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Abstract

The overarching goal of the present work is to contribute to the understanding
of the relations between fetal heart rate (FHR) temporal dynamics and the well-
being of the fetus, notably in terms of predicting the evolution of lactate, pH
and cardiovascular decompensation (CVD). It makes uses of an established ani-
mal model of human labor, where fourteen near-term ovine fetuses subjected to
umbilical cord occlusions (UCO) were instrumented to permit regular intermit-
tent measurements of metabolites lactate and base excess, pH, and continuous
recording of electrocardiogram (ECG) and systemic arterial blood pressure (to
identify CVD) during UCO. ECG-derived FHR was digitized at the sampling
rate of 1000 Hz and resampled to 4 Hz, as used in clinical routine. We focused
on four FHR variability features which are tunable to temporal scales of FHR
dynamics, robustly computable from FHR sampled at 4Hz and within short-
time sliding windows, hence permitting a time-dependent, or local, analysis of
FHR which helps dealing with signal noise. Results show the sensitivity of the
proposed features for early detection of CVD, correlation to metabolites and
pH, useful for early acidosis detection and the importance of coarse time scales
(2.5 to 8 seconds) which are not disturbed by the low FHR sampling rate. Fur-
ther, we introduce the performance of an individualized self-referencing metric
of the distance to healthy state, based on a combination of the four features.
We demonstrate that this novel metric, applied to clinically available FHR tem-
poral dynamics alone, accurately predicts the time occurrence of CVD which
heralds a clinically significant degradation of the fetal health reserve to tolerate
the trial of labor.

Keywords: fetal heart rate, animal model of human labor, cardiovascular
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decompensation, distance to healthy, time-scales dependent features, entropy
rate, sliding-window analysis

1. Introduction

Monitoring fetal heart rate (FHR) during labor is a common clinical routine
worldwide, aiming to asses fetal well-being and ensure safe delivery. The main
objective is to decide on timely operative delivery or uterine relaxation to pre-
vent brain injury and adverse outcomes [1]. In clinical practice, fetal well-being
is assessed by obstetricians principally by visual inspection of cardiotocograms
(CTG, bivariate time series of beat-per-minute FHR and uterine activity). The
interpretation is guided by a set of rules combining a collection of features, aim-
ing to probe various aspects of the CTG, such as baseline FHR, FHR variability
and deceleration shape and timing as well as the relation of the various FHR
features to the patterns of uterine activity. One such set of features and rules
was defined by the International Federation of Gynecology and Obstetrics [2, 3].
Applying such procedure has however been documented as yielding significant
inter-and intra-observer variability [4], one of many causes of the failure of the
present FHR monitoring to predict fetal brain injury [5, 6, 7].

These short-comings in FHR monitoring during labor triggered significant
efforts to develop computerized and automated assessment of FHR patterns
intrapartum. Beyond the direct computation of the FIGO features themselves
(cf., e.g., [8, 9, 10]), from digitized CTG usually sampled at 4Hz in clinical
practice, a large variety of features stemming from advanced signal processing
and information theory tools has been computed for FHR assessment. These
advanced features, however, have not reached performance benchmarks to lead
to a consensus in the research and medical communities. These observations
leave open a significant number of issues ranging from the choice of relevant
FHR features and the construction of decision rules for such features to the
assessment of the relationships between FHR time series and fetal well-being.
Interested readers are referred to [11] (and references therein) for a recent (lack
of) consensus overview and the interdisciplinary discussions.

Besides the need for large labelled databases to make machine learning on
FHR data effective [12], a recurrent issue is associated with the ground truth
being based on pH from the immediate post-birth umbilical cord pH measure-
ments. However, it has been documented that fetal brain injury poorly corre-
lates with measures of acidemia at birth such as pH [13, 11, 7]. First, pH is only
available after delivery hence when FHR is no longer available. Second, brain
compromise due to hypoxia-ischemia can ensue when the fetal cerebral blood
flow is persistently reduced, e.g., due to precipitous drop in cerebral perfusion
pressure resulting from cardiovascular decompensation (CVD) [14, 15, 7].

In a recent series of experiments, to better assess the relations between FHR,
systemic arterial blood pressure (ABP) and fetal health state (including the
impact of chronic hypoxia) sheep fetuses were surgically instrumented and sub-
jected to an umbilical cord occlusion (UCO) protocol in [16], in a well-established
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animal model of human labor. CVD onset was observed at individually variable
times, regardless the presence of chronic hypoxia. [17, 16, 18, 7, 19]. This animal
experimental model generated the dataset used in the present study.

Consequently, based on this dataset, the goal of the present work is to assess
whether FHR monitoring permits detection of the individual onset of CVD ac-
counting for the presence of chronic hypoxia prior to the onset of UCOs in some
fetuses. More particularly, we aimed to assess the sensitivity of FHR temporal
dynamics, probed by four scale-dependent features, to CVD, metabolites and
pH measurements.

We propose four features which all have the temporal scale of the signal as
a parameter. We compute these four quantities from the whole FHR signal to
probe its dynamics along the complete experiment. The first quantity measures
the average variation of the FHR over the prescribed time scale. The second
one measures the FHR variability over the time scale as the standard deviation.
The third one is the ratio of the first two and provides a normalized version of
the average variation. The fourth one is very similar to Approximate Entropy
or Sample Entropy and provides a measure of the information content of the
FHR signal at the given time scale. These four quantities can be computed
with any signal and give robust results even with the clinically relevant low
sampling rate of 4 Hz. This feature choice is also designed to allow computation
within short-time time windows, thus permitting to achieve a sliding-window,
time-dependent analysis of FHR, which may eventually be exploited to perform
real-time FHR monitoring on noisy data.

We show the importance of coarse time scales (2.5 to 8seconds) and construct
an individual self-referencing ”distance to healthy state” metric based on combi-
nation of the four features. We then demonstrate the use of the novel composite
distance metric to predict individual CVD from FHR time series alone.

2. Materials: sheep animal model and umbilical cord occlusions

Fetal sheep model of labor and surgical preparation. The anesthetic
and surgical procedures, postoperative care of the animals and the UCO model
of labor have been previously described [16]. Briefly, fourteen near-term ovine
fetuses (123 ± 2 days gestational age (GA), term = 145 days) of the mixed breed
were surgically instrumented. Animal care followed the guidelines of the Cana-
dian Council on Animal Care and was approved by the University of Western
Ontario Council on Animal Care.

Polyvinyl catheters were placed in the right and left brachiocephalic arteries,
the cephalic vein, and the amniotic cavity. The fetal arterial lines were used
for measuring ABP, sampling arterial blood gases, metabolites and cytokines.
The fetal venous line was used for administration of fluids and post-operative
antibiotics. Stainless steel electrodes were sewn onto the fetal chest to moni-
tor ECG. A polyvinyl catheter was also placed in the maternal femoral vein.
Stainless steel electrodes were additionally implanted biparietally on the dura
for the recording of electrocorticogram, ECOG, as a measure of summated brain
electrical activity (results reported elsewhere [16]). An inflatable silicon rubber
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cuff (In Vivo Metric, Healdsburg, CA) for UCO induction was placed around
the proximal portion of the umbilical cord and secured to the abdominal skin.
Once the fetus was returned to the uterus, a catheter was placed in the am-
niotic fluid cavity. Antibiotics were administered intravenously to the mother
(0.2 g of trimethoprim and 1.2 g sulfadoxine, Schering Canada Inc., Pointe-
Claire, Canada) and fetus and into the amniotic cavity (1 million IU penicillin
G sodium, Pharmaceutical Partners of Canada, Richmond Hill, Canada). Am-
niotic fluid lost during surgery was replaced with warm saline. The uterus and
abdominal wall incisions were sutured in layers and the catheters exteriorized
through the maternal flank and secured to the back of the ewe in a plastic pouch.
Postoperatively, animals were allowed four days to recover prior to experimen-
tation and daily antibiotic administration was continued intravenously to the
mother (0.2 g trimethoprim and 1.2 g sulfadoxine), into the fetal vein and the
amniotic cavity (1 million IU penicillin G sodium, respectively). Arterial blood
was sampled for evaluation of the fetal condition and catheters were flushed
with heparinized saline to maintain patency. Animals were 130 ± 1 day GA on
the first day of the experimental study.

