R∏
r=1

Nd(yr; Ãkθ + b̃k, Σ̃k)

)
. (14)

The product in the rhs corresponds to a dR-dimensional Gaussian density with R indepen-
dent and identical components all of dimension d. This corresponds to a specific constrained
GLLiM model where the dimension d has changed to dR and ` remains the same. We can
then compute the MLE via EM for this constrained parameters setting. The expressions for
πk, c̃k, Γ̃k remain the same, while the expressions for Ãk, b̃k, Σ̃k are changed using N × R
data points instead of just N . All expressions use a formula for the rnk (the responsibilities)
that needs to be modified. This EM algorithm is detailed below.

Observations are now made of R i.i.d. vectors of size d and are denoted by ŷ with
ŷ = [y1, . . . ,yR]T . The same expressions (4) and (5) can be used with now parameters φ̃
denoted by φ̂ and Σ̂k of dimension dR × dR, Âk of dimension dR × `, b̂k of length dR,
while the dimensions of ĉk and Γ̂k do not change. Inference could be carried out with
the EM described in Section S1 .1.1 with these new dimensions but that would not take
into account that the yr’s are i.i.d.. Thus, we propose to add the following constraints,
assuming that Σ̂k is a bloc diagonal matrix made of R blocs all equal to d × d Σ̃k, Âk is
made of R blocs all equal to Ãk of size d× ` and b̂k is a vector of R concatenated vectors
all equal to a vector b̃k of length d. Note that this is similar to consider a GLLiM model
with an additional constraint on the Σ̂k’s, namely a bloc diagonal structure except that in
this later case no constraint would be assumed on Âk and b̂k.

It follows that qG(ŷ|θ, z = k) =
∏R
r=1 qG(yr|θ, z = k). As already mentioned, this is

not modelling the likelihood as a product but it consists in assuming instead that given
z = k, so region-wise, the yr’s are i.i.d.

The E-step becomes,

rnk ∝ πk N`(θn; c̃k, Γ̃k)

R∏
r=1

Nd(yrn; Ãkθn + b̃k, Σ̃k). (15)

For the M-step, the expressions for rk, πk, c̃k, Γ̃k are the same as before (8-10). The rest
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of the parameters is modified as follows,

Ãk =

(
1

R

R∑
r=1

Yr
k

)
T Tk (TkT

T
k )−1 (16)

b̃k =
1

R

R∑
r=1

ȳrk − Ãkc̃k (17)

Σ̃k =
1

R

R∑
r=1

(
1

rk

N∑
n=1

rnk(y
r
n − Ãkθn − b̃k)(yrn − Ãkθn − b̃k)T

)
(18)

=

(
1

R

R∑
r=1

)
ȳrkȳ

rT
k − (Ãkθn + b̃k)(Ãkθn + b̃k)

T , (19)

with

ȳrk =
1

rk

N∑
n=1

rnky
r
n

ȳk =
1

R

R∑
r=1

ȳrk

Tk =
1
√
rk

[
√
r1k(θ1 − c̃k) . . .

√
rNk(θN − c̃k)]

Yr
k =

1
√
rk

[
√
r1k(y

r
1 − ȳk) . . .

√
rNk(y

r
N − ȳk)].

Note the use of ȳk and not ȳrk in the last expression.

S1 .2.2 Surrogate posteriors in the i.i.d. case

The conditional distributions expressions follow from applying the constraint in (4) and
(5). Denoting by ŷ the column vector made of the concatenated y1, . . . ,yR,

qG(θ | y1, . . . ,yR) =

K∑
k=1

η∗k(y
1, . . . ,yR) N`(θ; Â∗kŷ + b̂∗k, Σ̂

∗
k), (20)

where the various parameters and expressions involved are specified below with respect to
φ̃ estimated via the EM algorithm described before:
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Σ̂∗k =
(
Γ̃−1
k +R ÃT

k Σ̃−1
k Ãk

)−1
(21)

Â∗kŷ + b̂∗k = Σ̂∗k

(
ÃT
k Σ̃−1

k (

R∑
r=1

yr) + Γ̃−1
k c̃k −R Ã

T
k Σ̃−1

k b̃k

)
(22)

η∗k(y
1, . . . ,yR) ∝ πk NdR(ỹ;mk,Vk), (23)

wheremk is a vector made of R concatenated d-dimensional vectors all equal to Ãkc̃k+
b̃k and Vk is a matrix made of R×R blocs of size d×d which is the sum of a bloc diagonal
matrix with all diagonal blocs equal to Σ̃k and of a matrix made of constant blocs all equal
to ÃkΓ̃kÃ

T
k .

As dR can be large, e.g. 1000, the computation of η∗k can be numerically problematic.
However the quadratic forms and the determinants involved can simplify using the Wood-
bury formula and the matrix determinant lemma. Let Sk = (ŷ −mk)

TV −1
k (ŷ −mk), the

Woodbury formula leads to:

Sk =

R∑
r=1

(yr − Ãkc̃k − b̃k)T Σ̃−1
k (yr − Ãkc̃k − b̃k)

−

(
R∑
r=1

yr −RÃkc̃k −Rb̃k

)T (
Σ̃−1
k ÃkΣ̂

∗
kÃ

T
k Σ̃−1

k

)( R∑
r=1

yr −RÃkc̃k −Rb̃k

)
.

Similarly for the determinant of Vk we get:

|Vk| = |Σ̃k|R × |I +R Γ̃
1/2
k ÃT

k Σ̃−1
k ÃkΓ̃

1/2
k | ,

or equivalently
|Vk| = |Σ̃k|R × |I +R Γ̃kÃ

T
k Σ̃−1

k Ãk|.

So that
log η∗k = log πk − 0.5Sk − 0.5 log |Vk|+ C .

The estimated φ̃R parameters can then be used to specify (20).

S2 Distances between Gaussian mixtures

S2 .1 Optimal transport-based distance between Gaussian mixtures

Delon and Desolneux (2020); Chen et al. (2019) have introduced a distance specifically
designed for Gaussian mixtures based on the Wasserstein distance. In an optimal transport
context, by restricting the possible coupling measures (i.e., the optimal transport plan) to
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a Gaussian mixture, they propose a discrete formulation for this distance. This makes it
tractable and suitable for high dimensional problems, while in general using the standard
Wasserstein distance between mixtures is problematic. Delon and Desolneux (2020) refer
to the proposed new distance as MW2, for Mixture Wasserstein.

The MW2 definition makes first use of the tractability of the Wasserstein distance
between two Gaussians for a quadratic cost. The standard quadratic cost Wasserstein
distance between two Gaussian pdfs g1(·) = N (· ;µ1,Σ1) and g2(·) = N (· ;µ2,Σ2) is (see
Delon and Desolneux 2020),

W2
2(g1, g2) = ‖µ1 − µ2‖22 + trace

(
Σ1 + Σ2 − 2

(
Σ

1/2
1 Σ2Σ

1/2
1

)1/2
)
.

Section 4 of Delon and Desolneux (2020) shows that the MW2 distance between two
mixtures can be computed by solving the following discrete optimization problem. Let
f1 =

∑K1
k=1 π1k g1k and by f2 =

∑K2
k=1 π2k g2k be two Gaussian mixtures. Then,

MW2
2(f1, f2) = min

w∈Π(π1,π2)

∑
k,l

wkl W2
2(g1k, g2l) , (24)

where π1 and π2 are the discrete distributions on the simplex defined by the respective
weights of the mixtures and Π(π1, π2) is the set of discrete joint distributions w = (wkl, k ∈
[K1], l ∈ [K2]), whose marginals are π1 and π2. Finding the minimizer w∗ of (24) boils down
to solving a simple discrete optimal transport problem, where the entries of the K1 ×K2

dimensional cost matrix are the W2
2(g1k, g2l) quantities.

