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Abstract A key ingredient in approximate Bayesian computation (ABC) procedures is the choice of
a discrepancy that describes how different the simulated and observed data are, often based on a set of
summary statistics when the data cannot be compared directly. Unless discrepancies and summaries are
available from experts or prior knowledge, which seldom occurs, they have to be chosen and this can
affect the approximations. Their choice is an active research topic, which has mainly considered data
discrepancies requiring samples of observations or distances between summary statistics, to date. In this
work, we introduce a preliminary learning step in which surrogate posteriors are built from finite Gaussian
mixtures using an inverse regression approach. These surrogate posteriors are then used in place of summary
statistics and compared using metrics between distributions in place of data discrepancies. Two such metrics
are investigated, a standard L2 distance and an optimal transport-based distance. The whole procedure
can be seen as an extension of the semi-automatic ABC framework to functional summary statistics. The
resulting ABC quasi-posterior distribution is shown to converge to the true one, under standard conditions.
Performance is illustrated on both synthetic and real data sets, where it is shown that our approach is
particularly useful when the posterior is multimodal.

Keywords Approximate Bayesian computation, summary statistics, surrogate models, Gaussian mix-
tures, discrepancy measures, divergence measures, L2 distance, Wasserstein distance, multimodal posterior
distributions.
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1 Introduction

Approximate Bayesian computation (ABC) (see, e.g., Sisson et al. 2019) appears as a natu-
ral candidate for addressing problems where there is a lack of availability of the likelihood.
Such cases occur when the direct model or data generating process is not available, analyt-
ically, but is available as a simulation procedure; e.g., when the data generating process is
characterized as a series of ordinary differential equations, as in Mesejo et al. (2016); Hov-
orka et al. (2004). In addition, typical features or constraints that can occur in practice are
that 1) the observations y are high-dimensional, because they represent signals in time or
spectra, as in Schmidt and Fernando (2015); Bernard-Michel et al. (2009); Ma et al. (2013)
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and 2) the parameter θ to be predicted is itself multi-dimensional with correlated dimen-
sions so that independently predicting its components is sub-optimal; e.g., when there are
known constraints such as when the parameter elements are concentrations or probabilities
that sum to one (Deleforge et al., 2015a; Lemasson et al., 2016; Bernard-Michel et al., 2009).

ABC enables posterior inference in situations where the likelihood is not available by
measuring the similarity between simulated and observed data. The fundamental idea of
ABC is to generate parameter proposals θ in a parameter space Θ using a prior distribution
π(θ) and accept a proposal if the simulated data z for that proposal is similar to the observed
data y both in an observation space Y. This similarity is usually measured using a distance
or discriminative measure D and a simulated sample z is retained if D(z,y) is smaller than
a given threshold ε. The simulated z is the result of applying the likelihood black-box to θ.
In this simple form, the procedure is generally referred to as rejection ABC. Other variants
are possible and often recommended, for instance using MCMC or sequential procedures
(e.g. Del Moral et al., 2012; Buchholz and Chopin, 2019), but we will focus on the rejection
version for the purpose of this paper.

In the case of a rejection algorithm, selected samples are drawn from the so-called ABC
quasi-posterior, which is an approximation to the true posterior π(θ | y). Under conditions
similar to that of Bernton et al. (2019), regarding the existence of a probability density
function (pdf) fθ(z) for the likelihood, the ABC quasi-posterior depends on D and on a
threshold ε, and can be written as

πε(θ | y) ∝ π(θ)

∫
Y

1{D(y,z)≤ε} fθ(z) dz . (1)

More specifically, the similarity between z and y is generally evaluated based on two com-
ponents: the choice of summary statistics s(·) to account for the data in a more robust
manner, and the choice of a distance to compare the summary statistics. That is, D(y, z)
in (1) should then be replaced by D(s(y), s(z)), whereupon we abuse the notation and also
use D to denote the distance between summary statistics s(·).

However, there is no general rule for constructing good summary statistics for complex
models and if a summary statistic does not capture important characteristics of the data,
the ABC algorithm is likely to yield samples from an incorrect posterior (Blum et al., 2013;
Fearnhead and Prangle, 2012; Gutmann et al., 2018). Great insight has been gained through
the work of Fearnhead and Prangle (2012) who introduced the semi-automatic ABC frame-
work and showed that under a quadratic loss, the optimal choice for the summary statistic
of y was the true posterior mean of the parameter: s(y) = E[θ | y]. This conditional
expectation cannot be calculated analytically but can be estimated by regression using a
learning data set prior to the ABC procedure itself.

In Fearnhead and Prangle (2012), it is suggested that a simple regression model may be
enough to approximate E[θ | y], but this has since then been contradicted, for instance by
Jiang et al. (2017); Wiqvist et al. (2019), who show that the quality of the approximation
can matter in practice. Still focusing on posterior means as summary statistics, they use
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deep neural networks that capture complex non-linear relationships and exhibit much better
results than standard regression approaches. However, deep neural networks remain very
computationally costly tools, both in terms of the required size of training data and number
of parameters and hyperparameters to be estimated and tuned.

Our first contribution is to investigate an alternative efficient way to construct summary
statistics, in the same vein as semi-automatic ABC, but based on posterior moments, not
restricted to the posterior means. Although this natural extension was already proposed
in Jiang et al. (2017), it requires the availability of a flexible and tractable regression
model, able to capture complex non-linear relationships and to provide posterior moments
straightforwardly. As such, Jiang et al. (2017) did not consider an implementation of
the procedure. For this purpose, the Gaussian Locally Linear Mapping (GLLiM) method
(Deleforge et al., 2015b), that we recall in Section 3, appears as a good candidate, with
properties in between that of computationally expensive neural networks and standard
regression techniques.

In contrast to most regression methods that provide only pointwise predictions, GLLiM
provides, at low cost, a parametric estimation of the full true posterior distributions. Using
a learning set of parameters and observations couples, GLLiM learns a family of finite
Gaussian mixtures whose parameters depend analytically on the observation to be inverted.
For any observed data, the true posterior can be approximated as a Gaussian mixture,
whose moments are easily computed in closed form and turned into summary statistics for
subsequent ABC sample selection.

Moreover, beyond semi-automatic ABC, the obtained parametric approximations of
the posterior distributions can be used without reducing them to moments. The idea
is to compare directly these surrogate posterior distributions rather than comparing their
moments. However, when replacing summary statistics by full surrogate distributions, even
parametric ones, the usual distances or discrepancy measures used to compare them must
also be changed. Recent developments in optimal transport-based distances designed for
Gaussian mixtures (Delon and Desolneux, 2020; Chen et al., 2019) match perfectly this need
with a so-called Mixture-Wasserstein distance referred to in Delon and Desolneux (2020)
and below as MW2. Other distances between mixtures are tractable and among them the
L2 distance is also considered in this work, as it is straightforward to compute.

The novelty of our approach and its comparison with existing work is emphasized in
Section 2. The GLLiM output is briefly described in Section 3. A first exploitation of
GLLiM combined with the semi-automatic ABC principle of Fearnhead and Prangle (2012)
is presented in Section 4.1. Our extension using functional summary statistics is then
described in Section 4.2. The approach’s theoretical properties are investigated in Section
5 and the practical performance is illustrated in Section 6, both on synthetic and real data.
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2 Related work

In the works of Nguyen et al. (2020); Jiang et al. (2018); Bernton et al. (2019); Park et al.
(2016); Gutmann et al. (2018), the difficulties associated with finding efficient summary
statistics was bypassed by adopting, respectively, the Energy Distance, a Kullback–Leibler
divergence estimator, the Wasserstein distance, the Maximum Mean Discrepancy (MMD),
and classification accuracy to provide a data discrepancy measure. Such approaches com-
pare simulated data and observed data by looking at them as i.i.d. samples from distri-
butions, respectively linked to the simulated and true parameter, except for Bernton et al.
(2019); Gutmann et al. (2018) that propose solutions to also handle time series. We suspect
that to be effective these methods require that the observed and simulated data contain
each a moderately large number of samples. Typically, they cannot be applied if we observe
only one limited sample related to the parameter to be recovered. This is a major difference
with the approach that we propose.

We propose not to compare samples from distributions, but to directly compare the
distributions by comparing their surrogates. So doing, we are not concerned with data or
sample discrepancies, but with distances between distributions. We can still use the same
Wasserstein, Kullback–Leibler divergence, etc., but in their population versions rather than
in their empirical or estimator versions.

The Wasserstein distance can be computed between Mixtures of Gaussians, thanks to
the recent work of Delon and Desolneux (2020); Chen et al. (2019). Note that it is not
strictly speaking the Wasserstein distance, but a Wasserstein based distance. Other dis-
tances are even simpler to compute. Closed form expressions also exist for the L2 distance,
for the MMD with a Gaussian RBF kernel, or a polynomial kernel (see Sriperumbudur
et al., 2010; Muandet et al., 2012) and for the Jensen–Rényi divergence of degree two (see
Wang et al., 2009). Kristan et al. (2011) also proposed an algorithm based on the so-called
inscented transform in order to compute the Hellinger distance between two Gaussian mix-
tures, although it is unclear what the complexity of this algorithm is.

In addition, it is always possible to use the previous data discrepancies or their estima-
tors by simulating first samples from the distributions to be compared but this is likely to
be computationally sub-optimal. In this work, for illustration, we investigate the use of the
L2 and MW2 distances. Applications of other distances are left for future research.

3 Parametric posterior approximation with Gaussian mix-
tures

A learning set DN = {(θn,yn), n = [N ]} is built from the joint distribution that results
from the prior π(θ) on θ and the likelihood fθ, where [N ] = {1, . . . , N}. The idea is
to capture the relationship between θ and y with a joint probabilistic model for which
computing conditional distributions and moments is straightforward. For the choice of
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the model to fit to DN , we propose to use the so-called Gaussian Locally Linear Mapping
(GLLiM) model (Deleforge et al., 2015b) for its ability to capture non-linear relationships
in a tractable manner, based on flexible mixtures of Gaussian distributions. GLLiM can be
included in the class of inverse regression approaches, such as sliced inverse regression (Li,
1991), partial least squares (Cook and Forzani, 2019), mixtures of regressions approaches
of different variants, e.g. mixtures of experts (Nguyen et al., 2019), cluster weighted mod-
els (Ingrassia et al., 2012), and kernel methods (Nataraj et al., 2018). In contrast to deep
learning approaches (see Arridge et al. 2019 for a survey), GLLiM provides for each ob-
served y, a full posterior probability distribution within a family of parametric models
{pG(θ | y; φ),φ ∈ Φ}. To model non-linear relationships, it uses a mixture of K linear
models. More specifically, the expression of pG(θ | y; φ) is analytical and available for all
y with φ being independent of y:

pG(θ | y;φ) =
K∑
k=1

ηk(y) N (θ;Aky + bk,Σk), (2)

where N ( . ;µ,Σ) denotes the Gaussian pdf with mean µ and covariance matrix Σ and

ηk(y) =
πkN (y; ck,Γk)∑K
j=1 πjN (y; cj ,Γj)

. This distribution involves a number of parameters φ =

{πk, ck,Γk,Ak, bk,Σk}Kk=1. One interesting property of such a parametric model is that
the mixture setting provides some guaranties that when choosing K large enough it is
possible to approximate any reasonable relationship (Nguyen et al., 2019). The parameter
φ can be estimated by fitting a GLLiM model to the learning set DN using a standard
Expectation-Maximization (EM) algorithm. Details on the model and its estimation are
provided in Deleforge et al. (2015b).

Fitting a GLLiM model to DN therefore results in a set of parametric distributions
{pG(θ | y,φ∗K,N ), y ∈ Y}, which are mixtures of Gaussian distributions and can be seen
as a parametric mapping from y values to posterior pdfs on θ. The parameter φ∗K,N is the
same for all conditional distributions and does not need to be re-estimated for each new
instance of y. In terms of usage in ABC procedures, the setting is very similar to the ones
using standard summary statistics.

Note that when required, a response θ corresponding to an observed input y can be
proposed using the expectation of pG(θ | y;φ∗K,N ) in (2) given by:

EG[θ | y;φ∗K,N ] =

K∑
k=1

ηk(y) (A∗ky + b∗k). (3)

It is also straightforward to compute the covariance matrix of pG(θ | y;φ∗K,N ), which is
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given by

VarG[θ | y;φ∗K,N ] =
K∑
k=1

ηk(y)
[
Σ∗k + (A∗ky + b∗k)(A

∗
ky + b∗k)

>
]

−

(
K∑
k=1

ηk(y)(A∗ky + b∗k)

)(
K∑
k=1

ηk(y)(A∗ky + b∗k)

)>
(4)

where (·)> is the matrix transposition operator.
Expression (3) providing approximate posterior means can be directly used in a semi-

automatic procedure but, in addition, summary statistics extracted from the covariance
expression (4) can also be included and is likely to improve the ABC selection as illustrated
in Section 6.

4 Extended semi-automatic ABC

Semi-automatic ABC refers to an approach introduced in Fearnhead and Prangle (2012),
which has since then led to various attempts and improvements, see e.g. Jiang et al. (2017);
Wiqvist et al. (2019) without dramatic deviation from the original ideas.