Umbilical cord occlusion protocol. The experimental protocol has been
reported [20, 21, 16]. Briefly, all animals were studied over a ∼6 hour period.
Fetal chronic hypoxia was defined as arterial O2Sat less than 55 percent as
measured on postoperative days 1 to 3 and at baseline prior to beginning the
UCOs. The first group comprised five fetuses that were also spontaneously
hypoxic (n=5, H/UCO). The second group of fetuses was normoxic (O2Sat
more than 55 percent before UCOs) (n=9, N/UCO). As reported, after a 1-
2 hour baseline control period, the animals underwent mild, moderate, and
severe series of repetitive UCOs by graduated inflation of the occluder cuff
with a saline solution [16]. During the first hour following the baseline
period, mild variable FHR decelerations were performed with a partial UCO for
1 minute duration every 2.5 minutes, with the goal of decreasing FHR by ∼30
bpm, corresponding to a ∼50 percent reduction in umbilical blood flow [22, 23].
During the second hour, moderate variable FHR decelerations were performed
with increased partial UCO for 1 minute duration every 2.5 minutes with the
goal of decreasing FHR by ∼60 bpm, corresponding to a ∼75 percent reduction
in umbilical blood flow. Animals underwent severe variable FHR decelerations
with complete UCO, i.e., ∼100 percent reduction of umbilical blood flow, for
1 minute duration every 2.5 minutes until the targeted fetal arterial pH of less
than 7.00 was detected, at which point the repetitive UCO were terminated. A
summary of timings is reported in table 1. These animals were then allowed to
recover for 48 hours following the last UCO. Fetal arterial blood samples were
drawn at baseline, at the end of the first UCO of each series (mild, moderate,
severe), and at 20 minute intervals (between UCO) throughout each of the UCO
series, as well as at 1, 24, and 48 hours of recovery. When pH less than 7.00
was measured, the UCO were stopped and this time point noted as the end
of the occlusions. We then obtained the precise pH=7.00 time point by linear
interpolation from this last measured pH value. All blood samples were analyzed
for blood gas values, pH, lactate and base excess (BE) with an ABL-725 blood
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gas analyzer (Radiometer Medical, Copenhagen, Denmark) with temperature
corrected to 39.0oC. Plasma from the 4 ml blood samples was frozen and stored
for cytokine analysis, reported elsewhere [24]. After the 48 hours recovery blood
sample, the ewe and the fetus were killed by an overdose of barbiturate (30 mg
sodium pentobarbital IV, MTC Pharmaceuticals, Cambridge, Canada). A post
mortem was carried out during which fetal sex and weight were determined and
the location and function of the umbilical occluder were confirmed. The fetal
brain was perfusion-fixed and subsequently dissected and processed for later
immunohistochemical study [25].

Data acquisition and pre-processing. A computerized data acquisi-
tion system was used to record fetal systemic arterial and amniotic pressures
and the ECG signal [26]. All signals were monitored continuously throughout
the experiment. Arterial and amniotic pressures were measured using Statham
pressure transducers (P23 ID; Gould Inc., Oxnard, CA). Fetal systemic ABP
was determined as the difference between instantaneous values of arterial and
amniotic pressures. A PowerLab system was used for data acquisition and anal-
ysis (Chart 5 For Windows, ADInstruments Pty Ltd, Castile Hill, Australia).
Pressures, ECOG and ECG were recorded and digitized at 1000 Hz for further
study. For ECG, a 60 Hz notch filter was applied. R peaks of ECG were used to
derive the heart rate variability (HRV) times series [26]. The time series of R-R
peak intervals were then uniformly resampled at 4 Hz [26]. A representative
FHR signal is shown in Fig. 1a: a visual assessment of the whole FHR trace
reveals that FHR variability increases when UCO strength is increased.

Figure 1: Typical data recorded in the experiment (here, animal 473726). Upper panel: FHR
resampled at 4Hz. The color indicates the strength of UCO during the experiment: blue and
black for no UCO (baseline and recovery), green for mild UCO, magenta for moderate UCO
and red for severe UCO. Lower panel: Fetal arterial pH values during the experiment. The
pH (as well as the other blood measurements) is obtained at specific time points, indicated by
the vertical lines; the open black circles correspond to the actual measurements from blood
sampling and the black lines correspond to a linear interpolation.

Metabolites data (pH, lactate and BE) is obtained by blood sampling per-
formed at specific times during the experiment (vertical dashed lines in 1b). In
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order to have metabolites data at any time, we assume a linear drift between
two successive measurements and consequently perform a linear interpolation
between two measurements times. We thus obtain a piece-wise linear time series
sampled at 4Hz, depicted in Figure 1b as a black curve. Using this interpolated
data, as noted above, the time tpH when pH=7.00 is computed in each fetus as
indicated in table 1.

Fetal cardiovascular decompensation (CVD). CVD has been reported
in detail in [15, 16, 27]. The visual representation of CVD can be found in
these publications, e.g., in the Figure 2 in [16]. The reader can readily ob-
serve the pronounced pathological hypotensive responses to the UCO-triggered
FHR decelerations during the CVD. This behavior is in stark contrast to the
normally observed ABP increases during the occlusions which compensate the
hypotension caused by the FHR decelerations. As we reported, once this pat-
tern conversion from hypertensive to hypotensive responses occurs, it persists
until the UCOs are stopped. Its effects are also seen directly in the brain elec-
trical activity [15, 16]. It is hence easy to reliably visually identify the timing
of the onset of CVD in each recording. Consequently, during UCOs, by ex-
pert visual inspection, we noted the individual time point tCVD at which three
successive hypotensive ABP responses to UCO-triggered FHR decelerations oc-
curred. Quantitatively, with hypotensive ABP response we refer to the failure
of ABP to rise during UCO-triggered FHR deceleration above the preceding
baseline value when compared to the average ABP rise during the UCO series
prior to the CVD. We refer to this animal-specific time point as the ABP sen-
tinel corresponding to the timing of CVD. As an illustration, tCVD is reported
in Figure 1b as a vertical black line.

3. Methods: time scale-dependent features

3.1. Sliding window analysis

Analysis of FHR and metabolites data are performed in sliding time-windows
of size T = 20 minutes. The time-windows are shifted by dT = 5 minutes, thus
implying a T − dT = 15 minutes (75%) overlap. The k-th time-window thus
corresponds to time ranging in [kdT, kdT + T ].This sliding window analysis
permits the assessment of the temporal evolution of cardiovascular responses to
changes in UCO strength.