As implicitly suggested above, MW2 is indeed a distance on the space of Gaussian
mixtures; see Delon and Desolneux (2020). In particular, for two Gaussian mixtures f1 and
f2, MW2 satisfies the equality property according to which MW2(f1, f2) = 0 implies that
f1 = f2. In our experiments, the MW2 distances were computed using the transport R
package (Schuhmacher et al., 2020).

S2 .2 L2 distance between Gaussian mixtures

The L2 distance between two Gaussian mixtures is also closed form. Denote by f1 =∑K1
k=1 π1k g1k and f2 =

∑K2
k=1 π2k g2k two Gaussian mixtures,

L2
2(f1, f2) =

∑
k,l

π1kπ1l〈g1k, g1l〉+
∑
k,l

π2kπ2l〈g2k, g2l〉 − 2
∑
k,l

π1kπ2l〈g1k, g2l〉, (25)

where 〈·, ·〉 denotes the L2 scalar product, which is closed form for two Gaussian distributions
g1 and g2 and given by 〈g1, g2〉 = N (µ1;µ2,Σ1 + Σ2). The L2 distance can be evaluated in
O(K1K2) time. We do not discuss the different properties of the various possible distances
but the distance choice has a potential impact on the associated GLLiM-D-ABC procedure.
This impact is illustrated in the experimental Section S4 .
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S3 Proofs

S3 .1 Proof of Theorem 1

We follow steps similar to the proof of Proposition 2 in Bernton et al. (2019). The ABC
quasi-posterior can be written as

qε (θ | y) =

∫
Y
Kε (z; y)π (θ | z) dz,

where Kε(z; y) ∝ 1{D(π(·|y),π(·|z)))≤ε} π(z) denotes the density evaluated at some z of the
prior truncated to Aε. Kε(·; y) is a probability density function (pdf) in z ∈ Y with compact
support Aε ⊂ Y by definition of Aε and (A4). It follows that

|qε (θ | y)− π (θ | y)| ≤
∫
Y
Kε (z; y) |π (θ | z)− π (θ | y)| dz

≤ sup
z∈Aε
|π (θ | z)− π (θ | y)|

= |π (θ | zε)− π (θ | y)| ,

for some zε ∈ Aε, where the second inequality is due to the fact that Kε (·; y) is a pdf, and
the last equality is due to (A1) and the compacity of Aε.

Since for each ε > 0, zε ∈ Aε, we have limε→0 zε ∈ A0, where A0 =
⋂
ε∈Q+

Aε. Then,
using that by continuity of D, A0 = {z ∈ Y : D(π(· | z), π(· | y)) = 0}, it follows from the
equality property of D, that A0 = {z ∈ Y : π(· | z) = π(· | y)}. Taking the limit ε → 0
yields

|π (θ | zε)− π (θ | y)| → |π (θ | y)− π (θ | y)| = 0

and hence |qε (θ | y)− π (θ | y)| → 0, for each θ ∈ Θ.
By (A2), we have

sup
θ∈Θ

qε (θ | y) = sup
θ∈Θ

∫
Y
Kε (z; y)π (θ | z) dz

≤ sup
θ∈Θ

sup
z∈Aγ

π (θ | z) <∞,

for some γ, so that ε ≤ γ. Finally, by the bounded convergence theorem, we have

lim
ε→0

∫
Θ
|qε (θ | y)− π (θ | y)| dθ = lim

ε→0
‖qε (· | y)− π (· | y)‖1 = 0.

S3 .2 Proof of Theorem 2

We now provide a detailed proof of Theorem 2. Given any α > 0, β > 0, we claim that

lim
ε→0,K→∞,N→∞

Pr
(
λ
({

y ∈ Y : D2
H
(
qK,Nε (· | y) , π (· | y)

)
≥ β

})
≤ α

)
= 1;
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or equivalently, for any α > 0, β > 0, γ > 0, we wish to find ε (α, β, γ) > 0, K (α, β, γ) ∈ N∗,
and N (α, β, γ) ∈ N∗ so that for all ε < ε (α, β, γ) ,K ≥ K (α, β, γ) , N ≥ N (α, β, γ):

Pr
(
λ
({

y ∈ Y : D2
H
(
qK,Nε (· | y) , π (· | y)

)
≥ β

})
> α

)
≤ γ. (26)

To prove (26), we first recall that we can rewrite qK,Nε as follows, for all θ ∈ Θ,y ∈ Y,

qK,Nε (θ | y) =

∫
Y
KK,N
ε (z; y)π (θ | z) dz,

KK,N
ε (z; y) =

1{D(pK,N (·|y),pK,N (·|z))≤ε}π (z)∫
Y 1{D(pK,N (·|y),pK,N (·|z))≤ε}π (z) dz

, (27)

where KK,N
ε (·; y) is a pdf on z ∈ Y with compact support AK,Nε,y ⊂ Y by definition of AK,Nε,y

and (B4).
The Hellinger distance DH, between two densities f and g in appropriate spaces, is

related to the L1 distance D1 as follows, see Zeevi and Meir (1997, Lemma 1),(
1

2
D1 (f, g)

)2

≤ D2
H (f, g) ≤ D1 (f, g) . (28)

Applying successively the right-hand-side of (28), the definition of qK,Nε and the fact that
KK,N
ε (·; y) is a pdf, we can write

D2
H
(
qK,Nε (· | y) , π (· | y)

)
≤ D1

(
qK,Nε (· | y) , π (· | y)

)
=

∫
Θ

∣∣qK,Nε (θ | y)− π (θ | y)
∣∣ dλ (θ)

≤
∫

Θ

∫
Y
KK,N
ε (z; y) |π (θ | z)− π (θ | y)| dλ (z) dλ (θ)

=

∫
Y
KK,N
ε (z; y)

∫
Θ
|π (θ | z)− π (θ | y)| dλ (θ) dλ (z)

≤ sup
z∈AK,Nε,y

∫
Θ
|π (θ | z)− π (θ | y)| dλ (θ) .

Then using Makarov and Podkorytov (2013, Corollary 7.1.3) and the continuity of π(· | ·)
(B2), it follows that z 7→ D1 (π (· | z) , π (· | y)) is a continuous function for every y ∈ Y.
As AK,Nε,y is compact, since

zK,Nε,y ∈ BK,N
ε,y = arg max

z∈AK,Nε,y

D1 (π (· | z) , π (· | y)) ,

sup
z∈AK,Nε,y

D1 (π (· | z) , π (· | y)) = D1

(
π
(
· | zK,Nε,y

)
, π (· | y)

)
,

11



and using the left-hand-side of (28), we finally get that

D2
H
(
qK,Nε (· | y) , π (· | y)

)
≤ 2DH

(
π
(
· | zK,Nε,y

)
, π (· | y)

)
. (29)

Consider the limit point zK,N0,y defined as zK,N0,y = limε→0 zK,Nε,y . Since for each ε > 0,
zK,Nε,y ∈ AK,Nε,y then zK,N0,y ∈ A

K,N
0,y , where AK,N0,y =

⋂
ε∈Q+

AK,Nε,y . By continuity of D, AK,N0,y ={
z ∈ Y : D

(
pK,N (· | z) , pK,N (· | y)

)
= 0
}
andAK,N0,y =

{
z ∈ Y : pK,N (· | z) = pK,N (· | y)

}
,

using (B3).
The distance on the right-hand side of (29) can then be bounded by three terms using

the triangle inequality for the Hellinger distance DH,

DH
(
π
(
· | zK,Nε,y

)
, π (· | y)

)
≤ DH

(
π
(
· | zK,Nε,y

)
, π(· | zK,N0,y )

)
+DH

(
π(· | zK,N0,y ), pK,N (· | y)

)
+DH

(
pK,N (· | y) , π (· | y)

)
. (30)

The first term on the right-hand side can be made close to 0 as ε goes to 0 independently
of K and N . The two other terms are of the same nature as the definition of zK,N0,y yields
pK,N (· | y) = pK,N (· | zK,N0,y ).