4.1 Extension to extra summary vectors

In the same vein, a natural idea is to use the approximate posterior expectation provided
by GLLiM in (3) as the summary statistic s of data y:

s(y) = EG[θ | y;φ∗K,N ],

and then to apply standard ABC algorithms, e.g. a rejection ABC. This is strictly following
the idea of Fearnhead and Prangle (2012) but using a non-standard regression method
(GLLiM). It provides a first attempt to combine GLLiM and ABC procedures and has
the advantage over neural networks of being easier to estimate without the need of huge
learning data sets and obscure hyperparameter tuning.

However, one advantage of GLLiM over most regression methods is not to reduce to
pointwise predictions and to provide full posteriors as output. The posteriors can then
be used to provide other posterior moments as summary statistics. The same standard
ABC procedure as before can be applied but now with s1(y) = EG[θ | y;φ∗K,N ] and
s2(y) = VarG[θ | y;φ∗K,N ], as given by (4). In Section 6, we show examples where s2

restricts to the posterior log-variances, i.e. the logarithms of the diagonal elements of the
posterior covariance matrix.

To summarize, the discussion above leads to the procedure detailed in Algorithm 1. It
requires two simulated data sets, one for training GLLiM and constructing the surrogate
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posteriors, and one for the ABC selection procedure itself. For rejection ABC, the selection
also requires the user to fix a threshold ε. It is common practice to set ε to a quantile of
the computed distances. The use of GLLiM also requires the choice of K, the number of
Gaussian components in the mixtures. K can be chosen using model selection criteria (see
Deleforge et al., 2015b), but its precise value is not critical all the more so if GLLiM is not
used for prediction, directly. See details in our experiments (Section 6).

As illustrated in Section 6, it is easy to construct examples where the posterior expecta-
tions even when well-approximated are not performing well as summary statistics. Provid-
ing a straightforward and tractable way to add other posterior moments is then already an
interesting contribution. However, to really make the most of the GLLiM framework, we
propose to further exploit the fact that GLLiM provides more than the mean or variances
or other moments. We elaborate further in the next section.

4.2 Extension to functional summary statistics

Instead of comparing simulated z’s to the observed y, or equivalently their summary statis-
tics, we propose to compare the pG(θ | z,φ∗K,N )’s to pG(θ | y,φ∗K,N ) as given by (2). As
approximation of the true posteriors, these quantities are likely to capture the main char-
acteristics of θ without committing to the choice of a particular moment. The comparison
requires an appropriate distance that needs to be a mathematical distance between distribu-
tions. The equivalent functional distance to the L2 distance can still be used, the Hellinger
distance or any other divergence. A natural one is the Kullback–Leibler divergence but
computing Kullback–Leibler divergences between mixtures is not straightforward. Com-
puting the Energy statistic (e.g. Nguyen et al., 2020) appears at first to be easier but in
the end that would still resort to Monte Carlo sums. Since the model (2) is parametric, we
could also compute distances between the parameters of the mixtures that depend on y.
That is for k = [K], between the η∗k(y) =

π∗kN (y;c∗k,Γ
∗
k)∑K

j=1 π
∗
jN (y;c∗j ,Γ

∗
j )

and the A∗ky + b∗k’s. But this

may lead us back to the usual issue with distances between summary statistics and also we
may have to face the label switching issue, not easy to handle within the ABC procedures.

Recently, interesting developments regarding the Wasserstein distance and Gaussian
mixtures have emerged (Delon and Desolneux, 2020; Chen et al., 2019), introducing an
optimal transport-based distance between Gaussian mixtures. The good properties of this
distance make it an interesting candidate for our purpose. We first recall the definition of
this distance, denoted by MW2 and describe our next ABC procedure referred to as GLLiM-
MW2-ABC. The L2 distance between mixtures is also very straightforward to compute and
recalled in Section 4.2.2, leading then to another procedure, which we call GLLiM-L2-ABC.

4.2.1 Optimal transport-based distance between Gaussian mixtures

Delon and Desolneux (2020); Chen et al. (2019) have introduced a distance specifically
designed for Gaussian mixtures based on the Wasserstein distance. In an optimal transport
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context, by restricting the possible coupling measures (i.e., the optimal transport plan) to
a Gaussian mixture, they propose a discrete formulation for this distance. This makes it
tractable and suitable for high dimensional problems, while in general using the standard
Wasserstein distance between mixtures is problematic. Delon and Desolneux (2020) refer
to the proposed new distance as MW2, for Mixture Wasserstein.

The MW2 definition makes first use of the tractability of the Wasserstein distance
between two Gaussians for a quadratic cost. The standard quadratic cost Wasserstein
distance between two Gaussian pdfs g1(·) = N (· ;µ1,Σ1) and g2(·) = N (· ;µ2,Σ2) is (see
Delon and Desolneux (2020)),

W2
2(g1, g2) = ‖µ1 − µ2‖22 + trace

(
Σ1 + Σ2 − 2

(
Σ

1/2
1 Σ2Σ

1/2
1

)1/2
)
.

Section 4 of Delon and Desolneux (2020) shows that the MW2 distance between two
mixtures can be computed by solving the following discrete optimization problem. Let
f1 =

∑K1
k=1 π1k g1k and by f2 =

∑K2
k=1 π2k g2k be two Gaussian mixtures, then,

MW2
2(f1, f2) = min

w∈Π(π1,π2)

∑
k,l

wkl W2
2(g1k, g2l) , (5)

where π1 and π2 are the discrete distributions on the simplex defined by the respective
weights of the mixtures and Π(π1, π2) is the set of discrete joint distributions w = (wkl, k ∈
[K1], l ∈ [K2]), whose marginals are π1 and π2. Finding the minimizer w∗ of (5) boils down
to solving a simple discrete optimal transport problem where the entries of the K1 × K2

dimensional cost matrix are the W2
2(g1k, g2l) quantities.

As implicitly suggested above, MW2 is indeed a distance on the space of Gaussian
mixtures; see Delon and Desolneux (2020). In particular, for two Gaussian mixtures f1

and f2, MW2 satisfies the equality property according to which MW2(f1, f2) = 0 implies
that f1 = f2. In what follows, the MW2 distances are computed using the transport R
package.

4.2.2 L2 distance between Gaussian mixtures

The L2 distance between two Gaussian distributions g1 and g2 is closed form and given by,

L2(g1, g2) = N (µ1;µ2,Σ1 + Σ2) .

The L2 distance between two Gaussian mixtures is also closed form. With f1 =
∑K1

k=1 π1k g1k

and by f2 =
∑K2

k=1 π2k g2k two Gaussian mixtures,

L2
2(f1, f2) =

∑
k,l

π1kπ2l L2
2(g1k, g2l) , (6)
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which can be evaluated in O(K1K2) time. We do not discuss further the different properties
of the various possible distances but the distance choice has a potential impact on the
associated ABC procedure described in the next section. This impact is illustrated in the
experimental Section 6.

4.2.3 Functional GLLiM-ABC

The resulting procedure is very similar to that of Section 4.1. It differs in that no summary
statistics are computed per se but distances between surrogate posteriors are compared
to a given threshold and used for sample selection. In the next sections, we will often
write GLLiM-D-ABC in place of the functional versions GLLiM-MW2-ABC and GLLiM-
L2-ABC, to include both cases and possibly other distances D. The semi-automatic ABC
extensions that we therefore propose to investigate are all summarized in Algorithm 1.

Algorithm 1 GLLiM-ABC algorithms – Vector and functional variants
1: Inverse operator learning. Apply GLLiM on a training set DN = {(θn,yn), n ∈ [N ]}

to estimate, for any z ∈ Y, the K-Gaussian mixture pG(θ | z,φ∗K,N ) in (2) as a first
approximation of the true posterior π(θ | z), where φ∗K,N does not depend on z.

2: Distances computation. Consider another simulated set EM = {(θm, zm),m ∈ [M ]}.
For a given observed y, do one of the following for m ∈ [M ]:

Vector summary statistics. (Section 4.1)
GLLiM-E-ABC: Compute summary statistics s1(zm) = EG[θ | zm;φ∗K,N ] (3).
GLLiM-EV-ABC: Compute both s1(zm) and s2(zm) by considering also pos-
terior log-variances derived from (4).
In either of these cases, compute standard distances between summary statis-
tics.
Functional summary statistics. (Section 4.2)
GLLiM-MW2-ABC: Compute MW2(pG(· | zm;φ∗K,N ), pG(· | y;φ∗K,N )).
GLLiM-L2-ABC: Compute L2(pG(· | zm;φ∗K,N ), pG(· | y;φ∗K,N )).

3: Sample selection. Select the θm values that correspond to distances under an ε
threshold, typically the 0.1% distance quantile (rejection ABC) or apply some standard
ABC procedure that can handle distances, directly.

4: Sample use. For a given observed y, use the produced sample of θ values to compute
a closer approximation of π(θ | y) or to obtain a better prediction using the empirical
mean of the retained sample.
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5 Theoretical properties

Before illustrating the proposed GLLiM-D-ABC procedures performance, we investigate
the theoretical properties of our ABC quasi-posterior defined via surrogate posteriors.

Let X = Θ × Y and (X ,F) be a measurable space. Let λ be a σ-finite measure on
F . Whenever we mention below that a probability measure Pr on F has a density, we
will understand that it has a Radon–Nikodym derivative with respect to λ (λ can typically
be chosen as the Lebesgue measure on the Euclidean space). For all p ∈ [1,∞) and f, g

in appropriate spaces, let Dp (f, g) =
(∫
|f(x)− g(x)|p dλ(x)

)1/p denote the Lp distance
and D2

H (f, g) =
∫
(
√
f(x) −

√
g(x))2dλ(x) be the squared Hellinger distance. When not

specified otherwise, let D be an arbitrary distance on Y or on densities, depending on the
context. We further denote the Lp norm for vectors by ‖ · ‖p.

In a GLLiM-D-ABC procedure, the ABC quasi-posterior is constructed as follows. Let
pK,NG (θ | y) = pG(θ | y;φ∗K,N ) be the surrogate conditional distribution of form (2),
learned from a preliminary GLLiM model with K components and using a learning set
DN = {(θn,yn), n = [N ]}. This conditional distribution is a K-component mixture, which
depends on a set of learned parameters φ∗K,N , independent of y. The GLLIM-D-ABC
quasi-posterior resulting from the GLLiM-D-ABC procedure then depends both on K,N
and the tolerance level ε and can be written as

qK,NG,ε (θ | y) ∝ π(θ)

∫
Y

1{D(pK,NG ( . |y), pK,NG ( . |z))≤ε} fθ(z) dz , (7)

where D is a distance on densities such as the MW2 and L2 metrics which are both proper
distances as recalled, previously.

We provide two types of results, below. In the first result (Theorem 1), the true posterior
is used to compare samples y and z. This result aims at providing insights on the proposed
quasi-posterior formulation and at illustrating its potential advantages. In the second result
(Theorem 2), a surrogate posterior is learned and used to compare samples. Conditions are
specified under which the resulting ABC quasi-posterior converges to the true posterior.

5.1 Convergence of the ABC quasi-posterior

In this section, we assume a fixed given observed y and the dependence on y is omitted
from the notation when there is no confusion.

Let us first recall the standard form of the ABC quasi-posterior, omitting summary
statistics from the notation:

πε(θ | y) ∝ π(θ)

∫
Y

1{D(y,z)≤ε} fθ(z) dz . (8)

If D is a distance and D(y, z) is continuous in z, the ABC posterior in (8) can be shown
to have the desirable property of converging to the true posterior when ε tends to 0 (see
Prangle et al., 2018).
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The proof is based on the fact that when ε tends to 0, due to the property of the
distance D, the set {z ∈ Y : D(y, z) ≤ ε}, defining the indicator function in (8), tends to
the singleton y so that consequently z in the likelihood can be replaced by the observed
y, which then leads to an ABC quasi-posterior proportional to π(θ)fθ(y) and therefore to
the true posterior as desired (see also Rubio and Johansen, 2013; Bernton et al., 2019). It
is interesting to note that this proof is based on working on the term under the integral
only and is using the equality, at convergence, of z to y, which is actually a stronger than
necessary assumption for the result to hold. Alternatively, if we first rewrite (8) using
Bayes’ theorem, it follows that

πε(θ | y) ∝
∫
Y

1{D(y,z)≤ε} π(θ) fθ(z) dz

∝
∫
Y

1{D(y,z)≤ε} π(θ | z) π(z) dz . (9)

That is, when accounting for the normalizing constant:

πε(θ | y) =

∫
Y 1{D(y,z)≤ε} π(θ | z) π(z) dz∫

Y 1{D(y,z)≤ε} π(z) dz
. (10)

Using this equivalent formulation, we can then replace D(y, z) by D(π(· | y), π(· | z)), with
D now denoting a distance on densities, and obtain the same convergence result when ε
tends to 0. More specifically, we can show the following general result. Let us define our
ABC quasi-posterior as,

qε (θ | y) ∝ π(θ)

∫
Y

1{D(π(·|y),π(·|z))≤ε} fθ(z) dz, (11)

which can be written as

qε (θ | y) =

∫
Y 1{D(π(·|y),π(·|z))≤ε}π (θ | z)π (z) dz∫

Y 1{D(π(·|y),π(·|z))≤ε}π (z) dz
. (12)

The following theorem shows that qε (· | y) converges to π (· | y) in total variation, for fixed
y. The proof is detailed in Subsection 8.1.