3.2. Scale dependent features

Using FHR, xt, four quantities, whose definitions rely on the choice of a
time scale τ , are computed, for each time-window k: increment mean mk(τ),
increment standard deviation σk(τ), the corresponding Student ratio Rk(τ), and
the entropy rate hk(τ). The first one, mk(τ), measures the average change of
the FHR signal over the time lag τ . It can be pictured as the derivative of the
signal on the time-scale τ , averaged in the time-window k. The second one,
σk(τ), is the standard deviation of the signal estimated on chunks of the signal
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of duration τ , and then averaged in the time-window k. The third one, Rk(τ),
is a normalized version of the first quantity mk(τ): the average variation is now
expressed in standard deviation units, before being averaged along the time-
window k. The last one, hk(τ), in a measure of the information or complexity
of the signal at scale τ , similar to Approximate Entropy or Sample Entropy,
estimated at scale τ over the time-window k. As described below, the first
three quantities are averages over the time-window k of dynamical quantities
mt(τ), σt(τ), Rt(τ) defined at scale τ ; these quantities, along with FHR, are
shown for illustration purposes in Figure 2 for arbitrarily chosen 20-minute
window, time scale τ and animal.

3.2.1. Mean variation (or local trend) at time-scale τ

For all t in window k, the average increment over a time scale τ is computed
as:

mt(τ) =
1

τ

t∑
i=t−τ+1

(xi − xt−τ ) =
1

τ

t∑
i=t−τ+1

xi − xt−τ . (1)

These mt(τ) are then averaged across window k, for all non-overlapping time-
intervals [(j − 1)τ ; jτ ]:

mk(τ) =
1

bT/τc

bT/τc∑
j=1

mkT+jτ (τ) , (2)

where bT/τc, the floor of the fraction T/τ , indicates the number of time-intervals
of size τ available in the time-window of size T . An illustration of the method-
ology is given in Figure 2b for the window k = 0: values of mt(τ) are depicted
in black, and the single value mk(τ) is represented in red.
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Figure 2: Illustration of the methodology in the first time-window [0;T ] of size T = 20
minutes, using the fixed time scale τ = 25s. (a): FHR. (b): mt(τ). (c): σt(τ). (d): Rt(τ).
The black circles in (b),(c),(d) correspond each to a value obtained in a time-interval of size
τ = 25s, according to eqs (1),(3),(5). The horizontal red lines in (b), (c), (d) indicate the
values mk=1(τ), σk=1(τ) and Rk=1(τ) obtained after averaging all the black circles, i.e., over
all available time-intervals of size τ in the time-window, according to eqs (2),(4),(6).

7



The quantity mk(τ) measures the average variation — either an increase or a
decrease — of FHR on the time scale τ . The average is indeed a double average:
first over all time scales smaller than τ , according to eq. 1, and second over
all available intervals available in the kth time-window of size T=20 minutes,
according to (2). mk(τ) can also been interpreted as the averaged derivative of
the signal after a low-pass filtering using a finite impulse response with cut-off
frequency 1/τ .

3.2.2. Standard deviation at time-scale τ

Given a time-interval [t−τ ; t], we define the variance of the set of increments
{(xt−i − xt−τ ), t − τ < i ≤ t}. This indeed is nothing but the variance of xt,
computed over the set of values in the time-interval [t− τ ; t]:

σ2
t (τ) =

1

τ

t∑
i=t−τ+1

x2i −

(
1

τ

t∑
i=t−τ+1

xi

)2

. (3)

We then average its square root over the bT/τc non-overlapping time intervals
of size τ available in the kth time-window of size T :

σk(τ) =
1

bT/τc

bT/τc∑
j=1

σkT+jτ (τ) . (4)

This quantity measures the average — in the kth time-window of size T —
amplitude of the fluctuations of xt over τ consecutive points. The methodology
is illustrated in Figure 2c.

3.2.3. Normalized local trend at time-scale τ

The Student ratio, or normalized local trend, at time-scale τ , is defined for
each time interval [t− τ ; t], as:

Rt(τ) =
mt(τ)

σt(τ)
. (5)

It is averaged across all available non-overlapping intervals in the kth time-
window:

Rk(τ) =
1

bT/τc

bT/τc∑
j=1

RkT+jτ (τ) . (6)

This quantity, up to a factor
√
τ , would correspond to a random variable drawn

from the distribution of the t-value if the data xt were independently drawn from
a Gaussian distribution. It can be interpreted as the average variation over a
time step τ , normalized by the local standard deviation; as such, it provides a
normalized measure of the trend of the signal xt to depart from its expected
value when observed across a duration τ .
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3.2.4. Entropy rate at time-scale τ

One commonly used feature in heart rate analysis, both for adults and fe-
tuses, is sample entropy (SampEn) [28, 29, 30], an elaboration on approximate
entropy (ApEn) [31, 32]. It was shown recently that the entropy rate provides
a related tool to probe FHR with better performance than ApEn or SampEn
to detect acidosis [33, 34, 35].

The entropy rate of order 1 in the kth time-window at time-scale τ is defined
as:

hk(τ) = H(xt, xt−τ )−H(xt) , (7)

where

H(~x) = −
∫
p(~x) ln p(~x)d~x , (8)

denotes the Shannon entropy [36] of either a vector ~x = (xt, xt−τ ) or a scalar
~x = xt. hk(τ) is computed using all the pairs of points (xt, xt−τ ) available in
the k-th time-window, and following Theiler’s prescription [34] to avoid spurious
correlation.

hk(τ) measures the extra information conveyed by the vector (xt, xt−τ ) when
(xt) is known, or in other words, the extra information given by the knowledge
of the signal at an earlier time t − τ . The entropy rate probes the dynamics
of the signal, and to better focus on this dynamical aspect, we compute it on
the normalized signal (xt−〈xt〉)/

√
〈(xt − 〈xt〉)2〉, where 〈.〉 stands for the time

average on the window of size T .

4. Results and discussion: Features, time-scales and distance to healthy
state

In section 4.1, the four features — computed in overlapping time-windows —
evolution in time are firstly presented and studied with respect to their relations
to UCO strength. Because these features are computed at a given time-scale τ ,
they offer a description of the FHR dynamics at this time-scale. We thus explore
the correlation between the features at a given time-scale τ and the measured
values of the metabolites — including the pH. This global analysis, presented
in section 4.2, is performed using all available time-windows and all available
animals. We then reduce the dimensionality of the analysis by averaging re-
sults over the long-term time-scales, as defined and presented in section 4.3.
This allows us to examine more clearly how the features evolve jointly with the
UCO strength for the entire cohort, while quantifying the variability between
animals. We then examine quantitatively in section 4.4 how these long-term
features correlate with metabolites. We then combine them in an appropriately
normalized vector; we are then able to describe the large variability across the
subjects in the population as the variability of this vector in the early stages
of the experiments. This allows us to define a measure of the degradation of
the health state of an animal as the distance from healthy state. Finally, we
propose in section 4.5 to use this ”individual” distance as a novel indicator — or
sentinel — to alert for the degradation of the health status due to CVD. We
also show that this indicator/sentinel matches very well with pH measurements.
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4.1. Features and UCO strength
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Figure 3: Representation of the time evolutions of mk(τ) (a), σk(τ) (b), Rk(τ) (c), hk(τ) (d),
depending on the scale τ for animal 473726. The time in abscissa is kdT + T/2, the location
of the kth time-window of size T where the quantity is computed, and the ordinate represents
the scale τ . Vertical color lines indicates the times at which blood sampling was performed
(same color code as in Fig. 1: green in the mild UCO regime, magenta in the moderate UCO
regime, and red in the severe UCO regime). In the severe UCO regime and for larger time
scales τ , stronger variations are observed.

We first examine on a single animal how the four FHR features evolve
throughout an experiment, depending on the time-scale τ . The values obtained
in the k-th time-window [kdT ; kdT +T ] are assigned to the date tk = kdT +T/2
at the center of the time-window. The dynamical evolutions of mk(τ), σk(τ),
Rk(τ) and hk(t, τ) are depicted in Figure 3 for a large band of time scales τ .