Therefore, we first prove that limε→0D
2
H

(
π(· | zK,Nε,y ), π(· | zK,N0,y )

)
= 0 pointwise i.e.

for each y. Indeed, since π(· | ·) is a uniformly continuous function in (θ,y), given any
y ∈ Y, α1 > 0, there exists δ(α1) > 0 such that for all zK,N0,y ∈ A

K,N
0,y ⊂ Y,

sup
θ∈Θ

∣∣∣π (θ | z)− π(θ | zK,N0,y )
∣∣∣ ≤ α1,∀z ∈ Y,

∣∣∣z− zK,N0,y

∣∣∣ < δ(α1). (31)

Furthermore, since Θ is a subset of a compact set, λ (Θ) < ∞. Hence, by using the fact
that limε→0 zK,Nε,y = zK,N0,y ∈ AK,N0,y pointwise with respect to y and choosing z = zK,Nε,y in
(31), we obtain that given any y ∈ Y, and α1 > 0, there exists δ(α1) > 0, and ε (δ(α1)) > 0

such that ∀0 < ε < ε (δ(α1)),
∣∣∣zK,Nε,y − zK,N0,y

∣∣∣ < δ(α1). Using (28) and (31), it follows for
any ε such that 0 < ε < ε (δ(α1)),

D2
H

(
π
(
· | zK,Nε,y

)
, π(· | zK,N0,y )

)
≤ D1

(
π
(
· | zK,Nε,y

)
, π(· | zK,N0,y )

)
≤ sup
θ∈Θ

∣∣∣π (θ | zK,Nε,y

)
− π(θ | zK,N0,y )

∣∣∣λ (Θ)

≤ α1λ (Θ) . (32)

Such convergence also holds in measure λ. Given any α1 > 0, β1 > 0, there exists
ε (α1, β1) > 0 such that for any 0 < ε < ε (α1, β1),

λ
({

y ∈ Y : D2
H

(
π
(
· | zK,Nε,y

)
, π(· | zK,N0,y )

)
≥ β1

})
≤ α1. (33)
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Then, since (33) is true whatever the value of {(θn,yn) , n ∈ [N ]}, sampled from the joint
π(·, ·), it also holds, in probability with respect to the data set, that

Pr
(
λ
({

y ∈ Y : D2
H

(
π
(
· | zK,Nε,y

)
, π(· | zK,N0,y )

)
≥ β1

})
> α1

)
= 0. (34)

Next, we prove thatD2
H

(
π(· | zK,N0,y ), pK,N (· | y)

)
, equal toD2

H

(
π(· | zK,N0,y ), pK,N (· | zK,N0,y )

)
,

and D2
H

(
pK,N (· | y), π(· | y)

)
both converge to 0 in measure λ, with respect to y and in

probability with respect to the sample {(θn,yn) , n ∈ [N ]}.
We first focus on D2

H

(
pK,N (· | y) , π (· | y)

)
. Using the monotonicity of the Lebesgue

integral and a result from Tsybakov (2008, Lemma 2.4) indicating that the squared Hellinger
distance can be bounded by the Kullback–Leibler (KL) divergence, it follows that∫

Y
D2
H

(
pK,N (· | y) , π (· | y)

)
dλ(y) ≤

∫
Y

KL
(
π(· | y), pK,N (· | y)

)
dλ(y).

Then since π(y) ≥ aλ(Θ)∫
Y

KL
(
π(· | y), pK,N (· | y)

)
dλ(y) ≤ 1

aλ(Θ)

∫
Y
π(y) KL

(
π(· | y), pK,N (· | y)

)
dλ(y)

≤ 1

aλ(Θ)
KL
(
π, pK,N

)
, (35)

where in the last right-hand side, the Kullback–Leibler divergence is on the joint densities
π and pK,N and the inequality is coming from a standard relationship between Kullback–
Leibler divergences between joint and conditional distributions, i.e.

KL
(
π, pK,N

)
=

∫
Y
π(y) KL

(
π(· | y), pK,N (· | y)

)
dλ(y) +

∫
Y
π(y) log

(
π(y)

pK,N (y)

)
dλ(y) ,

with the last integral being a positive Kullback–Leibler divergence. Using Corollary 2.2 in
Rakhlin et al. (2005) (see details in Section S3 .3.1), we can show that KL

(
π, pK,N

)
tends

to 0 in probability as K and N tends to infinity. It follows that D2
H

(
pK,N (· | y) , π (· | y)

)
converges to 0 in L1 distance with respect to y. Using Tao (2011, 1.5. Modes of conver-
gence), D2

H

(
pK,N (· | y) , π (· | y)

)
also converges to 0 in measure λ with respect to y, and

in probability with respect to the sample {(θn,yn) , n ∈ [N ]} as K →∞, N →∞.
That is, given any α2 > 0, β2 > 0, γ2 > 0, there exists K (α2, β2, γ2) ∈ N∗, N (α2, β2, γ2) ∈
N∗ such that for any K ≥ K (α2, β2, γ2), N ≥ N (α2, β2, γ2),

Pr
(
λ
({

y ∈ Y, D2
H

(
pK,N (· | y) , π (· | y)

)
≥ β2

})
> α2

)
≤ γ2. (36)

To show that the same as (36) also holds when replacing y by zK,N0,y in D2
H , we need

to show some measurability property with respect to λ. Lemma 2, together with its proof
in Subsection S3 .3.2, guaranties first that the map y 7→ zK,N0 (y) = zK,N0,y is measurable.
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Since y 7→ D2
H

(
pK,N (· | y) , π (· | y)

)
is a continuous function (using (B4) and Makarov

and Podkorytov 2013, Corollary 7.1.3), the measurability of the map implies that
D2
H

(
pK,N (· | zK,N0,y ), π(· | zK,N0,y )

)
is also a measurable function (see Tao 2011, 1.3.2. Measur-

able functions). Consequently Tao (2011, Lemma 1.3.9 Equivalent notions of measurability)
the set

{
y ∈ Y : D2

H

(
pK,N (· | zK,N0,y ), π(· | zK,N0,y )

)
≥ β2

}
is a measurable set with respect

to λ. In addition by the monotonicity of λ and the defintion of zK,N0,y , the measure of this
set satisfies for any β2 > 0,

λ({y ∈ Y :D2
H(pK,N (· | zK,N0,y ), π(· | zK,N0,y )) ≥ β2})≤λ({y ∈ Y :D2

H(pK,N (· | y), π(· | y)) ≥ β2}).

Then (36) implies that

Pr
(
λ
({

y ∈ Y : D2
H

(
pK,N (· | zK,N0,y ), π(· | zK,N0,y )

)
≥ β2

})
> α2

)
≤ γ2. (37)

Finally, (26) can be deduced from (34), (36) and (37) by choosing α1 = α2 = α/3, β1 =
β2 = β2/36, γ2 = γ/2, ε (α, β, γ) = ε (α1, β1), K (α, β, γ) = K (α2, β2, γ2) and N (α, β, γ) =
N (α2, β2, γ2) .