Theorem 1. For every ε > 0, let Aε = {z ∈ Y : D (π (· | y) , π (· | z)) ≤ ε}. Assume the
following:

(A1) π (θ | ·) is continuous for all θ ∈ Θ, and supθ∈Θ π (θ | y) <∞;

(A2) There exists a γ > 0 such that supθ∈Θ supz∈Aγ π (θ | z) <∞;

(A3) D (·, ·) : Π×Π→ R+ is a metric on the functional class

Π = {π (· | y) : y ∈ Y} ;
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(A4) D (π (· | y) , π (· | z)) is continuous, with respect to z.

Under (A1)–(A4), qε (· | y) in (12) converges in total variation to π (· | y), for fixed y, as
ε→ 0.

It appears that what is important is not to select z’s that are close (and at the limit
equal) to the observed y but to choose z’s so that the posterior π( · | z) (the term appearing
in the integral in (9)) is close (and at the limit equal) to π( · | y). And this last property is
less demanding than z = y. Potentially, there may be several z’s satisfying π( · | z) = π( · |
y), but this is not problematic when using (9), while it is problematic when following the
standard proof as in Bernton et al. (2019).

5.2 Convergence of the ABC quasi-posterior with surrogate posteriors

In most ABC settings based on data discrepancy or summary statistics, the above consid-
eration and result are not useful because the true posterior is unknown by construction and
cannot be used to compare samples. However this principle becomes useful in our setting,
which is based on surrogate posteriors. While the previous result can be seen as an oracle
of sort, it is more interesting in practice to investigate whether a similar result holds when
using surrogate posteriors in the ABC likelihood. This is the goal of Theorem 2 below,
which we prove for a restricted class of target distribution and of surrogate posteriors that
are learned as mixtures.

We now assume that X = Θ× Y is a compact set and consider the following class HX
of distributions on X , HX = {gϕ : ϕ ∈ Ψ}, with constraints on the parameters, Ψ being
a bounded parameter set. In addition the densities in HX are assumed to satisfy for any
ϕ,ϕ′ ∈ Ψ,

for all x ∈ X , a ≤ gϕ(x) ≤ b and sup
x∈X
| log gϕ(x)− log gϕ′(x) |≤ B‖ϕ−ϕ′‖1 ,

where a, b and B are arbitrary positive scalars.
We denote by pK a K-component mixture of distributions from HX and defined for all

y ∈ Y, pK,N (· | y) as follows:

∀θ ∈ Θ, pK,N (θ | y) = pK
(
θ | y;φ∗K,N

)
,

with φ∗K,N the maximum likelihood estimate (MLE) for the data set DN = {(θn,yn), n ∈
[N ]} generated from the true joint distribution π(·, ·):

φ∗K,N = arg max
φ∈Φ

N∑
n=1

log
(
pK(θn,yn;φ)

)
.
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In addition, for every ε > 0, let AK,Nε,y =
{
z ∈ Y : D

(
pK,N (· | y) , pK,N (· | z)

)
≤ ε
}

and
qK,Nε denote the ABC quasi-posterior defined with pK,N by

qK,Nε (θ | y) ∝ π(θ)

∫
Y

1{D(pK,N (·|y),pK,N (·|z))≤ε} fθ(z) dz . (13)

Theorem 2. Assume the following: X = Θ× Y is a compact set and

(B1) For joint density π, there exists Gπ a probability measure on Ψ such that, with gϕ ∈
HX ,

π(x) =

∫
Ψ
gϕ(x) Gπ(dϕ);

(B2) The true posterior density π(· | ·) is continuous both with respect to θ and y;

(B3) D (·, ·) : Π × Π → R+ ∪ {0} is a metric on a functional class Π, which contains the
class {

pK,N (· | y) : y ∈ Y,K ∈ N∗, N ∈ N∗
}
.

In particular, D
(
pK,N (· | y) , pK,N (· | z)

)
= 0, if and only if pK,N (· | y) = pK,N (· | z);

(B4) For every y ∈ Y, z 7→ D
(
pK,N (· | y) , pK,N (· | z)

)
is a continuous function on Y.

Then, under (B1)–(B4), the Hellinger distance DH

(
qK,Nε (· | y) , π (· | y)

)
converges to 0

in some measure λ, with respect to y ∈ Y and in probability, with respect to the sample
{(θn,yn) , n ∈ [N ]}. That is, for any α > 0, β > 0, it holds that

lim
ε→0,K→∞,N→∞

Pr
(
λ
({

y ∈ Y : D2
H
(
qK,Nε (· | y) , π (· | y)

)
≥ β

})
≤ α

)
= 1. (14)

Sketch of the proof of Theorem 2. For all θ ∈ Θ,y ∈ Y, the quasi-posterior (13) can
be written equivalently as

qK,Nε (θ | y) =

∫
Y
KK,N
ε (z; y)π (θ | z) dz,

with KK,N
ε (z; y) =

1{D(pK,N (·|y),pK,N (·|z))≤ε}π (z)∫
Y 1{D(pK,N (·|y),pK,N (·|z))≤ε}π (z) dz

,

where KK,N
ε (·; y) is a pdf, with respect to z ∈ Y, with compact support AK,Nε,y ⊂ Y, by

definition of AK,Nε,y and (B4). Using the relationship between Hellinger and L1 distances
(see details in Section 8.2 relations (31) and (32)), it then holds that

D2
H
(
qK,Nε (· | y) , π (· | y)

)
≤ 2DH

(
π(· | zK,Nε,y ), π (· | y)

)
, (15)
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where there exists zK,Nε,y ∈ BK,N
ε,y with

BK,N
ε,y = arg max

z∈AK,Nε,y

D1 (π (· | z) , π (· | y)) .

The next step is to bound the right-hand side of (15) using the triangle inequality with
respect to the Hellinger distance DH. Consider the limit point zK,N0,y defined as zK,N0,y =

limε→0 zK,Nε,y . Since for each ε > 0, zK,Nε,y ∈ AK,Nε,y it holds that zK,N0,y ∈ A
K,N
0,y , where AK,N0,y =⋂

ε∈Q+
AK,Nε,y . By continuity of D, AK,N0,y =

{
z ∈ Y : D

(
pK,N (· | z) , pK,N (· | y)

)
= 0
}
and

AK,N0,y =
{
z ∈ Y : pK,N (· | z) = pK,N (· | y)

}
, using (B3). The distance on the right-hand

side of (15) can then be decomposed in three parts,

DH
(
π
(
· | zK,Nε,y

)
, π (· | y)

)
≤ DH

(
π
(
· | zK,Nε,y

)
, π(· | zK,N0,y )

)
+DH

(
π(· | zK,N0,y ), pK,N (· | y)

)
+DH

(
pK,N (· | y) , π (· | y)

)
. (16)

The first term in the right-hand side can be made close to 0 as ε goes to 0 independently
of K and N . The two other terms are of the same nature as the definition of zK,N0,y yields
pK,N (· | y) = pK,N (· | zK,N0,y ).

Using the fact that π(· | ·) is a uniformly continuous function in (θ,y) on a compact set
X and taking the limit ε → 0, yields limε→0D

2
H

(
π(· | zK,Nε,y ), π(· | zK,N0,y )

)
= 0 in measure

λ, with respect to y ∈ Y. Since this result is true whatever the data set DN , it also
holds in probability with respect to DN . That is, given any α1 > 0, β1 > 0, there exists
ε (α1, β1) > 0 such that for any 0 < ε < ε (α1, β1),

Pr
(
λ
({

y ∈ Y : D2
H

(
π(· | zK,Nε,y ), π(· | zK,N0,y )

)
≥ β1

})
≥ α1

)
= 0.

Next, we prove that D2
H

(
π(· | zK,N0,y ), pK,N (· | y)

)
(equal to D2

H

(
π(· | zK,N0,y ), pK,N (· | zK,N0,y )

)
)

and D2
H

(
pK,N (· | y), π(· | y)

)
both converge to 0 in measure λ, with respect to y and in

probability, with respect to DN . Such convergences are obtained thanks to Rakhlin et al.
(2005, Corollary 2.2), and Lemma 2, which provides the guarantee that we can choose a
measurable function y 7→ zK,N0,y . Equation (14) in Theorem 2 follows from the triangular
inequality (16). A more technical detailed proof is provided in Subsection 8.2.

Remark. The GLLiM model involving multivariate unconstrained Gaussian distributions
does not satisfy the conditions of Theorem 2 so that pK,N cannot be replaced by pK,NG in the
theorem. However as illustrated in Rakhlin et al. (2005), truncated Gaussian distributions
with constrained parameters can meet the restrictions imposed in the theorem. We are not
aware of any more general result involving the MLE of Gaussian mixtures. The GLLiM
model could as well be replaced by another model satisfying the conditions of the theorem
but for practical applications, this model would need to have computational properties
such as the tractability of the estimation of its parameters and needs to be efficient in
multivariate and potentially high-dimensional settings.
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6 Numerical experiments

Most benchmark examples in ABC correspond to unimodal and light tailed posterior distri-
butions. Such settings may not be the most appropriate to show differences and discriminate
between methods performance. We therefore consider settings that are simple in terms of
dimension and complexity but exhibit posterior distributions with characteristics such as
bimodality and heavy tails. A first set of three synthetic examples are considered with pa-
rameters in dimensions 1 or 2 and bimodal posterior distributions (Section 6.1). A fourth
example is derived from a real application in sound source localization where the posterior
distribution has mass on two 1D manifolds (Section 6.2). All of these examples are run
for a single observation in d = 10 dimensions. This choice of dimension is relatively low
but corresponds to the dimensions met in practice in some targeted real applications. In
particular, we are interested in a real remote sensing inverse problem in planetary science,
which is illustrated in Section 6.3.

In this section, the performance of the proposed approaches is assessed and compared.
The most sophisticated ABC procedures are not considered as our main focus is on an
appropriate choice of summary statistics. All reported results are obtained with a simple
rejection scheme as per instances implemented in the abc R package (Csillery et al., 2012).
The other schemes available in the abc package have been tested but no notable perfor-
mance differences were observed. For comparison we consider the semi-automatic ABC
implementation of Fearnhead and Prangle (2012).

To circumvent the choice of an arbitrary summary statistic, Fearnhead and Prangle
(2012) showed that the best summary statistic, in terms of the minimal quadratic loss,
is the posterior mean. This posterior mean is not known and needs to be approximated.
In Fearnhead and Prangle (2012) a regression approach is proposed to provide a way to
compute summary statistics prior to the ABC rejection sampling, itself. In this paper,
the transformations used for the regression part are (1, y, y2, y3, y4) following the proce-
dure suggested in the abctools package (Nunes and Prangle, 2015). We refer to this
procedure as semi-automatic ABC. We did not try to optimise the procedure using other
transformations but did not notice systematic improvements when increasing the number
of polynomial terms, for instance. This approach using the posterior mean is further devel-
oped in Jiang et al. (2017), where a MLP deep neural network regression model is employed
and replaces the linear regression model of Fearnhead and Prangle (2012). The deep neu-
ronal network with multiple hidden layers considered by Jiang et al. (2017) offers stronger
representational power to approximate the posterior mean and hence to learn an informa-
tive summary statistic, when compared to linear regression models. Improved results were
obtained by Jiang et al. (2017), but we did not compare our approach to their method. As
our current examples are of relatively small dimension d, we did not compare either with
discrepancy-based ABC techniques such as WABC (Bernton et al., 2019) or classification
ABC (Gutmann et al., 2018).

We provide a comparison with a rejection ABC, where we use GLLiM to compute the
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posterior expectations that are used as summary statistics. We refer to this procedure
as GLLiM-E-ABC. We then augment the summary statistics with approximations of the
posterior log-variances, obtained from GLLiM. This method is referred to as GLLiM-EV-
ABC. Lastly, the other distance-based procedures are designated as GLLiM-MW2-ABC
and GLLiM-L2-ABC.

The procedures differ in the way the distances between each simulation and the observed
data y are defined and computed. In regards to the final sample thresholding (i.e., choice
of ε), following common practice, all methods retain samples for which the distance to the
observation is under a small (e.g. 0.1%) quantile of all computed distances.

In all our examples, the dimension of the observed y is d = 10. A GLLiM model
with K components and isotropic covariances (Σk, k ∈ [K]) is learned on a set DN of N
simulations from the true model. Another set of simulated couples (θ,y) of size M is used
for the ABC rejection scheme. The isotropic GLLiM is simpler than the fully-specified
GLLiM and is consistent with the fact that the dimensions of the y’s in our synthetic
examples are uncorrelated by design. In more general cases, this simple isotropic GLLiM
may also provide surrogate posteriors of sufficient quality for the ABC selection scheme. The
GLLiM model is learned using the R package xLLiM available on the CRAN (Perthame
et al., 2017).

6.1 Non-identifiable models

It is straightforward to construct models that lead to multimodal posteriors by considering
likelihoods that are invariant by some transformation.