Such a time-scale representation reveals qualitatively that when the UCO
strength is increased, mk(τ), Rk(τ) and hk(τ) decrease along time, while σk(τ)
increases along time. This agrees with the previous studies where the decrease
of the entropy rate hk(τ) was associated with fetal acidosis [33, 35, 34].

Qualitatively, although the four features barely evolve in time for smaller
values of τ (below 2 seconds, bottom of the images in Fig. 3), a noticeable time
evolution can be observed for large values of τ and especially in the severe UCO
regime. To better observe the dependence of the four features on the scale τ ,
we plot in Fig. 4 their evolution with τ for the time points when blood sampling
was performed. Fig. 4 therefore presents the evolution of the four features along
the vertical color lines indicated in the images of Fig. 3.

We observe in Figure 4 that the evolution of mk(τ) is rather linear in τ ,
but the slope depends on the time, and hence on the UCO level. We observe
almost no evolution of R(τ) with τ , but the value of R(τ) depends on time,
so on the UCO level. On the contrary, both σ(τ) and the entropy rate h(τ)
present a distinct change of their evolution with τ below and above τ = 2.5s,
which emphasizes the distinction between short (< 2.5 seconds) and large (> 2.5
seconds) time scales, in accordance with previous literature [37, 38, 26]. We use
this information on the time scales as follows.
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Figure 4: Quantitative representation of the evolution of m(τ) , σ(τ) , R(τ) , h(τ) over the
time scale τ for a single animal. The data represented here is extracted from Fig.3: each
curve corresponds to a time-window of size T for which a fetal arterial blood sample was
taken. The color of the curve represents the corresponding UCO level, with the same color
code as in Figures 1 and 3: blue is the baseline prior to any UCO, green in the mild UCO
regime, magenta in the moderate UCO regime, red in the severe UCO regime, and then black
in the recovery regime (after UCO). Vertical black dashed lines indicate the time-scales 2.5s
and 8s.

4.2. FHR features, arterial metabolites and pH

We now examine, for a fixed time-scale τ , how the features relate to the
health state of the animal, as described by the metabolites and pH. To do so,
we use all time-windows of size T on one side, and interpolated metabolites
data on the other side. We compute the correlation between any of the four
features (for a fixed τ) and any of the biochemical measurements, by averaging
over all time-windows (average over k) and over all animals. Results are plotted
in Fig. 5 as a function of the scale τ .

0 5 10

-0.5

0

0.5

0 5 10 0 5 10

Figure 5: Correlation coefficient between the biochemical measurements (a: lactate, b: pH,
c: BE) and the four FHR features: mk(τ) (magenta), σk(τ) (blue), Rk(τ) (red), and entropy
rate hk(τ) (black), as function of the scale τ .

As suggested by Fig. 4 and confirmed by Fig. 5, we can isolate two bands
of time scales: shorter scales τ < 2.5s (i.e., high frequency band, above 0.4 Hz,
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short term time scales, labeled ST) and larger ones τ > 2.5s (low frequency
band, below 0.4 Hz, long term time scales, labeled LT).

For any of the four features and any of the three biochemical measurements,
the correlation in the range [2.5− 8] seconds is not only the largest — in abso-
lute value — but also the most stable: it fluctuates less and does not depend
much onτ . Above 8s, all correlations decrease in absolute value, which may
be attributed in part to poorer statistics: the number bT/τc of available time-
intervals of size τ in a time-window of size T decreases, which impacts the
averages, see, e.g., equation (2)). As a consequence, we choose in the following
to restrict the long term (LT) range to τ ≤ 8s in order to have enough statistical
power.

4.3. Long-term scales averaged FHR features

For the sake of simplicity, we now eliminate the dependencies of our features
on τ and focus on the LT range. To do so, we compute the area under the
curve (AUC) of our four FHR features in the range 2.5 < τ < 8s. For a given
time-window indexed by k, we compute:

mLT
k =

τ=8s∑
τ=2.5s

mk(τ) (9)

and we define accordingly σLT
k , RLT

k and hLTk . These features depend only on
time, via the index k of the time-window in which they are computed.

Time evolutions of these four LT features are depicted in Fig. 6 for the
complete set of 14 animals. For some animals, there may be missing data due to
experimental conditions, and hence there may be less consecutive time-windows
of size T available than expected in a given UCO region; in that situation, we
have then chosen to assign the dark blue color (arbitrary) for the quantity —
see, e.g., the second line (a hypoxic animal), where no data is available in the
mild UCO region, and only 4 windows are available in the severe UCO region.

Using the first column (on the left of the vertical green line) of each subfigure
as a reference, we observe that every quantity evolves as the UCO strength is
increased. Although very few changes are observed in the mild UCO region,
much larger variations are observed in the severe UCO region. After the stop-
ping of UCOs (on the right of the vertical black line), we observe that the four
features seem to regain their original value, which we interpret as indicating
the recovery of the animal, typically after 1 window of size T , so typically 20
minutes after the end of UCOs.

4.4. Distance to healthy state, metabolites and pH

We now explore how our four FHR features relate to the metabolites’ levels,
and especially to the pH value, which is a widely used indicator of fetal well-
being. We report in Table 2 the correlation coefficient between each of the
four features mLT, σLT, RLT and hLT on one hand, and the three biochemical
measurements pH, BE and lactate on the other hand. To increase the statistical
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Figure 6: Long term AUC of the four FHR features mLT, σLT, RLT and hLT for all 14
animals. For a given quantity, each line represents an animal (ordered from top to bottom as
in table 1); chronically hypoxic ones are above and normoxic ones are below. Each column
represent a time-window of size T and time is increasing from left to right. The region of mild
UCO starts at the vertical green line and lasts for 4 windows, up to the vertical magenta line,
followed by 4 windows in the moderate UCO region, and then up to 6 windows in the severe
UCO region, and up to 3 windows in the recovery region.

power, we use all available time-windows of size T and so all linearly interpolated
values of the three biochemical measurements.

We observe that the four FHR features correlate well with the pH and BE,
while the correlation with the lactate is smaller. All features but σLT — the
LT amplitude of fluctuations — have a correlation coefficient with pH that is
at least 0.50, and a correlation coefficient with BE that is at least 0.43. This
is interesting, as RLT appears strongly correlated with mLT while relatively
uncorrelated with σLT.

We believe that each of the four FHR features contributes a particular piece
of information about FHR and we therefore aggregate them as follows. For a
single animal and a single time-window indexed by k, we consider the vector

~uk =

(
mLT
k

mLT
RMS

,
σLT
k

σLT
RMS

,
RLT
k

RLT
RMS

,
hLTk
hLTRMS

)
, (10)

where each component is normalized by its standard deviation computed over
all animals and over all available time-windows of size T . The four values
(mRMS

LT , σRMS
LT , RRMS

LT , hRMS
LT ) used for this normalization are hence the same for

all animals and all time-windows; they are reproduced in the third line of Ta-
ble 3.

For a given animal and for a given time-window indexed by k, we use the L2

norm in R4 to project any vector ~uk into a positive real number ‖~uk‖ as follows.
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For each animal, we assume it is in a healthy condition when the experiment
is started (so the FHR is fluctuating around the baseline) and we use the first
time window of size T as a reference. We thus define the distance between ~uk
which describes the state in the k-th time-window and ~u0 which describes the
state in the first time-window [0;T ]:

Dk = ‖~uk − ~u0‖ . (11)

We interpret this distance Dk for a single animal as a measure of the deviation
from the animal’s ”healthy” state during the experiment.