S3 .3 Auxiliary results

S3 .3.1 Use of Corollary 2.2 of Rakhlin et al. (2005)

In this section, we claim that under the conditions of Theorem 2, we can prove that
KL
(
π, pK,N

)
→ 0, in probability as K →∞, N →∞.

To do so we use the following Lemma 1 coming from Rakhlin et al. (2005). Let us recall
that HX is a parametric family of pdfs on X , HX = {gϕ,ϕ ∈ Ψ}. The set of continuous
convex combinations associated with HX is defined as

C = conv (HX )=

{
f : f(x)=

∫
Ψ
gϕ (x)G (dϕ) , gϕ ∈ HX , G is a probability measure on Ψ

}
.

We write KL (π, C) = inf
g∈C

KL (π, g).

The class of K-component mixtures on HX is then defined as

CK = convK(HX ) =

{
f : f(x) =

K∑
k=1

ckgϕk (x) , c ∈ SK−1, gϕk ∈ HX

}
(38)

where SK−1 =
{

(c1, . . . , cK) ∈ RK :
∑K

k=1 ck = 1, ck ≥ 0, k ∈ [K]
}
.

The result from Rakhlin et al. (2005) is recalled in the following Lemma.
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Lemma 1 (Corollary 2.2. from Rakhlin et al. (2005)) Let X = Θ×Y be a compact
set. Let π be a target density π such that 0 < a ≤ π(x) ≤ b, for all x ∈ X . Assume that
the distributions in HX satisfy, for any ϕ,ϕ′ ∈ Ψ,

for all x ∈ X , 0 < a ≤ gϕ(x) ≤ b
and sup

x∈X

∣∣log gϕ(x)− log gϕ′(x)
∣∣ ≤ B‖ϕ−ϕ′‖1 ,

and that the parameter set Ψ is a cube with side length A with a, b, A,B arbitrary positive
scalars. Let {(θn,yn), n ∈ [N ]} be realizations from the joint distribution π(·, ·) and denote
by pK,N the K-component mixture MLE in CK .
Then, with probability at least 1− exp (−t),

KL
(
π, pK,N

)
≤ KL (π, C) +

c1

K
+

c2√
N

+
c3

√
t√

N
,

where c1, c2 and c3 are positive scalars depending only on a, b, A,B and on the dimension
of X (see Rakhlin et al. (2005) for the exact expressions).

Assumption (B1) in Theorem 2 then implies that π ∈ C so that KL (π, C) = 0. Using
Lemma 1, it follows that for all t > 0, for all K ∈ N∗, and for all N ∈ N∗,

Pr

(
KL
(
π, pK,N

)
≤ c1

K
+

c2√
N

+
c3

√
t√

N

)
≥ 1− exp (−t) . (39)

Choosing t = N1/2, (39) becomes

1− Pr

(
KL
(
π, pK,N

)
≤ c1

K
+

c2√
N

+
c3

N1/4

)
≤ exp

(
−N1/2

)
. (40)

Therefore, for any γ1 > 0, γ2 > 0, there exist K(γ1, γ2) ∈ N∗, and N(γ1, γ2) ∈ N∗ so that
for all K ≥ K(γ1, γ2) and N ≥ N(γ1, γ2),

c1

K
+

c2√
N

+
c3

N1/4
≤ γ1,

exp
(
−N1/2

)
≤ γ2.

From which we deduce using (40) that for all K ≥ K(γ1, γ2) and all N ≥ N(γ1, γ2),

1− Pr
(
KL
(
π, pK,N

)
≤ γ1

)
≤ γ2,

that is
lim

K→∞,N→∞
Pr
(
KL
(
π, pK,N

)
≤ γ1

)
= 1,

which achieves the desired result that KL
(
π, pK,N

)
→ 0, in probability as K → ∞, N →

∞ .
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S3 .3.2 Proof of the measurability of zK,N0,y (Lemma 2)

We wish to make use of the result from (Aliprantis and Border, 2006, Theorem 18.19
Measurable Maximum Theorem) to prove that we can choose a measurable function y 7→
zK,N0,y . More specifically this is guarantied by the following Lemma 2 which is proved below.

Background. The required materials for this lemma and the proof arise from Aliprantis
and Border (2006), Chapter 18. The main concepts are recalled below.

Let f be a function on a product space Y ×Z, such that f : Y ×Z → X . Assume that
(Y,F) is a measurable space.

The function f (y, z) is said to be Caratheodory, if f is continuous in z ∈ Z and
measurable in y ∈ Y.

By definition, a correspondence ζ from a set Y to a set Z assigns each y ∈ Y to a subset
ζ (y) ∈ Z. We write this relationship as ζ : Y � Z.

A correspondence ζ : Y � Z is measurable (weakly measurable) if ζ` (F ) ∈ F for
each closed (open) subset F of Z, where ζ` is the so-called lower inverse of ζ defined as
ζ` (F ) = {z ∈ Z : ζ (y) ∩ F 6= ∅}.

Lemma 18.7 from Aliprantis and Border (2006) states the following: Suppose that
f : Y × Z → X is Caratheodory, where (Y,F) is a measurable space, Z is a metrizable
space, and X is a topological space. For each subset H of X , define the correspondence
ζH : Y � Z by

ζH (y) = {z ∈ Z : f (y, z) ∈ H} .

If H is open, then ζH is a measurable correspondence.

Corollary 18.8 from Aliprantis and Border (2006) states the following: Suppose that
f : Y × Z → X is Caratheodory, where (Y,F) is a measurable space, Z is a metrizable
space, and X is a topological space. Define the correspondence ζ : Y � Z by

ζ (y) = {z ∈ Z : f (y, z) = 0} .

If Z is compact, then ζ is a measurable correspondence.

Furthermore, we have the fact that the countable unions of measurable correspondences
are also measurable. We say that ζ : Y � Z admits a measurable selector, if there exists a
measurable function f : Y → Z, such that f (y) ∈ ζ (y), for each y ∈ Y.

Theorem 18.19 (Measurable Maximum Theorem) from Aliprantis and Border (2006)
then states the following. Let Z be a separable metrizable space and (Y,F) be a measurable
space. Let ζ : Y � Z be a weakly measurable correspondence with nonempty compact
values, and suppose that f : Y × Z → R is Caratheodory. Define m : Y → R by

m (y) = max
z∈ζ(y)

f (y, z) ,
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and define µ : Y � Z to be its maximizers:

µ (y) = {z ∈ ζ (y) : f (y, z) = m (y)} .

Then 1) the value function m is measurable, 2) the argmax correspondence µ has nonempty
and compact values, 3) the argmax correspondence µ is measurable and admits a measurable
selector.

In our context, the use of Theorem 18.19 above takes the form of Lemma 2.

Lemma 2 Under the assumptions in Theorem 2 and with the following definitions,

AK,Nε,y =
{
z ∈ Y : D

(
pK,N (· | y) , pK,N (· | z)

)
≤ ε
}

and AK,N0,y =
⋂
ε∈Q+

AK,Nε,y ,

BK,N
ε,y = arg max

z∈AK,Nε,y

D1 (π (· | z) , π (· | y)) and BK,N
0,y =

⋂
ε∈Q+

BK,N
ε,y ,

so thatAK,N0,y =
{
z ∈ Y : pK,N(· | y)−pK,N(· | z)=0

}
andBK,N

0,y =arg max
z∈AK,N0,y

D1(π(· | z), π(· | y)).

Then, we can always choose an argmax correspondence y � BK,N
0,y , which is measurable

and admits a measurable selector.