6.1.1 Ill-posed inverse problems

Here, we consider inverse problems for which the solution is not unique. This setting is quite
common in practice and can occur easily when the forward model exhibits some invariance,
e.g. when considering the negative of the parameters. A simple way to model this situation
consists of assuming that the observation y is generated as a realization of

y = F (θ) + ε (17)

where F is a deterministic theoretical model coming from experts and ε is a random vari-
able expressing the uncertainty both on the theoretical model and on the measurement
process. A common assumption is that ε is distributed as centered Gaussian noise. Non-
identifiability may then come when F (−θ) = F (θ). Following this generative approach, a
first simple example is constructed with a Student distributed noise leading to the likeli-
hood:

fθ(y) = Sd(y;µ21Id, σ2Id, ν), (18)
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where Sd(·;µ21Id, σ2Id, ν) is the pdf of a d-variate Student distribution with a d-dimensional
location parameter with all dimensions equal to µ2, diagonal isotropic scale matrix σ2 Id
and degree-of-freedom (dof) parameter ν. Recall that for a Student distribution, a diagonal
scale matrix is not inducing independent dimensions so that y is not a set of i.i.d. univariate
Student observations. The dof controls the tail heaviness; i.e., the smaller the value of ν,
the heavier the tail. In particular, for ν ≤ 2, the variance is undefined, while for ν ≤ 1
the expectation is also undefined. In this example, we set σ2 = 2, ν = 2.1, and µ is the
parameter to estimate.

For all compared procedures, we set d = 10, K = 10, N = M = 105, and we set the
tolerance level ε to the distance 0.1% quantile, so that all selected posterior samples are
of size 100. To visualize the densities of posterior samples, we use a density estimation
procedure based on the ggplot2 R package with a Gaussian kernel.

Figure 1 shows the true and the compared ABC posterior distributions for a 10-di-
mensional observation y, simulated under a process with µ = 1. The true posterior
exhibits the expected symmetry with modes close to the values: µ = 1 and µ = −1.
The simple rejection ABC procedure based on GLLiM expectations (GLLiM-E-ABC in
red) and the semi-automatic ABC procedure (in green) both show over dispersed samples
with wrongly located modes. The GLLiM-EV-ABC (dotted red line) exhibits two well
located modes but does not preserve the symmetry of the true posterior. The distance-
based approaches, GLLiM-L2-ABC (blue) and GLLiM-MW2-ABC (black) both capture
the bimodality. GLLiM-MW2-ABC is the only method to estimate a symmetric posterior
distribution with two modes of equal importance. Note however, that in term of precision,
the posterior distribution estimation remains difficult considering an observation of size
only d = 10.

This simple example shows that the expectation as a summary statistic suffers from
the presence of two equivalent modes, while the approaches based on distances are more
robust. There is a clear improvement in complementing the summary statistics with the
log-variances. Although in this case, this augmentation provides a satisfying bimodal pos-
terior estimate, it lacks the expected symmetry of the two modes. The GLLiM-MW2-ABC
procedure has the advantage of exhibiting a symmetric posterior estimate, that is more
consistent with the true posterior.

In the following subsections we present two further cases that cannot be cast as the
above generating process but also exhibit a transformation invariant likelihood.

6.1.2 Sum of moving average models of order 1 (MA(1))

Moving average (MA) models are commonly studied in the ABC literature, see e.g. Marin
et al. (2012); Jiang et al. (2018); Nguyen et al. (2020). The MA(1) process is a stochastic
process (y′t)t∈N∗ defined by

y′t = zt + ρzt−1 . (19)
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Figure 1: Non identifiable Student distribution. ABC posterior distributions from the
selected samples. GLLiM-L2-ABC in blue, GLLiM-MW2-ABC in black, semi-automatic
ABC in green, GLLiM-E-ABC (expectations) in red and GLLiM-EV-ABC (expectations
and log-variances) in dotted red line. The true posterior is shown in purple. The dashed
lines indicate the µ (equivalent) values used to generate the observation.

In order to construct bimodal posterior distributions, we consider the following sum of two
such models. At each discrete time step t we define,

y′t = zt + ρzt−1 (20)
y′′t = z′t − ρz′t−1 (21)
yt = y′t + y′′t (22)

where {zt} and {z′t} are both i.i.d. sequences, according to a standard normal distribution
and ρ is an unknown scalar parameter. It follows that a vector of length d, y = (y1, . . . , yd)

>

is distributed according to a multivariate d-dimensional centered Gaussian distribution
with an isotropic covariance matrix whose diagonal entries are all equal to 2(ρ2 + 1). The
likelihood is therefore invariant by symmetry about 0 and so is the prior on ρ assumed
to be uniform over [−2, 2]. It follows that the posterior on ρ is also invariant by this
transformation and can be then chosen so as to exhibit two symmetric modes. The true
posterior looks similar to the previous one but ρ is now a parameter impacting the variance
of the likelihood.

For all procedures, we set N = M = 105, and ε to the 0.1% distance quantile so that
all selected posterior samples are of size 100. In terms of difficulty, the main difference
with the previous example lies in a higher non-linearity of the likelihood and of the model
joint distribution. We then report results with a higher K = 20. When K = 10, results are
similar except for GLLiM-EV-ABC which does not show improvement over GLLiM-E-ABC.

A d = 10 dimensional observation simulated from a process with ρ = 1, is considered.
The ABC posterior distributions derived from the selected samples are shown for each of the
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compared procedures in Figure 2. The expectation-based summary statistics approaches
(semi-automatic ABC and GLLiM-E-ABC) do not capture the bimodality. Adding the
posterior log-variances (red dotted line) allows to recover the two modes. GLLiM-EV-ABC,
GLLiM-MW2-ABC and GLLiM-L2-ABC provide similar bimodal posterior distributions,
with more symmetry between the two modes for the two first methods.
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Figure 2: Sum of MA(1) models. ABC posterior distributions from the selected sam-
ples. GLLiM-L2-ABC in blue, GLLiM-MW2-ABC in black, semi-automatic ABC in
green, GLLiM-E-ABC (expectations) in red and GLLiM-EV-ABC (expectations and log-
variances) in dotted red line. The true posterior is shown in purple. The dashed lines
indicate the ρ (equivalent) values used to generate the observation.

6.1.3 Sum of moving average models of order 2 (MA(2))

The same principle as in the previous section can be applied to create bimodal posterior
distributions from MA(2) processes. The MA(2) process is a stochastic process (y′t)t∈N∗

defined by

y′t = zt + θ1zt−1 + θ2zt−2, (23)

where {zt} is an i.i.d. sequence, according to a standard normal distribution and θ1 and θ2

are scalar parameters. A standard identifiability condition is imposed on this model leading
to a prior distribution uniform on the triangle described by the inequalities

−2 < θ1 < 2, θ1 + θ2 > −1, θ1 − θ2 < 1 .

We consider a transformation that consists of taking the opposite sign of θ1 and keep-
ing θ2 unchanged. The considered observation corresponds then to a series obtained by
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summing the two MA models, defined below

y′t = zt + θ1zt−1 + θ2zt−2 (24)
y′′t = z′t − θ1z

′
t−1 + θ2z

′
t−2 (25)

yt = y′t + y′′t , (26)

where {zt} and {z′t} are both i.i.d. sequences, generated from a standard normal distri-
bution. It follows that a vector of length d, y = (y1, . . . , yd)

>, is distributed according
to a multivariate d-dimensional centered Gaussian distribution with a Toeplitz covariance
matrix whose first row is (2(θ2

1 + θ2
2 + 1), 0, 2θ2, 0, . . . , 0). The likelihood is therefore invari-

ant by the transformation proposed above, and so is the uniform prior over the triangle.
It follows that the posterior is also invariant by the same transformation and can then be
chosen so as to exhibit two symmetric modes.

For all procedures, we set K = 80 and N = M = 105, and we set ε to the 1% distance
quantile, so that all selected posterior samples are of size 1000. An observation of size
d = 10 is simulated from the model with θ1 = 1 and θ2 = 0.6. ABC posterior distribution
estimates are shown in Figure 3.

−2 −1 0 1 2

0.
1

0.
2

0.
3

0.
4

theta1

N = 1000   Bandwidth = 0.2386

D
en

si
ty

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
4

0.
8

1.
2

theta2

N = 1000   Bandwidth = 0.07752

D
en

si
ty

Figure 3: Posterior marginals from the samples selected with a 1% quantile (1000 values):
semi-automatic ABC (green), GLLiM-L2-ABC (blue), GLLiM-MW2-ABC (black), GLLiM-
E-ABC (red) and GLLiM-EV-ABC (red dot). The dashed lines show the values used to
simulate the observation θ1 = 1 and θ2 = 0.6.

The level sets of the true posterior can be computed from the exact likelihood and a
grid of values for θ1 and θ2. For the setting used in this paper, none of the considered
ABC procedures is fully satisfactory, in that the selected samples are all quite dispersed
when compared to the true posterior. This is mainly due to the relatively low size of the
observation (d = 10). This can be also observed in Marin et al. (2012) (Figures 1 and 2),
where ABC samples are less dispersed for a size of d = 100 and quite spread off when d is
reduced to d = 50, and this even when the autocovariance is used as summary statistic.
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Despite the relative spread of the parameters accepted after the ABC rejection, the
posterior marginals, shown in Figure 3, provide an interesting comparison. ABC-D-GLLiM
procedures show more symmetric θ1 values, in accordance with the symmetry and bimodal-
ity of the true posterior. The use of the L2 or MW2 distances does not lead to significant
differences. GLLiM-E-ABC does not capture well the bimodality on θ1 and the addition
of the posterior log-variances in GLLiM-EV-ABC does not appear to improve on GLLiM-
E-ABC, as observed in the MA(1) case with K = 10. In contrast, the semi-automatic
ABC procedure shows a bimodal distribution on θ1 but appears to place too much mass
around θ1 = 0 and θ2 = −1. These results suggest that although GLLiM in this case
may not provide good approximations of the first posterior moments in comparison to
semi-automatic ABC, it can still provide good enough approximations of the surrogate
posteriors in GLLiM-D-ABC.

6.2 Sound source localization

The next example is constructed from a real sound source localization problem in audio pro-
cessing. Although microphone arrays provide the most accurate sound source localization,
setups limited to two microphones, e.g. Beal et al. (2003); Hospedales and Vijayakumar
(2008), are often considered to mimic binaural hearing that resembles the real head with
applications such as autonomous humanoid robot modelling. Binaural localization cues
(Wang and Brown, 2006) include interaural time difference (ITD), interaural level differ-
ence (ILD) and interaural phase difference (IPD).

Here we consider an artificial two microphone setup in a 2D scene. The object of interest
is a sound source located at an unknown position θ = (x, y). The two microphones are
assumed to be located at known positions, respectively denoted by m1 and m2. A good
cue for the sound source localization is the interaural time difference (ITD). The ITD is
the difference between two times: the time a sound emitted from the source is acquired by
microphone 1 at m1 and the time at microphone 2 at m2. ITD values are widely used by
auditory scene analysis methods (Wang and Brown, 2006).

The function F that maps a location θ onto an ITD observation is

F (θ) =
1

c
(‖θ −m1‖2 − ‖θ −m2‖2), (27)

where c is the sound speed in real applications but set to 1 in our example for the purpose
of illustration. The important point is that an ITD value does not correspond to a unique
point in the scene space, but rather to a whole surface of points. In fact, each isosurface
defined by (27) is represented by one sheet of a two-sheet hyperboloid in 2D. Hence, each
ITD observation constrains the location of the auditory source to lie on a 1D manifold.
The corresponding hyperboloid is determined by the sign of the ITD. In our example, to
create a bimodal posterior, we therefore modify the usual setting by taking the absolute
value of the ITD so that solutions can now lie on either of the two hyperboloids. In
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addition we assume that ITDs are observed with some Student noise that implies heavy
tails and possible outliers. Although the ITD is a univariate measure, we consider a more
general d dimensional setting by defining the following Student likelihood, with d = 10,
y = (y1, . . . , yd) and ITD(θ) =| ‖θ −m1‖2 − ‖θ −m2‖2 |, where

fθ(y) = Sd(y; ITD(θ)1Id, σ2Id, ν) . (28)

With d = 10, the above likelihood corresponds to a 10-variate Student distribution with a
10-dimensional location parameter with all dimensions equal to ITD(θ), diagonal isotropic
scale matrix equal to σ2 Id and degree-of-freedom (dof) parameter ν.

The parameter space is assumed to be Θ = [−2, 2]×[−2, 2] and the prior on θ is assumed
to be uniform on Θ. The microphones positions are m1 = (−1, 0) and m2 = (1, 1). We
assume ν = 1 and σ2 = 0.01. The true θ is set to θ = (0.6, 1) and we simulate a 10-
dimensional y following model (28).

We compare the four ABC methods using GLLiM. First, to learn a GLLiM model
representation, a training set of N = 105 pairs (θ,y) ∈ Θ×R10 is simulated from a uniform
distribution on Θ and by applying model (28). The GLLiM model used consists of K = 20
Gaussian components with isotropic covariances. To run the ABC procedures, another
training set is simulated with M = 106. A selected set of 1000 samples is retained by
thresholding the distances under the 0.1% quantile.