We report in Table 3 global statistics — obtained by considering all ani-
mals — of the four FHR features used as the four components of the vector
~ut.

The third line of Table 3 reports the values mLT
RMS, σ

LT
RMS, R

LT
RMS and hLTRMS

used to normalize the vector ~uk. Their amplitude is notably different, and the
normalization is necessary to ensure that each component of ~uk contributes
equally to its norm ||~uk||. Whereas this normalization uses all available data
(using all times and all animals at once), it is important to stress that we have
accounted for the large variability from one animal to another by defining Dk

with a reference relative to the very animal under consideration. The variability
of the reference point can be seen in the fourth line of Table 3: it accounts for a
large part of the RMS values used in the normalization. Comparing the first two
lines of table 3 brings an additional observation leading to the same conclusion:
the position of the healthy state ~u0 is on average over the animals (second line
of the table) sensibly different from the position of ~uk averaged over all animals
and all times (first line of table). Using Dk instead of ||~uk|| removes a large
part of the inter-animal variability and definitely improves the relevance of the
distance, as measured by the correlation with the metabolites, see table 2.

We present in Figure 7 the 14 trajectories of the vector ~u(k) in its phase
space, for the complete cohort. ~uk has 4 coordinates so there are 6 different
projections in a plane defined by two variables. Each subplot in Figure 7 cor-
responds to one of these possible projections. Along each trajectory, the color
changes to indicate the interpolated pH value. Although the trajectories wander
in a large region of the phase space, their color-coding seem to only depend on
the distance from the origin: blue (larger pH) close to the origin, and orange or
red (lower pH) outside of the circle defined by D = 2. During an experiment,
the UCO’s strength increases and, as a consequence, the pH decreases. We
observe that the distance Dk appears to increase concomitantly, and more pre-
cisely we observe its correlation with the pH value. The correlation coefficients
between the distance D and the biochemical measurements, computed over all
animals, are reported in Table 2 (grey-colored cells). We observe that among
all FHR features we have computed, the distance D is the one that is the most
correlated with pH, as well as with the other metabolites. This confirms that
using all four FHR features simultaneously — by considering the vector ~u —
not only mitigates the various evolutions of single features with the metabolite
value but also aggregates their correlations.
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Figure 7: Trajectories of the vector ~uk − ~u0 for all 14 animals in the phase space; the 6
subplots correspond to the 6 possible projections onto planes (using 2 coordinates of the
vector). Each trajectory corresponds to an animal and is colored to indicate the pH value
at the time k: in this way, we observe the joint temporal evolution of ~uk and of the pH
throughout the experiment. Trajectories have been centered by subtracting ~u0, according to
eq.(11) to account for the variability between animals: the thick black dot at the origin thus
represents the starting point of all trajectories. The grey circle corresponds to D = 1 and the
black circle to D = 2.

4.5. Distance to healthy state as a new sentinel for CVD

To better illustrate the relation between the dynamical features — especially
the distance Dk — on one hand, and the health status as assessed by the
metabolites — especially the pH — and blood pressure responses to UCOs on
the other hand, we examine in detail in Figures 8 and 9 how these are co-evolving
for each individual animal. From now on, we discard any indication of the UCO
level.

Figure 8 presents jointly the time-trace of the FHR signal (Figure 8a,e) and
the evolution of the distance D (Figure 8b,f), which we color-code using the
pH value, as in Figure 7 for two typical normoxic animals. We also present two
projections of the trajectory of ~uk in its phase space in order to illustrate the
evolution of each of the four quantities.

Because the vector ~uk has been carefully normalized, and appropriately cen-
tered to define the distance Dk, this last quantity has no dimension and can be
compared to absolute values. The particular value D = 1 (gray circle) defines
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correlated with pH, as well as with the other metabolites. This confirms that using all four FHR features315
simultaneously — by considering the vector ~u — not only mitigates the various evolutions of single features316
with the metabolite value but also aggregates their correlations.317

4.5 Distance to healthy state as a new sentinel for CVD318

To better illustrate the relation between the dynamical features — especially the distance Dk — on one319
hand, and the health status as assessed by the metabolites — especially the pH — and blood pressure320
responses to UCOs on the other hand, we examine in detail how these are co-evolving for each individual321
animal.322

Figure 8 presents the evolutions of ~uk for two typical normoxic animals. From now on, we discard any323
indication of the UCO level, and only focus on the trajectory of Dk which we color-code using the pH324
value, as in Figure 7.325
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Figure 8. Two examples of normoxic animals (right and left). Upper part: FHR, together with the distance
D computed over time. Lower part: Projections of the trajectory of the vector ~u in left: the plane (mLT, hLT)
(the two features that individually better correlate with the pH) and right: the plane (�LT, RLT) (the other
two components of ~u). The distance D and the trajectories are color-coded with the pH values in each
time-window of size T . For clarity, only the part of the trajectory where D increases up to its maximal
value is represented. The red vertical line in the time-trace of the distance D indicates the ABP sentinel,
i.e., the time point when we visually confirm the onset of CVD.

Because the vector ~uk has been carefully normalized, and appropriately centered to define the distance326
Dk, this last quantity has no dimension and can be compared to absolute values. The particular value327
D = 1 defines the standard deviation range in a healthy situation and the value D = 2 corresponds to328
variations with an amplitude of 2 standard deviations. Looking at the trajectory projections, we see that329
during the early stages of the experiments the distance remains small, albeit fluctuating, as long as the pH330
value remains close to its normal value (bluish color, indicating a pH close to 7.4). More interestingly, we331
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Figure 8: Two examples of normoxic animals (right: animal 473361, left: animal 461060). a
and e: FHR. b and f: distance D along time; the horizontal dashed line indicates the value
D = 2 and the red vertical line indicates the CVD time (ABP sentinel), i.e., the time point
when we visually confirm the onset of CVD. c and g: projections of the trajectory of the vector
~u on the plane (mLT, hLT) (the two features that individually better correlate with the pH). d
and h: projections of the trajectory on the plane (σLT, RLT) (the other two components of ~u).
The distance D and the trajectories are color-coded with the pH values in each time-window
of size T . For clarity, the last part of the trajectory where D decreases below D = 2 is omitted.

the standard deviation range in a healthy situation and the value D = 2 (black
circle) corresponds to variations with an amplitude of 2 standard deviations.
Looking at the trajectory projections in Figures 8 and 9, we see that during the
early stages of the experiments the trajectory remains close to the origin, hence
the distance D remains small, albeit fluctuating, and the pH value remains
close to its normal value (bluish color, indicating a pH close to 7.4). More in-
terestingly, we see that when the pH decreases down to 7.2 (greenish color), the
trajectory usually reaches the black circle, hence the distance increases up to 2.
Finally, we observe that when the trajectory is outside the black circle, hence
D > 2, the pH has low values but more importantly, values of pH≤7.00 (orange
to red color) are only observed on the trajectory much later after the trajectory
wandered outside the black circle.

The very same observations can be made for hypoxic animals, see Figure 9
for two examples.