Proof of Lemma 2. Let us define the correspondence ζK,N0 : Y � Y so that ζK,N0 (y) =

AK,N0,y . We claim that this correspondence is a weakly measurable correspondence with
nonempty compact values. Indeed, we firstly define the function fK,N (y, z) = pK,N (· | y)−
pK,N (· | z), and notice that

fK,N : Y × Y → R

is Caratheodory, since it is a continuous function in z and measurable in y by the continuity
of pK,N . Then, by using the (Aliprantis and Border, 2006, Corollary 18.8) and the fact that
Y is compact, it follows that

ζK,N0 (y) =
{
z ∈ Y : fK,N (y, z) = 0

}
is measurable. Then, it is also weakly measurable (see Aliprantis and Border 2006, Lemma
18.2). Furthermore, ζK,N0 has nonempty compact values since for any y ∈ Y, ζK,N0 (y)

always contains y, and ζK,N0 (y) =
[
fK,N (y, ·)

]−1
({0}) is a compact set since the inverse

image of continuous function fK,N (y, ·) of compact set is also compact.
Then, since we assume that (y, z) 7→ D1 (π (· | z) , π (· | y)) is a continuous function in

z and measurable in y, then it is also a Caratheodory function. We also remark that BK,N
0,y

can be written as a argmax correspondence

BK,N
0,y = arg max

z∈ζK,N0 (y)

D1 (π (· | z) , π (· | y)) .
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By using the result from Aliprantis and Border, 2006, Theorem 18.19, Measurable Maximum
Theorem, we conclude that the the argmax correspondence BK,N

0,y is measurable and admits
a measurable selector, that is, we can always choose a measurable function y 7→ zK,N0,y ∈
BK,N

0,y .

S4 Additional illustrations

S4 .1 Bivariate Beta model

The bivariate beta model proposed by Crackel and Flegal (2017) is defined with five positive
parameters θ1, . . . , θ5 by letting

v1 =
u1 + u3

u5 + u4
, and v2 =

u2 + u4

u5 + u3
, (41)

where ui ∼ Gamma(θi, 1), for i ∈ [5], and setting z1 = v1/(1 + v1) and z2 = v2/(1 + v2).
The bivariate random variable z> = (z1, z2) has marginal laws z1 ∼ Beta(θ1 + θ3, θ5 + θ4)
and z2 ∼ Beta(θ2 + θ4, θ5 + θ3). We perform ABC using samples of size R = 100. The
observed sample is generated from the model with true parameter values (θ1, θ2, θ3, θ4, θ5) =
(1, 1, 1, 1, 1). The prior on each of the model parameters is taken to be independent and
uniform over interval [0, 5].

Figure S1 shows the marginal ABC posterior distributions for each of the 5 parameters
and comparing 5 ABC procedures.

We then summarise each sample using 14 quantiles and apply the ABC procedures on
these summarised data sets. The marginal posteriors are shown in Figure S2 for the 5
parameters and the 5 procedures. The GLLiM-MW2-ABC procedure based on the MW2

distance is the best while the one based on L2 performs very poorly. This is surprising as
both methods are based on the same GLLiM surrogates. Understanding the failure of the
L2 distance in this specific case would require more investigations. The GLLiM mixture for
the observation to be inverted is also shown and exhibits modes near the true parameters
values. GLLiM-MW2-ABC and GLLiM-E-ABC perform similarly while the addition of
log-variances in GLLiM-EV-ABC does not seem to improve posterior estimation. GLLiM-
E-ABC and the semi-automatic method both rely on an estimation of the posterior means
but show posteriors of different shapes in particular for θ1 and θ4 (Figure S2). Differences
between the two methods are also observed in Figure S1 for θ2 and θ4 but in this case the
two methods do not used the same summaries.

For a more quantitative comparison, we compute for each posterior samples of size S,
empirical means of the parameters, θ̄j = 1

S

∑S
i=1 θ

i
j , and empirical root mean square errors

(RMSE) defined as R(θj) =
√

1
S

∑S
i=1(θij − θ0

j )
2 where j ∈ [5], S = 50 and θij is the sample i

for θj and θ0
j is the true parameter value. Table S1 shows these quantities for the posteriors

shown in Figures S1 and S2.
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Figure S1: Bivariate Beta model: marginal posteriors Marginal for parameters θ1, . . . , θ5.
Realisations are made of R = 100 i.i.d. observations. ABC procedures are applied on
these observations, GLLiM-E-ABC (red), GLLiM-EV-ABC (dotted red), GLLiM-MW2-
ABC (black), GLLiM-L2-ABC (blue), except for semi-automatic ABC which uses reduced
observations to 14 quantiles (green). The GLLiM mixture is also shown (dotted green).
GLLiM-iid is applied with K = 100. The black dashed lines indicate the true parameter
values.
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Figure S2: Bivariate Beta model: marginal posteriors for parameters θ1, . . . , θ5. Each set
of R = 100 i.i.d. realisations has been reduced to 14 quantiles. All ABC procedures
are applied on these reduced observations: semi-automatic ABC (green), GLLiM-E-ABC
(red), GLLiM-EV-ABC (dotted red), GLLiM-MW2-ABC (black), GLLiM-L2-ABC (blue),
semi-automatic ABC (green). The corresponding GLLiM mixture is also shown (dotted
green). Standard GLLiM is applied with K = 40. The black dashed lines indicate the true
parameter values.

S4 .2 Moving average model

The MA(2) process is a stochastic process (y′t)t∈N∗ defined by

y′t = zt + θ1zt−1 + θ2zt−2, (42)
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Procedure θ̄1 θ̄2 θ̄3 θ̄4 θ̄5 R(θ1) R(θ2) R(θ3) R(θ4) R(θ5)
GLLiM mixture 1.504 1.736 0.890 0.989 1.616 0.926 1.276 0.824 0.848 1.021
GLLiM-E-ABC 1.142 1.899 0.871 0.786 1.472 0.678 1.181 0.498 0.568 0.626

GLLiM-EV-ABC 0.990 1.867 0.746 0.594 1.385 0.505 1.077 0.469 0.562 0.517
GLLiM-L2-ABC 1.597 1.700 1.534 1.627 1.827 1.1445 1.224 0.968 1.117 1.295

GLLiM-MW2-ABC 1.211 1.319 0.872 1.004 1.235 0.790 0.820 0.439 0.523 0.426
with 14 quantiles as summaries

Semi-auto ABC 0.770 0.825 0.947 0.756 0.917 0.493 0.472 0.524 0.468 0.523
GLLiM mixture 0.448 0.858 0.739 0.552 0.577 1.685 1.464 1.367 1.300 1.214
GLLiM-E-ABC 1.266 0.905 0.872 1.105 1.082 0.629 0.501 0.550 0.541 0.514

GLLiM-EV-ABC 1.530 0.852 1.095 0.727 0.904 0.808 0.504 0.577 0.565 0.450
GLLiM-L2-ABC 3.390 3.010 3.467 3.361 2.653 2.747 2.492 2.693 2.732 1.995

GLLiM-MW2-ABC 1.257 0.909 0.921 1.042 0.950 0.573 0.500 0.524 0.529 0.464

Table S1: Bivariate Beta model: parameter means, and RMSE (R(·)) for ABC posterior
distributions shown in Figures S1 and S2 when the observed data is generated with θ =
(1, 1, 1, 1, 1). The ABC posterior values are computed as empirical values over samples of
size 50. Means closest to 1 and best (lowest) RMSE values are in boldface.

where {zt} is an i.i.d. sequence, according to a standard normal distribution and θ1 and θ2

are scalar parameters. A standard identifiability condition is imposed on this model leading
to a prior distribution on the triangle described by the inequalities

−2 < θ1 < 2, θ1 + θ2 > −1, θ1 − θ2 < 1 .