Figure 4 shows the ABC samples with another sample simulated from the GLLiM
posterior distribution, corresponding to the observation y (Figure 4 (d)). This GLLiM
posterior is a 20-component Gaussian mixture of form (2). Another sample obtained using
the Metropolis–Hastings algorithm, as implemented in the R package mcmc (Geyer and
Jonhson, 2020), is shown in Figure 5 (a)). The Metropolis–Hastings sample and the contours
of the true posterior (Figure 5 (b)) show that the true posterior concentrates quite sharply
around the hyperboloids, which are symmetric with respect to the microphones line and its
mediatrice, and contains the true sound source localization as expected.

All tested procedures reflect the bimodality of the posterior distribution. The 20-
component GLLiM mixture (Figure 4 (d)) reproduces correctly the bimodality of the true
posterior. However, the accuracy is clearly improved when using an additional ABC step,
with GLLiM-D-ABC. The GLLiM-L2-ABC and GLLiM-MW2-ABC lead to very similar
selected samples (Figure 4 (c,f)). The difference between the two distances is better seen in
Figure 5 (c,d). These plots show the MW2 and L2 distances before selection, i.e. for param-
eters values sampled uniformly in [−2, 2]× [−2, 2], with large (resp. small) distances colored
in red (resp. in blue). The L2 distance appears to produce sharper differences around the
hyperboloids but appear spatially nosier, while MW2 produces a more homogeneous map,
suggesting robustness of this metric to small variations in the posterior distributions. In
contrast, using only the GLLiM posterior expectations as summary statistics is not infor-
mative enough although the GLLiM mixture itself appears as a reasonable approximation
that well captures the main shape of the true posterior. Adding the log-variances to the
summary statistics improves the selected sample but it remains too dispersed away from
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the modal hyperboloids (Figure 4 (b)). Interestingly, the semi-automatic ABC procedure
provides a sample that rather well locates the modal hyperboloids (Figure 4 (e)). As with
GLLiM-E-ABC, the procedure is based on a preliminary estimation of the posterior means
but using a standard linear regression approach on transformations of the data (here, using
monomials up to order 4). In our previous implementations of semi-automatic ABC, the
regression part uses the larger data set of sizeM , while GLLiM uses one of size N . Since, in
this example M is 10 times larger than N , to make the comparison with GLLiM more fair,
the data set used in the regression part of semi-automatic ABC has been reduced to a size
of N , while the set for the ABC step is maintained at size M . Comparisons of the selected
samples suggests the superiority of this regression method over GLLiM, with K = 20, in
capturing non-linearities and in estimating the posterior means. Although GLLiM approxi-
mations of the moments may not compare well, the results are greatly improved when using
the full GLLiM posteriors as summary statistics.

6.3 A physical model inversion in planetary science

As a real-world example, we consider a remote sensing application coming from the study of
planetary environment, in particular the morphological, compositional, photometrical and
textural characterization of sites on the surface of a planet. The composition of the surface
materials is generally established on the basis of spectral mixing and physical modelling
techniques using images produced by hyperspectral cameras, from different angles during a
site flyover. An example for the Mars planet is described in (Murchie et al., 2009; Fernando
et al., 2016). Such observations can also be measured in the laboratory, on known materials
in order to validate a model. In both cases, the interpretation of the surface Bidirectional
Reflectance Distribution Factor (BRDF) extracted from these observations is based on
the inversion of a physical model of radiative transfer, linking physical and observable
parameters in a non-linear way.

The Hapke model is a semi-empirical photometric model that relates physically meaning-
ful parameters to the reflectivity of a granular material for a given geometry of illumination
and viewing. Formally, it links a set of parameters θ ∈ R4 to a theoretical BRDF denoted
by y = FHapke(θ) ∈ Rd. A given experiment defines d geometries of measurement, each
parameterized by a triplet (θ0, θ, φ) of incidence, emergence and azimuth angles. More-
over, θ = (ω, θ, b, c) are the sensitive parameters, respectively single scattering albedo,
macroscopic roughness, asymmetry parameter and backscattering fraction. More details
on these quantities and their photometric meanings may be found for example in Schmidt
and Fernando (2015); Labarre (2017), alongside the explicit expression of FHapke. Although
available, the expression of FHapke is very complex and tedious to handle, analytically, with
a number of approximations required (see for instance the description of the function in
more than 15 pages in Labarre 2017). In practice, it is therefore mainly used via a numerical
code, allowing simulations from the model. In addition, previous studies, e.g. in Kugler
et al. (2020); Schmidt and Fernando (2015), have shown evidence for the existence of the
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(a) GLliM-E-ABC (b) GLLiM-EV-ABC (c) GLLiM-MW2-ABC

(d) GLLiM mixture (e) semi-automatic ABC (f) GLLiM-L2-ABC

Figure 4: Sound source localization. Selected samples using (a) GLLiM posterior expec-
tations, (b) GLLiM posterior expectations and log variances, (c) MW2 distances, (d) the
approximate GLLiM posterior for the observed data, (e) semi-automatic ABC, (f) L2 dis-
tances. Black points on the dotted line are the microphones positions. The third black
point is the true sound source localization.

potential of multiple solutions or of the possibility to obtain very similar observations from
different sets of parameters, which makes this setting appropriate for testing the ability of
our GLLiM-D-ABC procedures to recover multimodal posterior distributions.

In the following experiments, all parameters are transformed to be in [0, 1]4, which
amounts to keep b and c unchanged, divide θ by 30 and operate the following change of
variable for ω, γ = 1−

√
1− ω. This last transformation also has the advantage of avoiding

the non-linearity of FHapke, when ω tends to 1. The experimental setting defines geometries
at which the measurements are made, which in turn define FHapke. The number of geome-
tries thus corresponds to the size d, of each observation. The measurement geometries used
to define FHapke are borrowed from a real laboratory experiment presented below. The
number of parameters is therefore 4 with d = 10 observed geometries. The size of the sets
to learn the GLLiM model and generate ABC samples are both set to is N = M = 105. For
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(a) Metropolis–Hastings (b) True posterior

(c) MW2 distances (d) L2 distances

Figure 5: Sound source localization. Sample from a Metropolis–Hastings algorithm (a)
and contours of the true posterior distribution (b). Plots (c,d) show the MW2 and L2

distances before selection, high (resp. low) distances in red (resp. blue). Black points on
the dotted line are the microphones positions. The third black point is the true sound
source localization.

each couple (θ,y) in the simulated data sets, the 4 parameters (θ) are simulated uniformly
in [0, 1]4. The corresponding reflectance curves are generated as y = FHapke(θ) + ε, where
ε is a centered Gaussian variable with isotropic covariance σ2 Id. In this section σ = 0.05.
The GLLiM model is learned with K = 40. Previous studies reported in Kugler et al.
(2020) showed that this value of K was satisfying.

6.3.1 Synthetic data from the Hapke model

Prior to real data inversion, to illustrate the performance of the procedures, we consider
an observation simulated from the Hapke model as explained above. As already mentioned
the Hapke model is quite difficult to invert due to equivalent solutions and low sensitivity
of the model to some of the parameters. Therefore as a first validation and for a useful
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comparison of the procedures we chose to invert a simulated observation as close as possible
to the real observed signal described in the next section. Among the simulated signals, in
the ABC set, we chose then the one whose correlation with the real observed one was
the highest. This synthetic signal has been generated from the Hapke model applied to
parameter values (ω, θ̄, b, c) = (0.68, 0.04, 0.23, 0.04) with an additional Gaussian noise with
standard deviation of 0.05. The two signals are shown in Figure 6.

Figure 6: Synthetic signal (red line) used to illustrated the ABC procedures. The signal is
chosen in the available data set as the one with the highest correlation to the real observed
signal (black dashed line). This synthetic signal has been generated from the Hapke model
applied to parameter values (ω, θ̄, b, c) = (0.68, 0.04, 0.23, 0.04) with an additional Gaussian
noise with standard deviation of 0.05.

Figure 7 shows the marginal posteriors obtained for each parameter using the four ABC
procedures and for different tolerance values ε chosen as the 0.05%, 0.1% and 1% quantile.
A particular feature of this synthetic example is the relatively low value of θ, which does
not correspond to a value expected in real data. Experts consider that reasonable values
for θ are between 0.33 and 0.66 (representing in the original space an angle between 10
and 20 degres. The Hapke model is also such that ω and θ values can interact to allow
the reconstruction of a given spectrum. In Figure 7, this effect is visible on the slightly
shifted modes of the posterior distributions for ω and θ̄ compared to the value used for
the simulation. This bias is compensating for the overly small value of θ. Then the fact
that posterior distributions for c are sharper than those for b is also consistent with expert
knowledge according to which b and θ are more difficult to estimate than w and c.

More generally, this example highlights the performance of the different ABC methods.
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The GLLiM-MW2-ABC procedure shows a better ability to target the right parameter
values, when compared to the GLLiM-L2-ABC procedure; see for instance the b posterior
at 0.1%. It is interesting to vary ε to observe the behavior of the different methods. A
lower ε can be used to check if one of the modes may vanish (i.e. with a more drastic
thresholding) or is confirmed when the selection is more permissive. This is visible for the b
parameter. The third column of Figure 7 shows that the GLLiM-MW2-ABC posterior has
a clearer peak on the right parameter value, which is maintained with a larger variance in
the first column. The GLLiM-L2-ABC procedure seems less robust to these variations and
even degrades in performance when the thresholding is too permissive. The two procedures
based on the expectations as summary statistics are also quite stable and have overall
satisfying performance with globally less sharp posterior distributions.

6.3.2 Laboratory observations

Reflectance measurements made in the laboratory are also generally considered by experts
(see e.g. Pilorget et al. 2016). As an illustration, we focus on one observation coming from
an experiment involving a mineral called Nontronite (see also Kugler et al. 2020 for a recent
description and study). The experiment consists of taking measures at 100 wavelengths in
the spectral range 400–2800 nm. Each of these 100 measures is an observation to be
inverted. We focus on one of them, at 2310 nm. This observation has been chosen from
previous study (Kugler et al., 2020) as likely to exhibit multiple solutions. As before,
the experimental setting defines geometries at which the measurements are made, which
in turn define FHapke. The size d of each observation is d = 10 and the corresponding
angles are such that the incidence and azimuth angles are fixed to θ0 = 45 and φ = 0.
This number d of geometries is quite typical of real observations for which the number of
possible measurements during a planet flyover is limited.

Figure 8 provides the estimated posterior marginals for the Nontronite measurements,
for each parameter. The shown distributions are obtained by setting ε to the 0.1% quantile
of the computed distances.

From Figure 8, two solutions can be deduced. All parameters show unimodal posterior
distributions except for θ, which exhibits two modes. Our results show that the multiplicity
comes from the parameter θ. For such real data, no ground truth is available so that it is
difficult to fully validate the estimations. However a simple inspection consists of checking
the reconstructed signals. Figure 9 compares the inverted signal to the reconstructed signals
obtained by applying the Hapke model to the two sets of estimated parameters, namely
(0.59, 0.15, 0.14, 0.06) and (0.59, 0.42, 0.14, 0.06), which differ only in θ. The proximity of
the reconstructions confirms the existence of multiple solutions, differing in θ, and thus the
relevance of a multimodal posterior. However, one solution can be selected by selecting the
set of parameters that provides the best reconstruction measured using the mean squared
error (MSE). The set (0.59, 0.42, 0.14, 0.06) is selected as its MSE is slightly lower (2.6×10−4

vs 3.3 × 10−4). This is satisfactory, as the lower value of θ in the other solution is less
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(a) 1% (1000 samples) (b) 0.1% (100 samples) (c) 0.05% (50 samples)

Figure 7: Inversion of a synthetic observation from the Hapke model. The selected samples
using four rejection ABC methods are shown, GLLiM-E-ABC expectations in red, semi-
automatic ABC in green, GLLiM-L2-ABC in blue and GLLiM-MW2-ABC in black. The
margins for ω, θ̄, b and c are shown from top to bottom respectively. Columns correspond
to different ε values, in column from left to right, set to the 1%, 0.1% and 0.05% quantile
respectively. The vertical lines indicate the parameter values used for the simulation.
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physically interpretable as mentioned earlier. Note that for the purpose of our comparison
here and for simplicity, we used a uniform prior on θ but for a more meaningful study in
planetary science this information on the parameters plausible values could be incorporated
directly to produce more informative priors.

Figure 8: Real observation inversion using the Hapke model. Selected samples using
four ABC methods, GLLiM-E-ABC expectations in red, semi-automatic ABC in green,
GLLiM-L2-ABC in blue and GLLiM-MW2-ABC in black. The posterior margins for ω, θ̄, b
and c are shown respectively. The threshold ε i set to the 0.1% quantile. The vertical lines
indicate the parameters values (ω, θ, b, c) = (0.59, 0.15, 0.14, 0.06) and (0.59, 0.42, 0.14, 0.06)
(identical except for θ).
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Figure 9: Signal reconstructions (black lines) obtained when applying the Hapke model
to parameter values (0.59, 0.15, 0.14, 0.06) and (0.59, 0.42, 0.14, 0.06). The observed signal
is shown in red. The dashed lines correspond to the addition/substraction of a standard
deviation of 0.05 around the reconstructions.