We now examine quantitatively for each animal the time evolution of the
distance from its own reference healthy state. In every time-window [kdT, kdT+
T ] of size T indexed by k, we have a value Dk which we assign to time t =
kdT + T/2; we plot the time-evolution of the distance in Figures 8,b,f and 9,b,f
with a color that indicates the pH value. This allows for the following interesting
observations. First, before the occurrence of UCO, the distance fluctuates with
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see that when the pH decreases down to 7.2 (greenish color), the distance usually increases up to 2. Finally,332
we observe that when D > 2, the pH is always pathologically low, which signals that the fetus is in an333
acidemic condition.334

The very same observations can be made for hypoxic animals, see Figure 9 for two examples.335
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Figure 9. Two examples of hypoxic animals (right and left). Cf. Figure 8. Upper part: FHR, together
with the distance D computed over time. Lower part: Projections of the trajectory of the vector ~u in left:
the plane (mLT, hLT) (the two features that individually better correlate with the pH) and right: the plane
(�LT, RLT) (the other two components of ~u). The distance D and the trajectories are color-coded with the
pH values in each time-window of size T . For clarity, only the part of the trajectory where D increases up
to its maximal value is represented. The red vertical line in the time-trace of the distance D indicates the
ABP sentinel, i.e., the time point when we visually confirm the onset of CVD.

We now examine quantitatively for each animal the time evolution of the distance from its own reference336
healthy state. In every time-window [kdT, kdT + T ] of size T indexed by k, we have a value Dk which we337
assign to time t = kdT + T/2; we plot the time-evolution of the distance in the upper panels of Figures 8338
and 9 with a color that indicates the pH value. This allows for the following interesting observations.339
First, before the occurrence of UCO, the distance fluctuates with a typical standard deviation of 1. This340
confirms that the normalization step is valid, albeit it uses values averaged over all animals and all available341
time-windows. Second, we see that the distance D is substantially larger when UCOs are performed, and342
more precisely, we see that D increases as the UCO strength is increased or UCOs are being applied to343
the animal with the same strength but for a longer period of time. As such, the distance D seems to be a344
good representation of the health condition of the animal. More interestingly, we showed (table 1) that D is345
highly correlated with the pH value throughout the complete experiment, but we now observe that a large346
value of D, above 2, proves to be a very good indicator of a low pH value signaling an acidemia with pH <347
7.2.348
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Figure 9: Two examples of hypoxic animals (right: animal 473726, left: animal 473362). See
caption of Figure 8.

a typical standard deviation of 1. This confirms that the normalization step
is valid, albeit it uses values averaged over all animals and all available time-
windows. Second, we see that the distance D is substantially larger when UCOs
are performed, and more precisely, we see that D increases as the UCO strength
is increased or UCOs are being applied to the animal with the same strength
but for a longer period of time. As such, the distance D seems to be a good
representation of the health condition of the animal. More interestingly, we
showed (table 2) that D is highly correlated with the pH value throughout the
complete experiment, but we now observe that a large value of D, above 2,
proves to be a very good indicator of a low pH value signaling an acidemia with
pH < 7.2.

To further test the ability of the distance D to alert on the fetal condition, we
now try to relate the large values of the distance D to the onset of the fetal CVD,
i.e., failure of the fetus to mount a hypertensive arterial blood pressure response
to UCOs and the UCO-induced FHR decelerations, a prerequisite to maintaining
an adequate cerebral perfusion pressure. To do so, we use tCVD as the reference
time when CVD occurs (vertical red line in Figure 8b,f and Figure 9b,f), which
offers a valuable benchmark for an early detection of hypotensive blood pressure
response.

tCVD appears on group average for a pH of 7.20 and 60 minutes prior to
pHnadir of less than 7.00, but shows a considerable inter-individual spread. To
quantify the hypotensive behavior at tCVD, we report the individual pressure
differential ∆ABP at tCVD in Table 4 following the same approach as reported
in Table 1 of [16]. Here, ∆ABP=ABPmax − 〈ABP〉 is the difference between
ABPmax, the maximal ABP during a UCO, and 〈ABP〉, the mean ABP be-
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tween UCOs. The average of ∆ABP is 4±6 mmHg for hypoxic fetuses and 4±8
mmHg for normoxic fetuses. Overall, we see no difference in ∆ABP between hy-
poxic and normoxic groups (p-value=0.97). The corresponding drop in ∆ABP
during the CVD period compared to the preceding UCO period is -19(-24; -
1) mmHg, i.e., during CVD, fetuses failed to mount hypertensive response to
UCO-triggered FHR decelerations with a median drop of 19 mmHg compared
to ∆ABP preceding the CVD. These values clearly indicate the pathological hy-
potensive responses of the sheep fetuses during the UCOs at tCVD and onward
until the end of the UCOs. The noted inter-individual variability in ∆ABP
values is subject of ongoing research.

Here we see on phase-space projections in Figures 8c,d,g,h and 9c,d,g,h that
the criterion D ≥ 2 offers a similar early alert on the deterioration of the ani-
mal condition with regard to CVD timing. Looking at either the phase space
representation or the time traces of the distance D, we see that this quantity
evolves continuously in time, on typical time-scales larger than 20 minutes, the
duration we have chosen to compute our quantity. The distance increases over
the duration of the experiment and one can easily measure the time tD at which
D crosses the value D = 2 (red circle, or horizontal red line in Figures 8 and
9). Unfortunately, the distance D is very sensitive and it can be seen on the
examples that it is possible for D to reach values larger than 2 early in the
experiment. To overcome these events — and, hence, to make our new sentinel
less sensitive —, we arbitrarily adjust our criteria and require Dk > 2.5 for
at least 3 consecutive time-windows, so for a long enough duration of about
40 minutes. Table 1 presents the various timings corresponding to the various
UCO regimes for each animal, together with an estimate of the pH nadir time,
while table 4 presents a summary of our findings, together with the CVD time
(ABP sentinel), the two of them appearing before pH≤ 7.00.

The agreement between the CVD time and the distance time is very satis-
fying:

the difference between tCVD and tD is not only always smaller than the
difference between tpH and tCVD, but also smaller than 20 minutes, the size of
the time-windows we have used.

However, for one animal (number 473360, last line in table 4), a large dis-
crepancy is observed. A closer examination of both the data and our distance
measure for this animal is given in Figure 10 and allows us to discuss the sen-
sitivity of our measure. We have used the 4Hz FHR dataset which was also
studied in earlier literature. This dataset is obtained from the R-R intervals
data at 4Hz, which is interpolated from the raw ECG-derived R-R intervals
data recorded at 1000Hz. As can be seen in Figure 10, the genuine 1000 Hz
dataset (in red) is missing some values during short intervals and the resampling
process, which uses splines interpolation, creates arbitrary values for the 4Hz
FHR dataset (in black) within such intervals. This results in additional values
which exhibit large and fast fluctuations which are non-physiological. Whereas
most of these do not impact the value of the distance D (see Figure 10e,f and
10g,h), there is a time interval (at about t = 172s, see Figure 10b,d where D is
unexpectedly large, reaching a value around 4. This is concomitant with a sharp
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drop in FHR, as can be seen in Figure 10a,c. This sharp drop is exacerbated
on the 4Hz signal compared to the 1000Hz signal, and is very localized in time,
which leads to a later decrease of D, contrary to the pathological situation re-
ported in Figure 10g,h where D remains at a large value. As a consequence, we
obtain a false positive sentinel time tD which corresponds to this event and is
hence much earlier than tCVD, although in agreement with previously reported
results using the same 4Hz FHR dataset [19]. We conclude that splines interpo-
lation should be avoided, and we suggest instead not to add or create artificial
data points when genuine data is not available. Additionally, each of the quan-
tities we propose, and hence the distance D, can still be computed, as they are
all robust with respect to missing data, as seen for example in Figure 8e,f.