As in most papers, the prior on the two model parameters is taken uniform over the trian-
gular domain. Natural summary statistics for this model are the empirical auto-covariances
of lag 1 and 2, which converge to a one-to-one function of the two parameters. This exam-
ple is a way to illustrate our method on time series in the same manner as Bernton et al.
(2019). Their Wasserstein-ABC proposal uses empirical distributions and, like other data
discrepancy based methods, is in principle only valid for i.i.d. observations. However, they
also investigate the use of the method to time series where observations are not i.i.d.. We
make a similar attempt in this work and show how it can be interpreted in our framework.

For each pair of parameters (θ1, θ2) in the triangular domain, a series of length 150
is simulated according to the MA(2) model (42). We consider time series of length 150,
instead of 100 in Jiang et al. (2017). This is repeated N times so that the number of pairs
in the learning set is N = 105. The series to be inverted is simulated similarly with true
parameters θ1 = 0.6 and θ2 = 0.2. To learn a GLLiM model with d = 150, ` = 2, K = 30,
and no constraints on the covariance matrices for the likelihood part of the model, requires
the estimation of 353429 parameters. To reduce the model complexity while going beyond
the alternative isotropic or diagonal cases, we propose to use the i.i.d. adaptation of GLLiM.
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Table S2: MA(2) model: parameter means, standard deviations and correlations for the
exact and ABC posterior distributions shown in Figure S3 when the observed data is gen-
erated with θ1 = 0.6 and θ2 = 0.2. The exact posterior values are computed numerically,
while the ABC posterior values are computed as empirical values over samples of size 100.
Closest values to the true posterior ones are in bold.

Posterior mean(θ1) mean(θ2) std(θ1) std(θ2) cor(θ1, θ2)
Exact 0.635 0.203 0.080 0.076 0.472

Auto-cov Rejection ABC 0.635 0.246 0.107 0.164 0.018
Auto-cov Semi-auto 0.637 0.250 0.109 0.159 -0.045
Semi-auto ABC 0.026 0.027 0.406 0.476 -0.112
GLLiM mixture 0.521 0.182 0.499 0.294 -0.007
GLLiM-E-ABC 0.737 0.208 0.104 0.084 0.454
GLLiM-EV-ABC 0.689 0.163 0.110 0.120 0.474
GLLiM-L2-ABC 0.740 0.213 0.103 0.088 0.436

GLLiM-MW2-ABC 0.742 0.206 0.104 0.084 0.527

GLLiM is applied with d = 3, R = 50 and no constraint on the 3× 3 blocs themselves (629
parameters). A second experiment is made with R = 5 and d = 30 i.e. with 5 blocs of size
30×30 with no constraint on the bloc structure (16829 parameters) . The second setting is
retained as it shows better precision on θ2 in particular. In terms of approximation this is
equivalent to neglect only few correlations in the GLLiM approximation of the likelihood.

For ABC procedures, the tolerance threshold ε is set to the 0.1% quantile leading to
selected samples of size 100. Empirical values for parameter means, standard deviations
and correlation when applying the different ABC schemes for one observed time series are
compared to the true ones computed numerically. The true posterior means, standard
deviations of θ1 and θ2 are computed numerically using importance sampling. The true
posterior correlation between θ1 and θ2 is also computed this way. The corresponding
ABC estimations and samples are shown in Table S2 and Figure S3. The results are
qualitatively similar to that of Jiang et al. (2017) with a poor estimation of the means
for the semi-automatic ABC procedure on the full time series. They also confirm results
already observed in previous works, namely that semi-automatic and auto-covariance-based
procedures do not well capture correlation information between θ1 and θ2. Surprisingly, the
GLLiM mixture approximation of the posterior also provides a poor estimation of the
correlation but this estimation improves a lot when adding the ABC step.

S4 .3 Non-identifiable models

Our main targets are posterior distributions with multiple modes for which our method
is more likely to provide significantly better performance than existing approaches. It
is straightforward to construct models that lead to multimodal posteriors by considering
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(a)GLLiM-E-ABC (b)GLLiM-EV-ABC (c)GLLiM-MW2-ABC
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(d) GLLiM mixture (e) Semi-automatic ABC (f) GLLiM-L2-ABC
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(g) Auto-covariances (h) Semi-automatic auto-covariances

Figure S3: MA(2) model. A GLLiM-iid model is learned on a data set of size N = 105

with K = 30, d = 30, R = 5. Selected samples (100 points) using (a) GLLiM posterior
expectations, (b) GLLiM posterior expectations and log variances, (c) MW2 distances, (d)
the approximate GLLiM posterior for the observed data, (e) semi-automatic ABC, (f) L2

distances, (g) Auto-covariances as summary statistics, (h) semi-automatic ABC on auto-
covariances, Contours of the true posterior distribution computed numerically are shown in
blue. The true parameters are 0.6 and 0.2 as indicated by the dashed lines.

likelihoods that are invariant by some transformation.
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S4 .3.1 Ill-posed inverse problems

Here, we consider inverse problems for which the solution is not unique. This setting is quite
common in practice and can occur easily when the forward model exhibits some invariance,
e.g., when considering the negative of the parameters. A simple way to model this situation
consists of assuming that the observation y is generated as a realization of

y = F (θ) + ε,

where F is a deterministic theoretical model coming from experts and ε is a random vari-
able expressing the uncertainty both on the theoretical model and on the measurement
process. A common assumption is that ε is distributed as a centered Gaussian noise. Non-
identifiability may then arise when F (−θ) = F (θ). Following this generative approach,
a first simple example is constructed with a Student t-distributed noise leading to the
likelihood:

fθ(y) = Sd(y;µ21Id, σ2Id, ν),

where Sd(·;µ21Id, σ2Id, ν) is the pdf of a d-variate Student t-distribution with a d-dimensional
location parameter with all dimensions equal to µ2, diagonal isotropic scale matrix σ2 Id
and degree-of-freedom (dof) parameter ν. Recall that for a Student t-distribution, a di-
agonal scale matrix is not inducing independent dimensions so that y is not a set of i.i.d.
univariate Student t observations. The dof controls the tail heaviness; i.e., the smaller the
value of ν, the heavier the tail. In particular, for ν ≤ 2, the variance is undefined, while for
ν ≤ 1 the expectation is also undefined. In this example, we set σ2 = 2, ν = 2.1, and µ is
the parameter to estimate.

For all compared procedures, we set d = 10, K = 10, N = M = 105, and the tolerance
level ε to the 0.1% quantile of observed distances, so that all selected posterior samples are
of size 100.

Figure S4 shows the true and the compared ABC posterior distributions for a 10-dimen-
sional observation y, simulated under a process with µ = 1. The true posterior exhibits
the expected symmetry with modes close to the values: µ = 1 and µ = −1. The simple
rejection ABC procedure based on GLLiM expectations (GLLiM-E-ABC) and the semi-
automatic ABC procedure both show over dispersed samples with wrongly located modes.
The GLLiM-EV-ABC exhibits two well located modes but does not preserve the symmetry
of the true posterior. The distance-based approaches, GLLiM-L2-ABC and GLLiM-MW2-
ABC both capture the bimodality. GLLiM-MW2-ABC is the only method to estimate a
symmetric posterior distribution with two modes of equal importance. Note, however, that
in term of precision, the posterior distribution estimation remains difficult considering an
observation of size only d = 10.