7 Conclusion and perspectives

In this work, the issue of choosing summary statistics was revisited. We built on the sem-
inal work of Fearnhead and Prangle (2012) and their semi-automatic ABC by replacing
the approximate posterior expectations with functional statistics, namely approximations
of the posterior distributions. These surrogate posterior distributions were obtained in a
preliminary learning step, based on an inverse regression principle. This is original with
respect to most standard regression procedures which usually provide only point-wise pre-
dictions, i.e. first order moments. So doing, we could not only compute approximate
posterior moments of higher orders as summary statistics but more generally approximate
full posterior distributions. More specifically, this learning step was based on the so-called
GLLiM model, which provides surrogate posteriors in the parametric family of Gaussian
mixtures. Preliminary experiments showed that although the posterior moments provided
by GLLiM were not always leading to better results than that provided by semi-automatic
ABC, the use of the full surrogate posteriors was always an improvement.

To handle distributions as summary statistics, our procedure required appropriate dis-
tances. We investigated L2 and a Wassertein-based distance (MW2), which are both
tractable for mixtures of Gaussians. No significant differences between the two distances
have been observed in our experiments but the MW2 distance appeared to be more robust
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in the sense of being less sensitive to small variations in the compared distributions. As il-
lustrated in our remote sensing example, it may also allow for the ability to set the tolerance
level at a higher value without overly degrading the quality of the posterior sample.

Among aspects that have not been thoroughly investigated in this work, we could refine
the way to choose this tolerance level ε or combine GLLiM with more sophisticated ABC
schemes than the simple rejection scheme.

In this current version, our proposal applies to ABC settings, where for a given param-
eter value, only one observation (that is possibly multi-dimensional) is available at a time.
Such settings are of practical importance as they are typical of inverse problems, where
many observations are measured but for different parameter values, due to experimental
limitations or costs. In addition, even when more than one observation is available, it is
common to use summary statistics. For instance, in their g-and-k distribution experiment,
Fearnhead and Prangle (2012) consider for a true given parameter a sample of 104 obser-
vations but reduce it to 100 features to apply the regression step of their semi-automatic
procedure. Similarly, Drovandi and Pettitt (2011) reduce their sample of 104 observations
to a vector of 7 octiles. So doing their analyses imply the one observation scenario, that
we consider. In contrast, methods using discrepancies (Bernton et al., 2019; Jiang et al.,
2018) can handle samples directly and bypass the need for summary statistics. However,
they require a relatively large number of generally i.i.d. observations for both the true and
simulated parameters. For computational reasons, as for the semi-automatic procedure, the
preliminary regression step in standard GLLiM is not adapted to the multiple observation
case. Therefore, an important future direction is to extend this work to the case of i.i.d.
samples. This requires the modification of the standard GLLiM procedure to maintain its
approximation quality and computational efficiency. With this in mind, an important fea-
ture of GLLiM, not illustrated in this paper, is to allow the application of ABC procedures
in high dimensional settings and to address the curse of dimensionality that is usually en-
countered in standard summary statistics based ABC. The rest of our proposal would then
be easily adapted.

At last, in principle, any other method that is able to provide approximate surrogate
posteriors could be used in place of GLLiM to produce the functional summaries. How-
ever, besides the family of mixture of experts models which are similar to GLLiM, to our
knowledge, most regression techniques and typically neural networks focus on point-wise
predictions.
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8 Proofs

8.1 Proof of Theorem 1

We follow steps similar to the proof of Proposition 2 in Bernton et al. (2019). The ABC
quasi-posterior can be written as

qε (θ | y) =

∫
Y
Kε (z; y)π (θ | z) dz,

where Kε(z; y) ∝ 1{D(π(·|y),π(·|z)))≤ε} π(z) denotes the density evaluated at some z of the
prior truncated to Aε. Kε(·; y) is a probability density function (pdf) in z ∈ Y with compact
support Aε ⊂ Y by definition of Aε and (A4). It follows that

|qε (θ | y)− π (θ | y)| ≤
∫
Y
Kε (z; y) |π (θ | z)− π (θ | y)| dz

≤ sup
z∈Aε
|π (θ | z)− π (θ | y)|

= |π (θ | zε)− π (θ | y)| ,

for some zε ∈ Aε, where the second inequality is due to the fact that Kε (·; y) is a pdf, and
the last equality is due to (A1) and the compacity of Aε.

Since for each ε > 0, zε ∈ Aε, we have limε→0 zε ∈ A0, where A0 =
⋂
ε∈Q+

Aε. Then,
using that by continuity of D, A0 = {z ∈ Y : D(π(· | z), π(· | y)) = 0}, it follows from the
equality property of D, that A0 = {z ∈ Y : π(· | z) = π(· | y)}. Taking the limit ε → 0
yields

|π (θ | zε)− π (θ | y)| → |π (θ | y)− π (θ | y)| = 0

and hence |qε (θ | y)− π (θ | y)| → 0, for each θ ∈ Θ.
By (A2), we have

sup
θ∈Θ

qε (θ | y) = sup
θ∈Θ

∫
Y
Kε (z; y)π (θ | z) dz

≤ sup
θ∈Θ

sup
z∈Aγ

π (θ | z) <∞,

for some γ, so that ε ≤ γ. Finally, by the bounded convergence theorem, we have

lim
ε→0

∫
Θ
|qε (θ | y)− π (θ | y)| dθ = lim

ε→0
‖qε (· | y)− π (· | y)‖1 = 0.

8.2 Proof of Theorem 2

We now provide a detailed proof of Theorem 2. Given any α > 0, β > 0, we claim that

lim
ε→0,K→∞,N→∞

Pr
(
λ
({

y ∈ Y : D2
H
(
qK,Nε (· | y) , π (· | y)

)
≥ β

})
≤ α

)
= 1;
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or equivalently, for any α > 0, β > 0, γ > 0, we wish to find ε (α, β, γ) > 0, K (α, β, γ) ∈ N∗,
and N (α, β, γ) ∈ N∗ so that for all ε < ε (α, β, γ) ,K ≥ K (α, β, γ) , N ≥ N (α, β, γ):

Pr
(
λ
({

y ∈ Y : D2
H
(
qK,Nε (· | y) , π (· | y)

)
≥ β

})
> α

)
≤ γ. (29)

To prove (29), we first recall that we can rewrite qK,Nε as follows, for all θ ∈ Θ,y ∈ Y,

qK,Nε (θ | y) =

∫
Y
KK,N
ε (z; y)π (θ | z) dz,

KK,N
ε (z; y) =

1{D(pK,N (·|y),pK,N (·|z))≤ε}π (z)∫
Y 1{D(pK,N (·|y),pK,N (·|z))≤ε}π (z) dz

, (30)

where KK,N
ε (·; y) is a pdf on z ∈ Y with compact support AK,Nε,y ⊂ Y by definition of AK,Nε,y

and (B4).
The Hellinger distance DH, between two densities f and g in appropriate spaces, is

related to the L1 distance D1 as follows, see Zeevi and Meir (1997, Lemma 1),(
1

2
D1 (f, g)

)2

≤ D2
H (f, g) ≤ D1 (f, g) . (31)

Applying successively the right-hand-side of (31), the definition of qK,Nε and the fact that
KK,N
ε (·; y) is a pdf, we can write

D2
H
(
qK,Nε (· | y) , π (· | y)

)
≤ D1

(
qK,Nε (· | y) , π (· | y)

)
=

∫
Θ

∣∣qK,Nε (θ | y)− π (θ | y)
∣∣ dλ (θ)

≤
∫

Θ

∫
Y
KK,N
ε (z; y) |π (θ | z)− π (θ | y)| dλ (z) dλ (θ)

=

∫
Y
KK,N
ε (z; y)

∫
Θ
|π (θ | z)− π (θ | y)| dλ (θ) dλ (z)

≤ sup
z∈AK,Nε,y

∫
Θ
|π (θ | z)− π (θ | y)| dλ (θ) .

Then using Makarov and Podkorytov (2013, Corollary 7.1.3) and the continuity of π(· | ·)
(B2), it follows that z 7→ D1 (π (· | z) , π (· | y)) is a continuous function for every y ∈ Y.
As AK,Nε,y is compact, since

zK,Nε,y ∈ BK,N
ε,y = arg max

z∈AK,Nε,y

D1 (π (· | z) , π (· | y)) ,

sup
z∈AK,Nε,y

D1 (π (· | z) , π (· | y)) = D1

(
π
(
· | zK,Nε,y

)
, π (· | y)

)
,
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and using the left-hand-side of (31), we finally get that

D2
H
(
qK,Nε (· | y) , π (· | y)

)
≤ 2DH

(
π
(
· | zK,Nε,y

)
, π (· | y)

)
. (32)

Consider the limit point zK,N0,y defined as zK,N0,y = limε→0 zK,Nε,y . Since for each ε > 0,
zK,Nε,y ∈ AK,Nε,y then zK,N0,y ∈ A

K,N
0,y , where AK,N0,y =

⋂
ε∈Q+

AK,Nε,y . By continuity of D, AK,N0,y ={
z ∈ Y : D

(
pK,N (· | z) , pK,N (· | y)

)
= 0
}
andAK,N0,y =

{
z ∈ Y : pK,N (· | z) = pK,N (· | y)

}
,

using (B3).
The distance on the right-hand side of (32) can then be bounded by three terms using

the triangle inequality for the Hellinger distance DH,

DH
(
π
(
· | zK,Nε,y

)
, π (· | y)

)
≤ DH

(
π
(
· | zK,Nε,y

)
, π(· | zK,N0,y )

)
+DH

(
π(· | zK,N0,y ), pK,N (· | y)

)
+DH

(
pK,N (· | y) , π (· | y)

)
. (33)

The first term on the right-hand side can be made close to 0 as ε goes to 0 independently
of K and N . The two other terms are of the same nature as the definition of zK,N0,y yields
pK,N (· | y) = pK,N (· | zK,N0,y ).

Therefore, we first prove that limε→0D
2
H

(
π(· | zK,Nε,y ), π(· | zK,N0,y )

)
= 0 pointwise i.e.

for each y. Indeed, since π(· | ·) is a uniformly continuous function in (θ,y), given any
y ∈ Y, α1 > 0, there exists δ(α1) > 0 such that for all zK,N0,y ∈ A

K,N
0,y ⊂ Y,

sup
θ∈Θ

∣∣∣π (θ | z)− π(θ | zK,N0,y )
∣∣∣ ≤ α1,∀z ∈ Y,

∣∣∣z− zK,N0,y

∣∣∣ < δ(α1). (34)

Furthermore, since Θ is a subset of a compact set, λ (Θ) < ∞. Hence, by using the fact
that limε→0 zK,Nε,y = zK,N0,y ∈ AK,N0,y pointwise with respect to y and choosing z = zK,Nε,y in
(34), we obtain that given any y ∈ Y, and α1 > 0, there exists δ(α1) > 0, and ε (δ(α1)) > 0

such that ∀0 < ε < ε (δ(α1)),
∣∣∣zK,Nε,y − zK,N0,y

∣∣∣ < δ(α1). Using (31) and (34), it follows for
any ε such that 0 < ε < ε (δ(α1)),

D2
H

(
π
(
· | zK,Nε,y

)
, π(· | zK,N0,y )

)
≤ D1

(
π
(
· | zK,Nε,y

)
, π(· | zK,N0,y )

)
≤ sup
θ∈Θ

∣∣∣π (θ | zK,Nε,y

)
− π(θ | zK,N0,y )

∣∣∣λ (Θ)

≤ α1λ (Θ) . (35)

Such convergence also holds in measure λ. Given any α1 > 0, β1 > 0, there exists
ε (α1, β1) > 0 such that for any 0 < ε < ε (α1, β1),

λ
({

y ∈ Y : D2
H

(
π
(
· | zK,Nε,y

)
, π(· | zK,N0,y )

)
≥ β1

})
≤ α1. (36)
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Then, since (36) is true whatever the value of {(θn,yn) , n ∈ [N ]}, sampled from the joint
π(·, ·), it also holds, in probability with respect to the data set, that

Pr
(
λ
({

y ∈ Y : D2
H

(
π
(
· | zK,Nε,y

)
, π(· | zK,N0,y )

)
≥ β1

})
> α1

)
= 0. (37)

Next, we prove thatD2
H

(
π(· | zK,N0,y ), pK,N (· | y)

)
, equal toD2

H

(
π(· | zK,N0,y ), pK,N (· | zK,N0,y )

)
,

and D2
H

(
pK,N (· | y), π(· | y)

)
both converge to 0 in measure λ, with respect to y and in

probability with respect to the sample {(θn,yn) , n ∈ [N ]}.
We first focus on D2

H

(
pK,N (· | y) , π (· | y)

)
. Using the monotonicity of the Lebesgue

integral and a result from Tsybakov (2008, Lemma 2.4) indicating that the squared Hellinger
distance can be bounded by the Kullback–Leibler (KL) divergence, it follows that∫

Y
D2
H

(
pK,N (· | y) , π (· | y)

)
dλ(y) ≤

∫
Y

KL
(
π(· | y), pK,N (· | y)

)
dλ(y).

Then since π(y) ≥ aλ(Θ)∫
Y

KL
(
π(· | y), pK,N (· | y)

)
dλ(y) ≤ 1

aλ(Θ)

∫
Y
π(y) KL

(
π(· | y), pK,N (· | y)

)
dλ(y)

≤ 1

aλ(Θ)
KL
(
π, pK,N

)
, (38)

where in the last right-hand side, the Kullback–Leibler divergence is on the joint densities
π and pK,N and the inequality is coming from a standard relationship between Kullback–
Leibler divergences between joint and conditional distributions, i.e.