S.G. Roux et al. FHR and cardiovascular dynamics
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Figure 10. A representative example of FHR and the corresponding distance D (colored by pH value)
for animal 473360. The 4Hz dataset used in the analysis is reproduced in black, and the original 1000 Hz
dataset is presented in red. a,b : complete time trace for all available data. c,d : zoom in the problematic
region, where D is unexpectedly large. e,f : zoom in a region where D is small, as expected. g,h : zoom in
a region where D is large, as expected. See text.

relevance of such metrics in clinical practice, as it is non-invasive and based on mechanical processes,422
which are much faster than the biochemical ones underlying the use of pH. Further, for practical purposes,423
the present studies show that the computation of features and distance is robust to FHR sampled at 4Hz424
and, to some extent, to missing data. Also, the FHR features and distance are computed in sliding-windows,425
permitting a on-line and quasi-real time analysis of the evolution of the dynamics of FHR, and thus in426
relation to a local health state of the fetus. The extent to which the 20-min sliding-window size, chosen427
here for proof-of-concept developments, can be further reduced to 10 or 5-min, is under investigation. This428
provides a large therapeutic time window for health practitioners managing the delivery.429

It has been documented that sheep fetuses have an individual cardiovascular phenotype in their responses430
to increasing acidemia due to repetitive intermittent hypoxia (?). Chronically hypoxic fetuses have dimin-431
ished cardiovascular defenses to hypotensive stress (?). We hypothesized that such phenotype would be432
reflected in individual FHR variability properties. We could not identify any influence of the phenotype433
(normoxic / hypoxic) in any of the metrics including the distance D. We are currently exploring whether434
the initial vector ~u0 may contain such information.435
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Figure 10: A representative example of FHR and the corresponding distance D (colored by
pH value) for animal 473360. The 4Hz dataset used in the analysis is reproduced in black,
and the original 1000 Hz dataset is presented in red. a,b : complete time trace for all available
data. c,d : zoom in the problematic region, where D is unexpectedly large. e,f : zoom in a
region where D is small, as expected. g,h : zoom in a region where D is large, as expected.
See text.

The robustness with respect to missing data is twofold. First, all quantities
we compute do not require equi-sampled data: this is in contrast to a power
spectrum for example, where missing points prevent the estimation and jeopar-
dize the estimated value if using interpolated values. For our quantities, missing
data only impacts the number of points used to compute averages, as can be
seen in figure 2. Second, having missing data only reduce the number of points
over which statistics are computed: a reduced number of points increases the
bias and the variance of the estimators. As can be seen in Figure 10b,d,f,h,
the distance D evolves smoothly which suggest the standard deviation is not
strongly impacted. However, one may wonder if an increased bias impacts the
reported values, especially when a lot of data is missing. We report in table 5
the average fraction of missing data points in a time-window of size T=20 min-
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utes: increasing the UCO strength is typically associated with an increase of
missing data. Let’s focus on the entropy rate hk(τ), which is algorithmicaly the
most complex quantity: it has been reported that the bias of hk(τ) not only
behaves as 1/

√
N [39, 40], similar to the bias of a sliding average over N points

like mk(τ), but also that this bias is small. A time-window of 20 minutes should
contain N = 20×60×4 = 4800 points, and even a reduction of 50% of available
data points should leave more that 2000 points so a bias smaller than 1% [40].
We are thus confident that the reported results are not an indirect measure of
the number of missing data points.

A deeper examination of each experiment, using animal’s systemic arterial
blood pressure data, should clarify the relationship between the increases of the
distance from healthy condition and the incipient arterial hypotension. This
work is out of scope of the present article which focuses on the dynamics of the
clinically relevant 4Hz-sampled FHR signal.

As such, we propose that the distance D has the potential to serve as an
individual biomarker of the incipient CVD, i.e., an early sentinel of the fetal
brain injury.

5. Conclusions and outlook

Following achievements in adults and the seminal contribution in [41], frequency-
based features were used to model linear temporal dynamics in FHR [42, 43,
44, 45, 46]. To permit richer descriptions of the non-linear dynamics of FHR,
information theoretic quantities were used such as entropy rates [47, 48, 49, 50,
34], as well as several nonlinear transforms [51, 45, 52, 53], and scale-free or
(multi)fractal paradigms [54, 55, 56, 57]. For overviews, interested readers are
referred e.g. [58, 59, 9, 60, 61, 62, 63, 64, 11]. An important limitation in the use
of these features lies in their dependence on high quality fetal electrocardiogram
(ECG) or magnetocardiogram (MCG) data as input. Such data are not readily
available in the majority of clinical settings, with over 90 per cent of North
American hospitals, for example, still relying on CTG monitors during labor.
CTG however provides FHR at a 4 Hz sampling rate, to be compared to 1000
Hz sampling rate golden standard available with ECG or MCG, while vagally
mediated HRV is found on a time scale that goes beyond what is captured at 4
Hz sampling rate. This results in information loss [26, 65, 19, 66]. Beyond the
mere design of features and their standalone use, numerous efforts were devoted
to devise multiple-feature decision rules, often based on supervised learning and
machine learning (cf., e.g.,[67, 68, 69, 70, 9, 71, 69, 72, 12, 73, 63]).

In the present work, four FHR features, whose definitions depend on the
timescale, are computed on the whole FHR dataset derived from an animal
model of human labor to quantify the evolution of FHR temporal dynamics.
That means that in our approach we do not rely on considering UCO periods
only, but are able to process the entire FHR signal as it would be available
in real-time in clinical setting. These quantities are local statistical averages
that probe the variation, the amplitude of fluctuations and the information
content at a given time scale. They are purely statistical quantities that can
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be computed even when some data points are missing. Firstly, we qualita-
tively related the variations of such timescale-dependent quantities to the UCO
strength; secondly, we quantitatively computed their correlation to metabolite
and pH measurements.

As to the etiology of CVD, we propose a role for the Bezold-Jarisch reflex, a
vagal cardiac depressor reflex, as part of a complex dynamic interplay, based on
the observations of acidemia-triggered inflammation in fetal sheep [16, 17, 25],
and studies in adult species linking rising systemic acidemia and inflammation
with worsening cardiac contractility, impaired beta-adrenergic and potentiated
bradycardic responses [25, 74, 75, 76, 77, 78]. We suggest that the integrated
ability of the four FHR features introduced in this study to track the individual
evolution of acidemia and cardiovascular responses stems from capturing the
individual complex interplay of the vagally mediated sensing of acidemia and the
Bezold-Jarisch reflex, i.e., also vagally mediated intermittent hypotensive ABP
responses to UCO-triggered FHR decelerations. This hypothesis needs to be
validated in specifically designed animal experiments, for example by repeating
the experiments underlying the present study with the variation of performing
cervical bilateral, left or right vagotomies. This would allow evaluating the
contribution of the vagus nerve to the dynamic interplay between the progressive
systemic acidemia, the ensuing systemic inflammatory response, accounting for
vagus nerve’s lateral asymmetry, to the evolution of FHR decelerations and ABP
responses over the period of worsening UCOs comparable in duration to stages
1 and 2 of pushing [18].

We show the relevance of timescales ranging in [2.5−8] seconds (equivalently
[0.125 − 0.4]Hz in frequencies) for early detection of both acidemia and CVD,
matching the scales classically used in FHR analysis and referred to as long-
term [57, 63]. We observed that reduced pH closely relates to larger mLT which
may be interpreted as an increase of baseline FHR [62, 63]), and lower entropy
rate hLT, in agreement with earlier findings reported in the literature [34]. More
importantly, a per-individual distance metric was constructed from these four
(population-normalized) features to quantify a self-referencing departure from
a healthy state for each subject independently. Such a definition raises two
issues. Firstly, it requires, as is often the case, that monitoring is started early
enough while the fetus is still in a healthy condition, so as to create a self-
reference to normal on a per-individual basis. If fetuses are already in distress
when monitoring is initiated, the distance, albeit increasing with distress, may
fail to detect CVD correctly. Secondly, the definition of the vector, and hence
the distance, requires a normalization, which is performed in the present work
at the population level, i.e., using an average across subjects. Although such
an average should converge rapidly with the population size, this dependence
requires further investigations.