This simple example shows that the expectation as a summary statistic suffers from
the presence of two equivalent modes, while the approaches based on distances are more
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robust. There is a clear improvement in complementing the summary statistics with the
log-variances. Although in this case, this augmentation provides a satisfying bimodal pos-
terior estimate, it lacks the expected symmetry of the two modes. The GLLiM-MW2-ABC
procedure has the advantage of exhibiting a symmetric posterior estimate, that is more
consistent with the true posterior.

Figure S4: Non identifiable Student t-distribution. ABC posterior distributions from the
selected samples. GLLiM-L2-ABC in blue, GLLiM-MW2-ABC in black, semi-automatic
ABC in green, GLLiM-E-ABC (expectations) in red and GLLiM-EV-ABC (expectations
and log-variances) in dotted red line. The true posterior is shown in purple. The dashed
lines indicate the µ (equivalent) values used to generate the observation.

In the following subsection we present another case that cannot be cast as the above
generating process but also exhibit a transformation invariant likelihood.

S4 .3.2 Sum of moving average models of order 2 (MA(2))

Using the same MA(2) process as already defined in Section S4 .2, we consider a trans-
formation that consists of taking the opposite sign of θ1 and keeping θ2 unchanged. The
considered observation corresponds then to a series obtained by summing the two MA
models, defined below

y′t = zt + θ1zt−1 + θ2zt−2, y′′t = z′t − θ1z
′
t−1 + θ2z

′
t−2, yt = y′t + y′′t ,

where {zt} and {z′t} are both i.i.d. sequences, generated from a standard normal distri-
bution. It follows that a vector of length d, y = (y1, . . . , yd)

>, is distributed according
to a multivariate d-dimensional centered Gaussian distribution with a Toeplitz covariance
matrix whose first row is (2(θ2

1 + θ2
2 + 1), 0, 2θ2, 0, . . . , 0). The likelihood is therefore invari-

ant by the transformation proposed above, and so is the uniform prior over the triangle.
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It follows that the posterior is also invariant by the same transformation and can then be
chosen so as to exhibit two symmetric modes.

For all procedures, we set K = 80 and N = M = 105, and ε to the 1% distance
quantile, so that all selected posterior samples are of size 1000. An observation of size
d = 10 is simulated from the model with θ1 = 0.7 and θ2 = 0.5. ABC posterior distribution
estimates are shown in Figure S5.
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Figure S5: Sum of MA(2) models. Posterior marginals from the samples selected with a
1% quantile (1000 values): semi-automatic ABC (green), GLLiM-L2-ABC (blue), GLLiM-
MW2-ABC (black), GLLiM-E-ABC (red) and GLLiM-EV-ABC (dotted red). The true
marginal posteriors are shown in purple. The dashed lines show the values used to simulate
the observation θ1 = 0.7 and θ2 = 0.5.

The level sets of the true posterior can be computed from the exact likelihood and a grid
of values for θ1 and θ2. For the setting used here, none of the considered ABC procedures
is fully satisfactory, in that the selected samples are all quite dispersed. This is mainly
due to the relatively low size of the observation (d = 10). The tests made in Section S4
.2 with a much larger d = 150 provided in contrast very satisfying samples as visible in
supplementary Figure S3. This can also be observed in Marin et al. (2012) (Figures 1 and
2), where ABC samples are less dispersed for a size of d = 100 and quite spread off when
d is reduced to d = 50, even when the autocovariance is used as summary statistic.

Despite the relative spread of the parameters accepted after the ABC rejection, the
posterior marginals, shown in Figure S5, provide an interesting comparison. GLLiM-D-
ABC and GLLiM-EV-ABC procedures show symmetric θ1 values, in accordance with the
symmetry and bimodality of the true posterior. The use of the L2 or MW2 distances does not
lead to significant differences. GLLiM-E-ABC and semi-automatic ABC behave similarly
and do not capture the bimodality on θ1, but the addition of the posterior log-variances in
GLLiM-EV-ABC improves on GLLiM-E-ABC. These results suggest that although GLLiM
may not provide good approximations of the first posterior moments, it can still provide
good enough approximations of the surrogate posteriors in GLLiM-D-ABC. For θ2, all
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posteriors are rather close to the true posterior marginal except for semi-automatic ABC
which shows a mode at a wrong location when compared to the true posterior.

A similar example using MA(1) processes is also provided in the next subsection.

S4 .3.3 Sum of moving average models of order 1 (MA(1))

The MA(1) process is a stochastic process (y′t)t∈N∗ defined by

y′t = zt + ρzt−1 .

In order to construct bimodal posterior distributions, we consider the following sum of two
such models. At each discrete time step t we define,

y′t = zt + ρzt−1, y′′t = z′t − ρz′t−1, and yt = y′t + y′′t

where {zt} and {z′t} are both i.i.d. sequences, according to a standard normal distribution
and ρ is an unknown scalar parameter. It follows that a vector of length d, y = (y1, . . . , yd)

>

is distributed according to a multivariate d-dimensional centered Gaussian distribution
with an isotropic covariance matrix whose diagonal entries are all equal to 2(ρ2 + 1). The
likelihood is therefore invariant by symmetry about 0 and so is the prior on ρ assumed
to be uniform over [−2, 2]. It follows that the posterior on ρ is also invariant by this
transformation and can thus be chosen so as to exhibit two symmetric modes. The true
posterior looks similar to the one in Section S4 .3 but ρ is now a parameter impacting upon
the variance of the likelihood.

For all procedures, we set N = M = 105, and ε to the 0.1% quantile of observed
distances so that all selected posterior samples are of size 100. In terms of difficulty, the
main difference with the example in Section S4 .3 lies in a higher non-linearity of the
likelihood and of the model joint distribution. We then report results with a higher choice
of K = 20. When K = 10, results are similar except for GLLiM-EV-ABC, which does not
show improvement over GLLiM-E-ABC.

A d = 10 dimensional observation, simulated from a process with ρ = 1, is considered.
The ABC posterior distributions derived from the selected samples are shown for each of the
compared procedures in Figure S6. The expectation-based summary statistics approaches
(semi-automatic ABC and GLLiM-E-ABC) do not capture the bimodality. Adding the
posterior log-variances (red dotted line) allows to recover the two modes. GLLiM-EV-ABC,
GLLiM-MW2-ABC and GLLiM-L2-ABC provide similar bimodal posterior distributions,
with more symmetry between the two modes for the two first methods.

S4 .4 Sound source localization

S4 .4.1 Two-microphone setup

Considering the two-microphone configuration described in Section 6.3.1 in the manuscript,
we compare the four ABC methods using GLLiM with semi-automatic ABC. Recall that
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Figure S6: Sum of MA(1) models. ABC posterior distributions from the selected sam-
ples. GLLiM-L2-ABC in blue, GLLiM-MW2-ABC in black, semi-automatic ABC in
green, GLLiM-E-ABC (expectations) in red and GLLiM-EV-ABC (expectations and log-
variances) in dotted red line. The true posterior is shown in purple. The dashed lines
indicate the ρ (equivalent) values used to generate the observation.

the likelihood is defined by

fθ(y) = Sd(y; ITD(θ)1Id, σ2Id, ν) . (43)

In this example, the semi-automatic ABC procedure uses the same data set for both the
regression and rejection steps. For a fair comparison, we thus also learn here a GLLiM
model from the same data set. We use a training set of M = 106 pairs (θ,y) ∈ Θ × R10,
simulated from a uniform distribution on Θ and applying model (43). The estimated GLLiM
model consists of K = 20 Gaussian components with an isotropic constraint. The ABC
procedures are then run on the same M = 106 training set. A selected set of 1000 samples
is retained by thresholding the distances under the 0.1% quantile.