KL
(
π, pK,N

)
=

∫
Y
π(y) KL

(
π(· | y), pK,N (· | y)

)
dλ(y) +

∫
Y
π(y) log

(
π(y)

pK,N (y)

)
dλ(y) ,

with the last integral being a positive Kullback–Leibler divergence. Using Corollary 2.2 in
Rakhlin et al. (2005) (see details in Section 8.3.1), we can show that KL

(
π, pK,N

)
tends

to 0 in probability as K and N tends to infinity. It follows that D2
H

(
pK,N (· | y) , π (· | y)

)
converges to 0 in L1 distance with respect to y. Using Tao (2011, 1.5. Modes of conver-
gence), D2

H

(
pK,N (· | y) , π (· | y)

)
also converges to 0 in measure λ with respect to y, and

in probability with respect to the sample {(θn,yn) , n ∈ [N ]} as K →∞, N →∞.
That is, given any α2 > 0, β2 > 0, γ2 > 0, there exists K (α2, β2, γ2) ∈ N∗, N (α2, β2, γ2) ∈
N∗ such that for any K ≥ K (α2, β2, γ2), N ≥ N (α2, β2, γ2),

Pr
(
λ
({

y ∈ Y, D2
H

(
pK,N (· | y) , π (· | y)

)
≥ β2

})
> α2

)
≤ γ2. (39)

To show that the same as (39) also holds when replacing y by zK,N0,y in D2
H , we need

to show some measurability property with respect to λ. Lemma 2, together with its proof
in Subsection 8.3.2, guaranties first that the map y 7→ zK,N0 (y) = zK,N0,y is measurable.
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Since y 7→ D2
H

(
pK,N (· | y) , π (· | y)

)
is a continuous function (using (B4) and Makarov

and Podkorytov 2013, Corollary 7.1.3), the measurability of the map implies that
D2
H

(
pK,N (· | zK,N0,y ), π(· | zK,N0,y )

)
is also a measurable function (see Tao 2011, 1.3.2. Measur-

able functions). Consequently Tao (2011, Lemma 1.3.9 Equivalent notions of measurability)
the set

{
y ∈ Y : D2

H

(
pK,N (· | zK,N0,y ), π(· | zK,N0,y )

)
≥ β2

}
is a measurable set with respect

to λ. In addition by the monotonicity of λ and the defintion of zK,N0,y , the measure of this
set satisfies for any β2 > 0,

λ({y ∈ Y :D2
H(pK,N (· | zK,N0,y ), π(· | zK,N0,y )) ≥ β2})≤λ({y ∈ Y :D2

H(pK,N (· | y), π(· | y)) ≥ β2}).

Then (39) implies that

Pr
(
λ
({

y ∈ Y : D2
H

(
pK,N (· | zK,N0,y ), π(· | zK,N0,y )

)
≥ β2

})
> α2

)
≤ γ2. (40)

Finally, (29) can be deduced from (37), (39) and (40) by choosing α1 = α2 = α/3, β1 =
β2 = β2/36, γ2 = γ/2, ε (α, β, γ) = ε (α1, β1), K (α, β, γ) = K (α2, β2, γ2) and N (α, β, γ) =
N (α2, β2, γ2) .

8.3 Auxiliary results

8.3.1 Use of Corollary 2.2 of Rakhlin et al. (2005)

In this section, we claim that under the conditions of Theorem 2, we can prove that
KL
(
π, pK,N

)
→ 0, in probability as K →∞, N →∞.

To do so we use the following Lemma 1 coming from Rakhlin et al. (2005). Let us recall
that HX is a parametric family of pdfs on X , HX = {gϕ,ϕ ∈ Ψ}. The set of continuous
convex combinations associated with HX is defined as

C = conv (HX )=

{
f : f(x)=

∫
Ψ
gϕ (x)G (dϕ) , gϕ ∈ HX , G is a probability measure on Ψ

}
.

We write KL (π, C) = inf
g∈C

KL (π, g).

The class of K-component mixtures on HX is then defined as

CK = convK(HX ) =

{
f : f(x) =

K∑
k=1

ckgϕk (x) , c ∈ SK−1, gϕk ∈ HX

}
(41)

where SK−1 =
{

(c1, . . . , cK) ∈ RK :
∑K

k=1 ck = 1, ck ≥ 0, k ∈ [K]
}
.

The result from Rakhlin et al. (2005) is recalled in the following Lemma.
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Lemma 1 (Corollary 2.2. from Rakhlin et al., 2005). Let X = Θ × Y be a compact set.
Let π be a target density π such that 0 < a ≤ π(x) ≤ b, for all x ∈ X . Assume that the
distributions in HX satisfy, for any ϕ,ϕ′ ∈ Ψ,

for all x ∈ X , 0 < a ≤ gϕ(x) ≤ b
and sup

x∈X

∣∣log gϕ(x)− log gϕ′(x)
∣∣ ≤ B‖ϕ−ϕ′‖1 ,

and that the parameter set Ψ is a cube with side length A with a, b, A,B arbitrary positive
scalars. Let {(θn,yn), n ∈ [N ]} be realizations from the joint distribution π(·, ·) and denote
by pK,N the K-component mixture MLE in CK .
Then, with probability at least 1− exp (−t),

KL
(
π, pK,N

)
≤ KL (π, C) +

c1

K
+

c2√
N

+
c3

√
t√

N
,

where c1, c2 and c3 are positive scalars depending only on a, b, A,B and on the dimension
of X (see Rakhlin et al. 2005 for the exact expressions).

Assumption (B1) in Theorem 2 then implies that π ∈ C so that KL (π, C) = 0. Using
Lemma 1, it follows that for all t > 0, for all K ∈ N∗, and for all N ∈ N∗,

Pr

(
KL
(
π, pK,N

)
≤ c1

K
+

c2√
N

+
c3

√
t√

N

)
≥ 1− exp (−t) . (42)

Choosing t = N1/2, (42) becomes

1− Pr

(
KL
(
π, pK,N

)
≤ c1

K
+

c2√
N

+
c3

N1/4

)
≤ exp

(
−N1/2

)
. (43)

Therefore, for any γ1 > 0, γ2 > 0, there exist K(γ1, γ2) ∈ N∗, and N(γ1, γ2) ∈ N∗ so that
for all K ≥ K(γ1, γ2) and N ≥ N(γ1, γ2),

c1

K
+

c2√
N

+
c3

N1/4
≤ γ1,

exp
(
−N1/2

)
≤ γ2.

From which we deduce using (43) that for all K ≥ K(γ1, γ2) and all N ≥ N(γ1, γ2),

1− Pr
(
KL
(
π, pK,N

)
≤ γ1

)
≤ γ2,

that is
lim

K→∞,N→∞
Pr
(
KL
(
π, pK,N

)
≤ γ1

)
= 1,

which achieves the proof that KL
(
π, pK,N

)
→ 0, in probability as K →∞, N →∞ .
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8.3.2 Proof of the measurability of zK,N0,y (Lemma 2)

We wish to make use of the result from Aliprantis and Border (2006, Theorem 18.19 Mea-
surable Maximum Theorem) to prove that we can choose a measurable function y 7→ zK,N0,y .
More specifically this is guarantied by the following Lemma 2 which is proved below.

Background. The required materials for this lemma and the proof arise from Aliprantis
and Border (2006), Chapter 18. The main concepts are recalled below.

Let f be a function on a product space Y ×Z, such that f : Y ×Z → X . Assume that
(Y,F) is a measurable space.

The function f (y, z) is said to be Caratheodory, if f is continuous in z ∈ Z and
measurable in y ∈ Y.

By definition, a correspondence ζ from a set Y to a set Z assigns each y ∈ Y to a subset
ζ (y) ∈ Z. We write this relationship as ζ : Y � Z.

A correspondence ζ : Y � Z is measurable (weakly measurable) if ζ` (F ) ∈ F for
each closed (open) subset F of Z, where ζ` is the so-called lower inverse of ζ defined as
ζ` (F ) = {z ∈ Z : ζ (y) ∩ F 6= ∅}.

Lemma 18.7 from Aliprantis and Border (2006) states the following: Suppose that
f : Y × Z → X is Caratheodory, where (Y,F) is a measurable space, Z is a metrizable
space, and X is a topological space. For each subset H of X , define the correspondence
ζH : Y � Z by

ζH (y) = {z ∈ Z : f (y, z) ∈ H} .

If H is open, then ζH is a measurable correspondence.

Corollary 18.8 from Aliprantis and Border (2006) states the following: Suppose that
f : Y × Z → X is Caratheodory, where (Y,F) is a measurable space, Z is a metrizable
space, and X is a topological space. Define the correspondence ζ : Y � Z by

ζ (y) = {z ∈ Z : f (y, z) = 0} .

Then if Z is compact ζ is a measurable correspondence.

Furthermore, we have the fact that the countable unions of measurable correspondences
are also measurable. We say that ζ : Y � Z admits a measurable selector, if there exists a
measurable function f : Y → Z, such that f (y) ∈ ζ (y), for each y ∈ Y.

Theorem 18.19 (Measurable Maximum Theorem) from Aliprantis and Border (2006)
then states the following. Let Z be a separable metrizable space and (Y,F) be a measurable
space. Let ζ : Y � Z be a weakly measurable correspondence with nonempty compact
values, and suppose that f : Y × Z → R is Caratheodory. Define m : Y → R by

m (y) = max
z∈ζ(y)

f (y, z) ,
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and define µ : Y � Z to be its maximizers:

µ (y) = {z ∈ ζ (y) : f (y, z) = m (y)} .

Then 1) the value function m is measurable, 2) the argmax correspondence µ has nonempty
and compact values, 3) the argmax correspondence µ is measurable and admits a measurable
selector.

In our context, the use of Theorem 18.19 above takes the form of Lemma 2.

Lemma 2. Under the assumptions in Theorem 2 and with the following definitions,

AK,Nε,y =
{
z ∈ Y : D

(
pK,N (· | y) , pK,N (· | z)

)
≤ ε
}

and AK,N0,y =
⋂
ε∈Q+

AK,Nε,y ,

BK,N
ε,y = arg max

z∈AK,Nε,y

D1 (π (· | z) , π (· | y)) and BK,N
0,y =

⋂
ε∈Q+

BK,N
ε,y ,

so thatAK,N0,y =
{
z ∈ Y : pK,N(· | y)−pK,N(· | z)=0

}
andBK,N

0,y =arg max
z∈AK,N0,y

D1(π(· | z), π(· | y)).

Then, we can always choose an argmax correspondence y � BK,N
0,y , which is measurable

and admits a measurable selector.

Proof of Lemma 2. Let us define the correspondence ζK,N0 : Y � Y so that ζK,N0 (y) =

AK,N0,y . We claim that this correspondence is a weakly measurable correspondence with
nonempty compact values. Indeed, we firstly define the function fK,N (y, z) = pK,N (· | y)−
pK,N (· | z), and notice that

fK,N : Y × Y → R

is Caratheodory, since it is a continuous function in z and measurable in y by the continuity
of pK,N . Then, by using the Aliprantis and Border (2006, Corollary 18.8) and the fact that
Y is compact, it follows that

ζK,N0 (y) =
{
z ∈ Y : fK,N (y, z) = 0

}
is measurable. Then, it is also weakly measurable (see Aliprantis and Border 2006, Lemma
18.2). Furthermore, ζK,N0 has nonempty compact values since for any y ∈ Y, ζK,N0 (y)

always contains y, and ζK,N0 (y) =
[
fK,N (y, ·)

]−1
({0}) is a compact set since the inverse

image of continuous function fK,N (y, ·) of compact set is also compact.
Then, since we assume that (y, z) 7→ D1 (π (· | z) , π (· | y)) is a continuous function in

z and measurable in y, then it is also a Caratheodory function. We also remark that BK,N
0,y

can be written as a argmax correspondence

BK,N
0,y = arg max

z∈ζK,N0 (y)

D1 (π (· | z) , π (· | y)) .
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By using the result from Aliprantis and Border (2006, Theorem 18.19, Measurable Max-
imum Theorem), we conclude that the the argmax correspondence BK,N

0,y is measurable
and admits a measurable selector, that is, we can always choose a measurable function
y 7→ zK,N0,y ∈ B

K,N
0,y .

References

Aliprantis, C. D. and Border, K. C. (2006). Infinite Dimensional Analysis: A Hitchhiker’s
Guide. Springer Science & Business Media. (Cited on pages 39, 40, and 41.)

Arridge, S., Maass, P., Öktem, O., and Schönlieb, C.-B. (2019). Solving inverse problems
using data-driven models. Acta Numerica, 28:1–174. (Cited on page 6.)

Beal, M. J., Jojic, N., and Attias, H. (2003). A graphical model for audiovisual object
tracking. IEEE Trans. Pattern Anal. Mach. Intell., 25(7):828–836. (Cited on page 22.)

Bernard-Michel, C., Douté, S., Fauvel, M., Gardes, L., and Girard, S. (2009). Retrieval of
Mars surface physical properties from OMEGA hyperspectral images using Regularized
Sliced Inverse Regression. Journal of Geophysical Research: Planets, 114(E6). (Cited on
page 3.)

Bernton, E., Jacob, P. E., Gerber, M., and Robert, C. P. (2019). Approximate Bayesian
computation with the Wasserstein distance. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 81:235–269. (Cited on pages 3, 5, 12, 13, 16, 32, and 33.)

Blum, M. G. B., Nunes, M. A., Prangle, D., and Sisson, S. A. (2013). A comparative
review of dimension reduction methods in approximate Bayesian computation. Statistical
Science, 28(2):189–208. (Cited on page 3.)

Buchholz, A. and Chopin, N. (2019). Improving Approximate Bayesian Computation via
Quasi-Monte Carlo. Journal of Computational and Graphical Statistics, 28(1):205–219.
(Cited on page 3.)

Chen, Y., Georgiou, T. T., and Tannenbaum, A. (2019). Optimal Transport for Gaussian
Mixture Models. IEEE Access, 7:6269–6278. (Cited on pages 4, 5, and 8.)

Cook, R. D. and Forzani, L. (2019). Partial least squares prediction in high-dimensional
regression. The Annals of Statistics, 47(2):884–908. (Cited on page 6.)

Csillery, K., Francois, O., and Blum, M. G. B. (2012). abc: an R package for approximate
Bayesian computation (ABC). Methods in Ecology and Evolution. (Cited on page 16.)

Del Moral, P., Doucet, A., and Jasra, A. (2012). An Adaptive Sequential Monte Carlo
Method for Approximate Bayesian Computation. Statistics and Computing, 22(5):1009–
1020. (Cited on page 3.)

41



Deleforge, A., Forbes, F., Ba, S., and Horaud, R. (2015a). Hyper-Spectral Image Analysis
with Partially-Latent Regression and Spatial Markov Dependencies. IEEE Journal of
Selected Topics in Signal Processing, 9(6):1037–1048. (Cited on page 3.)

Deleforge, A., Forbes, F., and Horaud, R. (2015b). High-Dimensional Regression with
Gaussian Mixtures and Partially-Latent Response Variables. Statistics and Computing,
25(5):893–911. (Cited on pages 4, 6, and 8.)

Delon, J. and Desolneux, A. (2020). A Wasserstein-type distance in the space of Gaussian
Mixture Models. SIAM Journal on Imaging Sciences. (Cited on pages 4, 5, 8, and 9.)

Drovandi, C. C. and Pettitt, A. N. (2011). Likelihood-free Bayesian estimation of multi-
variate quantile distributions. Computational Statistics and Data Analysis, 55:2541–2556.
(Cited on page 32.)

Fearnhead, P. and Prangle, D. (2012). Constructing summary statistics for approximate
Bayesian computation: semi-automatic approximate Bayesian computation. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 74(3):419–474. (Cited on
pages 3, 4, 7, 16, 31, and 32.)

Fernando, J., Schmidt, F., and Douté, S. (2016). Martian surface microtexture from orbital
CRISM multi-angular observations: A new perspective for the characterization of the
geological processes. Planetary and Space Science, 128:30–51. (Cited on page 24.)

Geyer, C. J. and Jonhson, L. T. (2020). mcmc: Markov chain Monte Carlo. https://cran.r-
project.org/web/packages/mcmc/. (Cited on page 23.)

Gutmann, M. U., Dutta, R., Kaski, S., and Corander, J. (2018). Likelihood-free inference
via classification. Statistics and Computing, 28:411–425. (Cited on pages 3, 5, and 16.)

Hospedales, T. M. and Vijayakumar, S. (2008). Structure inference for Bayesian multisen-
sory scene understanding. IEEE Trans. Pattern Anal. Mach. Intell., 30(12):2140–2157.
(Cited on page 22.)

Hovorka, R., Canonico, V., Chassin, L. J., Haueter, U., Massi-Benedetti, M., Federici,
M. O., Pieber, T. R., Schaller, H. C., Schaupp, L., Vering, T., and Wilinska, M. E.
(2004). Nonlinear model predictive control of glucose concentration in subjects with type
1 diabetes. Physiological Measurement, 25(4):905–920. (Cited on page 2.)

Ingrassia, S., Minotti, S. C., and Vittadini, G. (2012). Local Statistical Modeling via
a Cluster-Weighted Approach with Elliptical Distributions. Journal of classification,
29(3):363–401. (Cited on page 6.)

Jiang, B., Wu, T.-Y., C., Z., and Wong, W. (2017). Learning summary statistics for
Approximate Bayesian Computation via Deep Neural Network. Statistica Sinica, pages
1595–1618. (Cited on pages 3, 4, 7, and 16.)

42



Jiang, B., Wu, T.-Y., and Wong, W. H. (2018). Approximate Bayesian computation with
Kullback-Leibler divergence as data discrepancy. In Proceedings of the 21st International
Conference on Artificial Intelligence and Statistics (AISTATS). (Cited on pages 5, 18, and 32.)

Kristan, M., Leonardis, A., and Skočaj, D. (2011). Multivariate online kernel density
estimation with Gaussian kernels. Pattern Recognition, 44(10-11):2630–2642. (Cited on
page 5.)

Kugler, B., Forbes, F., and Douté, S. (2020). Fast Bayesian Inversion for high dimensional
inverse problems. https://hal.archives-ouvertes.fr/hal-02908364. (Cited on pages 24, 26,
and 28.)

Labarre, S. (2017). Caractérisation et modélisation de la rugosité multi-échelle des sur-
faces naturelles par télédétection dans le domaine solaire. PhD thesis, Physique Univers
Sorbonne Paris Cité. Supervised by C. Ferrari and S. Jacquemoud. (Cited on page 24.)

Lemasson, B., Pannetier, N., Coquery, N., Boisserand, L. S. B., Collomb, N., Schuff, N.,
Moseley, M., Zaharchuk, G., Barbier, E. L., and Christen, T. (2016). MR Vascular
Fingerprinting in Stroke and Brain Tumors Models. Scientific Reports, 6:37071. (Cited on
page 3.)

Li, K.-C. (1991). Sliced Inverse Regression for Dimension Reduction. J. Amer. Stat. Assoc.,
86(414):316–327. (Cited on page 6.)

Ma, D., Gulani, V., Seiberlich, N., Liu, K., Sunshine, J. L., Duerk, J. L., and Griswold,
M. A. (2013). Magnetic Resonance Fingerprinting. Nature, 495(7440):187–192. (Cited on
page 3.)

Makarov, B. and Podkorytov, A. (2013). Real analysis: measures, integrals and applications.
Springer Science & Business Media. (Cited on pages 34 and 37.)

Marin, J.-M., Pudlo, P., Robert, C. P., and Ryder, R. J. (2012). Approximate Bayesian
computation methods. Statistics and Computing, 22:1167–1180. (Cited on pages 18 and 21.)

Mesejo, P., Saillet, S., David, O., Bénar, C., Warnking, J. M., and Forbes, F. (2016). A
differential evolution-based approach for fitting a nonlinear biophysical model to fMRI
BOLD data. IEEE Journal of Selected Topics in Signal Processing, 10(2):416–427. (Cited
on page 2.)

Muandet, K., Fukumizu, K., Dinuzzo, F., and Scholkopf, B. (2012). Learning from dis-
tributions via support measure machines. In Advances in neural information processing
systems, pages 10–18. (Cited on page 5.)

Murchie, S. L., Seelos, F. P., Hash, C. D., Humm, D. C., Malaret, E., McGovern, J. A.,
Choo, T. H., Seelos, K. D., Buczkowski, D. L., Morgan, M. F., Barnouin-Jha, O. S.,

43



Nair, H., Taylor, H. W., Patterson, G. W., Harvel, C. A., Mustard, J. F., Arvidson,
R. E., McGuire, P., Smith, M. D., Wolff, M. J., Titus, T. N., Bibring, J.-P., and Poulet,
F. (2009). Compact Reconnaissance Imaging Spectrometer for Mars investigation and
data set from the Mars Reconnaissance Orbiter’s primary science phase. Journal of
Geophysical Research: Planets, 114(E2):E00D07. (Cited on page 24.)

Nataraj, G., Nielsen, J.-F., Scott, C., and Fessler, J. A. (2018). Dictionary-Free MRI
PERK: Parameter Estimation via Regression with Kernels. IEEE Trans. Med. Imaging,
37(9):2103–2114. (Cited on page 6.)

Nguyen, H. D., Arbel, J., Lü, H., and Forbes, F. (2020). Approximate Bayesian Com-
putation Via the Energy Statistic. IEEE Access, 8:131683–131698. (Cited on pages 5, 8,
and 18.)

Nguyen, H. D., Chamroukhi, F., and Forbes, F. (2019). Approximation results regarding
the multiple-output Gaussian gated mixture of linear experts model. Neurocomputing.
(Cited on page 6.)

Nunes, M. A. and Prangle, D. (2015). abctools: An R package for tuning Approximate
Bayesian Computation analyses. https://cran.r-project.org/web/packages/abctools/.
(Cited on page 16.)

Park, M., Jitkrittum, W., and Sejdinovic, D. (2016). K2-ABC: approximate Bayesian
computation with kernel embeddings. In Proceedings of the 19th International Conference
on Artificial Intelligence and Statistics (AISTATS). (Cited on page 5.)

Perthame, E., Forbes, F., Deleforge, A., Devijver, E., and Gallopin, M. (2017). xL-
LiM: An R package for High Dimensional Locally-Linear Mapping. https://cran.r-
project.org/web/packages/xLLiM/. (Cited on page 17.)

Pilorget, C., Fernando, J., Ehlmann, B. L., Schmidt, F., and Hiroi, T. (2016). Wavelength
dependence of scattering properties in the VIS–NIR and links with grain-scale physical
and compositional properties. Icarus, 267:296–314. (Cited on page 28.)

Prangle, D., Everitt, R. G., and Kypraios, T. (2018). A rare event approach to high-
dimensional approximate Bayesian computation. Statistics and Computing, 28:819–834.
(Cited on page 11.)

Rakhlin, A., Panchenko, D., and Mukherjee, S. (2005). Risk bounds for mixture density
estimation. ESAIM: Probability and Statistics, 9:220–229. (Cited on pages 2, 15, 36, 37,
and 38.)

Rubio, F. and Johansen, A. M. (2013). A simple approach to maximum intractable likeli-
hood estimation. Electronic Journal of Statistics, 7:1632–1654. (Cited on page 12.)

44



Schmidt, F. and Fernando, J. (2015). Realistic uncertainties on Hapke model parameters
from photometric measurements. Icarus, 260:73–93 (IF 2,84). (Cited on pages 3 and 24.)

Sisson, S. A., Fan, Y., and Beaumont, M. A., editors (2019). Handbook of Approximate
Bayesian Computation. CRC Press, Boca Raton. (Cited on page 2.)

Sriperumbudur, B. K., Gretton, A., Fukumizu, K., Scholkopf, B., and Lanckriet, G. R.
(2010). Hilbert space embeddings and metrics on probability measures. The Journal of
Machine Learning Research, 11:1517–1561. (Cited on page 5.)

Tao, T. (2011). An introduction to measure theory. American Mathematical Society Prov-
idence, RI. (Cited on pages 36 and 37.)

Tsybakov, A. B. (2008). Introduction to nonparametric estimation. Springer Science &
Business Media. (Cited on page 36.)

Wang, D. and Brown, G. J. (2006). Computational Auditory Scene Analysis: Principles,
Algorithms, and Applications. Wiley-IEEE Press. (Cited on page 22.)

Wang, F., Syeda-Mahmood, T., Vemuri, B. C., Beymer, D., and Rangarajan, A. (2009).
Closed-form Jensen-Renyi divergence for mixture of Gaussians and applications to group-
wise shape registration. In International Conference on Medical Image Computing and
Computer-Assisted Intervention, pages 648–655. Springer. (Cited on page 5.)

Wiqvist, S., Mattei, P.-A., Picchini, U., and Frellsen, J. (2019). Partially exchangeable
networks and architectures for learning summary statistics in approximate Bayesian com-
putation. In Chaudhuri, K. and Salakhutdinov, R., editors, Proceedings of the 36th In-
ternational Conference on Machine Learning, volume 97, pages 6798–6807, Long Beach,
California, USA. (Cited on pages 3 and 7.)

Zeevi, A. J. and Meir, R. (1997). Density estimation through convex combinations of
densities: approximation and estimation bounds. Neural Networks, 10(1):99–109. (Cited
on page 34.)

45


	Introduction
	Related work
	Parametric posterior approximation with Gaussian mixtures
	Extended semi-automatic ABC
	Extension to extra summary vectors
	Extension to functional summary statistics
	Optimal transport-based distance between Gaussian mixtures
	L2 distance between Gaussian mixtures
	Functional GLLiM-ABC


	Theoretical properties
	Convergence of the ABC quasi-posterior
	Convergence of the ABC quasi-posterior with surrogate posteriors

	Numerical experiments
	Non-identifiable models
	Ill-posed inverse problems
	Sum of moving average models of order 1 (MA(1))
	Sum of moving average models of order 2 (MA(2))

	Sound source localization
	A physical model inversion in planetary science
	Synthetic data from the Hapke model
	Laboratory observations


	Conclusion and perspectives
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Auxiliary results
	Use of Corollary 2.2 of rakhlin2005risk
	Proof of the measurability of z0,yK,N (Lemma 2) 