Figure S7 shows the ABC samples with another sample simulated from the GLLiM pos-
terior distribution, corresponding to the observation y (Figure S7 (d)). This GLLiM poste-
rior is a 20-component Gaussian mixture. Another sample obtained using the Metropolis–
Hastings algorithm, as implemented in the R package mcmc (Geyer and Jonhson, 2020),
is shown in Figure S7 (g)). Figure S7 (h) show the true posterior around hyperboloids,
which are symmetric with respect to the microphones line and its mediatrice, and contain
the true sound source localization as expected.

All tested procedures except semi-automatic ABC reflect the bimodality of the posterior
distribution. The 20-component GLLiM mixture (Figure S7 (d)) reproduces correctly the
bimodality of the true posterior. However, the accuracy is improved when using an addi-
tional ABC step. GLLiM-EV-ABC, GLLiM-L2-ABC and GLLiM-MW2-ABC lead to very
similar selected samples (Figure S7 (b,c,f)). Using only the GLLiM posterior expectations
as summary statistics is less informative although the GLLiM mixture itself appears as a

28



reasonable approximation that well captures the main shape of the true posterior. Interest-
ingly, semi-automatic ABC and GLLiM-E-ABC provide different selections, although both
procedures are based on a preliminary estimation of the posterior means. In this example,
the true posterior means are all zero due to symmetry in the posterior distributions. The
semi-automatic ABC selected sample is then the one expected as the true posterior means
do not carry any information on the parameter values. The posterior means approximated
by GLLiM are also all around zero but the structure visible in the selected sample suggests
that the surrogate means still capture some information on the parameter values, probably
through the estimation bias. Paradoxically the poor semi-automatic ABC selection may be
due to a more accurate preliminary regression step.

S4 .4.2 Two-microphone pairs

When a larger data set with M = 106 is used to learn GLLiM as it is done to fit the
semi-automatic ABC regression, Figure S8 shows that both GLLiM-E-ABC and GLLiM-
EV-ABC improve. A more accurate GLLiM fit may therefore have an impact on this latter
procedures while GLLiM-D-ABC procedures are less sensitive to the quality of the fit.

S4 .5 Planetary science example

S4 .5.1 Synthetic data from the Hapke model

Prior to real data inversion, to illustrate the performance of the procedures, we consider
an observation simulated from the Hapke model as explained above. As already mentioned
the Hapke model is quite difficult to invert due to equivalent solutions and low sensitivity
of the model to some of the parameters. Therefore as a first validation and for a useful
comparison of the procedures we chose to invert a simulated observation as close as possible
to the real observed signal described in the next section. Among the simulated signals, in
the ABC data set, we chose then the one whose correlation with the real observed one
was the highest. This synthetic signal has been generated from the Hapke model applied
to parameter values (ω, θ̄, b, c) = (0.68, 0.04, 0.23, 0.04), with an additional Gaussian noise
with standard deviation of 0.05.

Figure S9 shows the marginal posteriors obtained for each parameter using the five ABC
procedures and for different tolerance values ε chosen as the 0.05%, 0.1% and 1% quantiles
of the observed distances. A particular feature of this synthetic example is the relatively
low value of θ, which does not correspond to a value expected in real data. Experts consider
that reasonable values for θ are between 0.33 and 0.66 (representing in the original space
an angle between 10 and 20 degrees). The Hapke model is also such that ω and θ values
can interact to allow the reconstruction of a given spectrum. In Figure S9, this effect is
visible on the slightly shifted modes of the posterior distributions for ω and θ̄ compared
to the value used for the simulation. This bias is compensating for the overly small value
of θ. Then the fact that posterior distributions for c are sharper than those for b is also
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(a) GLLiM-E-ABC (b) GLLiM-EV-ABC (c) GLLiM-MW2-ABC
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(d) GLLiM mixture (e) Semi-automatic ABC (f) GLLiM-L2-ABC
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(g) Metropolis-Hastings (h) True posterior

Figure S7: Sound source localization. GLLiM and semi-automatic ABC both use the same
large data set of size M = 106. Selected samples using (a) GLLiM posterior expectations,
(b) GLLiM posterior expectations and log variances, (c) MW2 distances, (d) the approx-
imate GLLiM posterior for the observed data, (e) semi-automatic ABC, (f) L2 distances,
(g) Metropolis-Hastings sample and (h) contours of the true posterior distribution. Black
points on the dotted line are the microphones positions. The third black point is the true
sound source localization.

consistent with expert knowledge according to which b and θ are more difficult to estimate
than ω and c.

More generally, this example highlights the performance of the different ABC methods.
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(d) GLLiM mixture (e) Semi-automatic ABC (f) GLLiM-L2-ABC

Figure S8: Sound source localization with a mixture of two microphones pairs. GLLiM
is learned with the largest data set of size M = 106. Selected samples using (a) GLLiM
posterior expectations, (b) GLLiM posterior expectations and log variances, (c) MW2 dis-
tances, (d) the approximate GLLiM posterior for the observed data, (e) semi-automatic
ABC, (f) L2 distances. Black points on the dotted line are the microphones positions. The
fifth black point is the true sound source localization.

It is interesting to vary ε to observe the behavior of the different methods. A lower ε can be
used to check if one of the modes may vanish (i.e. with a more drastic thresholding) or is
confirmed when the selection is more permissive. The GLLiM-L2-ABC procedure seems less
robust, than the other procedures, to these variations and even degrades in performance
when the thresholding is too permissive. The two procedures based on expectations as
summary statistics have overall satisfying performance with globally less sharp posterior
distributions. The addition of the posterior log-variances does not seem to significantly
change the selected samples.

S4 .5.2 Real observation inversion

We focus on one observation coming from an experiment involving a mineral called Non-
tronite. The inversion described in Section 6.4 of the manuscript shows the existence of
multiple solutions. A complementary test was made to check the relevance of a potential
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(a) 1% (1000 samples) (b) 0.1% (100 samples) (c) 0.05% (50 samples)

Figure S9: Inversion of a synthetic observation from the Hapke model. The selected
samples using four rejection ABC methods are shown, GLLiM-E-ABC expectations in red,
GLLiM-EV-ABC in dotted red, semi-automatic ABC in green, GLLiM-L2-ABC in blue and
GLLiM-MW2-ABC in black. The margins for ω, θ̄, b and c are shown from top to bottom
respectively. Columns correspond to different ε values, in column from left to right, set to
the 1%, 0.1% and 0.05% quantile respectively. The vertical lines indicate the parameter
values used for the simulation.

second mode observed for the b parameter in Figure 2 of the manuscript. Figure S10 below,
obtained by decreasing the threshold ε to the 0.05% quantile, shows that this mode around
0.5 tends to disappear. As an additional check, the reconstructed signal obtained with this
value of b was observed to be quite different from the inverted signal (not shown).
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Figure S10: Real observation inversion using the Hapke model. Selected samples us-
ing four ABC methods, GLLiM-E-ABC in red, GLLiM-EV-ABC in dotted red, semi-
automatic ABC in green, GLLiM-L2-ABC in blue and GLLiM-MW2-ABC in black. The
posterior margins for ω, θ̄, b and c are shown respectively. The threshold ε is set to the
0.05% quantile (50 selected values). The vertical lines indicate the parameters values
(ω, θ, b, c) = (0.59, 0.15, 0.14, 0.06) and (0.59, 0.42, 0.14, 0.06) (identical except for θ).
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