It has been documented that sheep fetuses have an individual cardiovascular
phenotype in their responses to increasing acidemia due to repetitive intermit-
tent hypoxia [15]. Chronically hypoxic fetuses have diminished cardiovascular
defenses to hypotensive stress [79]. Studying the same dataset, we demonstrated
that under the conditions of repetitive UCOs and in comparison to the fetuses
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who were normoxic on the onset of the UCOs, the hypoxic fetuses exhibit ac-
celerated acidosis [21], altered temporal profile of neuroinflammation following
UCOs [20] and deceleration reserve [80]. In the present study, we could not iden-
tify any influence of the phenotype (normoxic / hypoxic) in any of the metrics
including the distance D. We are currently exploring whether the initial vector
~u0 may contain such information. Conversely, the finding that the presented
approach functions well without the consideration of a pre-existing hypoxia or
pattern of labor contractions (UCO severity) is an additional bonus from the
clinical viewpoint. Lastly, we recognize that the group of chronically hypoxic
animals may have failed to recover from surgical instrumentation adequately,
i.e., they were already decompensating rather than becoming “spontaneously”
hypoxic for reasons of utero-placental dysfunction preceding the surgery.

Overall, the constructed distance proved able to detect accurately the oc-
currence of acidemia and CVD from the analysis of FHR only, and without
recourse to pH. This opens the route to investigating the relevance of such met-
rics in clinical practice, as it is non-invasive and much faster than biochemical
measurements like pH. Further, for practical purposes, the present studies show
that the computation of features and distance is robust to FHR sampled at 4Hz
and, to some extent, to missing data. Also, the FHR features and distance are
computed in sliding-windows, permitting a on-line and quasi-real time analy-
sis of the evolution of the dynamics of FHR, and thus in relation to a local
health state of the fetus. The extent to which the 20-min sliding-window size,
chosen here for proof-of-concept developments, can be further reduced to 10 or
5-min, is under investigation. In conclusion, we propose a real-time FHR-based
metric predicting CVD which should be of a great help for health practitioners
managing the delivery.
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[43] Gonçalves H, Rocha AP, de Campos DA, Bernardes J. Linear and nonlinear
fetal heart rate analysis of normal and acidemic fetuses in the minutes
preceding delivery. Med Biol Eng Comput 44 (2006) 847–855.

[44] Van Laar J, Porath M, Peters C, Oei S. Spectral analysis of fetal heart
rate variability for fetal surveillance: Review of the literature. Acta Obstet.
Gynecol. Scand. 87 (2008) 300–306.

[45] Magenes G, Signorini MG, Ferrario M, Pedrinazzi L, Arduini D. Improving
the fetal cardiotocographic monitoring by advanced signal processing. Conf.
proc. of the IEEE Eng. Med. Biol. Soc. (EMBC) 3 (2003) 2295–2298.

[46] Siira S, Ojala TH, Vahlberg TJ, Rosén KG, Ekholm EM. Do spectral
bands of fetal heart rate variability associate with concomitant fetal scalp
pH? Early Hum Dev 89 (2013) 739–742.

[47] Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of complex
physiologic time series. Physical Review Letters 89 (2002) 068102. doi:
10.1103/PhysRevLett.89.068102.

[48] Echeverria JC, Hayes-Gill BR, Crowe JA, Woolfson MS, Croaker GDH.
Detrended fluctuation analysis: a suitable method for studying fetal heart
rate variability? Physiol Meas 25 (2004) 763–774.

[49] Porta A, Bari V, Bassani T, Marchi A, Tassin S, Canesi M, et al.
Entropy-based complexity of the cardiovascular control in parkinson dis-
ease: Comparison between binning and k-nearest-neighbor approaches.
Conf Proc IEEE Eng Med Biol Soc (EMBC) (2013) 5045–5048. doi:
10.1109/EMBC.2013.6610682.

[50] Spilka J, Roux S, Garnier N, Abry P, Goncalves P, Doret M. Nearest-
neighbor based wavelet entropy rate measures for intrapartum fetal heart
rate variability. Engineering in Medicine and Biology Society (EMBC), 2014
36th Annual International Conference of the IEEE (2014), 2813–2816.

[51] Magenes G, Signorini MG, Arduini D. Classification of cardiotocographic
records by neural networks. Proc. IEEE-INNS-ENNS International Joint
Conference on Neural Networks (IJCNN) 3 (2000) 637–641.
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UCO start time pH=7.00 time

animal mild moderate severe recovery tpH

(ID) (hh:mm) (hh:mm) (hh:mm) (hh:mm) (hh:mm)

Hypoxic

8003 (01:14) 00:57 (02:11) 02:00 (03:14) 02:07 (03:21) 02:07 (03:21)

473351 (NaN) 00:00 (04:08) 01:08 (05:16) 02:33 (06:41) 01:44 (05:52)

473376 (02:53) 00:55 (03:48) 01:51 (04:44) 02:54 (05:47) 01:58 (05:51)

473726 (02:09) 01:00 (03:09) 01:55 (04:04) 03:17 (05:26) 03:16 (05:25)

473362 (02:08) 01:01 (03:09) 01:54 (04:02) 02:20 (04:38) 02:31 (04:39)

Normoxic

473352 (NaN) 00:00 (03:59) 01:00 (04:59) 01:46 (05:45) 01:39 (05:38)

5054 (01:31) 00:56 (02:27) 02:00 (03:31) 03:51 (05:22) 03:51 (05:22)

461060 (02:59) 00:54 (03:53) 01:59 (04:58) 03:30 (06:29) 03:30 (06:29)

5060 (01:09) 00:57 (02:06) 01:59 (03:08) 02:58 (04:07) 02:53 (04:02)

473360 (02:11) 01:05 (03:16) 02:02 (04:13) 03:59 (06:10) 03:59 (06:10)

473378 (03:17) 00:58 (04:15) 01:53 (05:10) 02:31 (05:48) 02:28 (05:45)

473727 (01:38) 01:05 (02:43) 02:02 (03:40) 04:10 (05:48) 03:40 (05:18)

473377 (02:28) 01:04 (03:32) 02:03 (04:31) 04:04 (06:32) 03:59 (06:27)

473361 (01:56) 01:03 (02:59) 02:05 (04:01) 03:26 (05:22) 03:29 (05:25)

Table 1: Individual onset times for each UCO regime (mild, moderate, severe and recovery,
colored green, magenta, red and white in Figure 1), counted from the first UCO. Values in
parenthesis are times counted from the beginning of the recording as represented on the time-
axis of Figures 1, 8, 9, 10. For animals 473351 and 473352, the first UCO had a moderate
effect (of decreasing FHR by about 60 bpm), so phase names have been shifted accordingly.
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mLT σLT RLT hLT ||~u|| D pH BE Lactate

mLT 1.00 -0.51 0.77 0.60 0.29 -0.87 0.53 0.48 -0.36

σLT -0.51 1.00 -0.19 -0.43 -0.35 0.61 -0.42 -0.36 0.35

RLT 0.77 -0.19 1.00 0.42 0.14 -0.63 0.50 0.48 -0.35

hLT 0.60 -0.43 0.42 1.00 0.89 -0.76 0.50 0.43 -0.32

norm ||~u|| 0.29 -0.35 0.14 0.89 1.00 -0.50 0.35 0.29 -0.21

distance D -0.87 0.61 -0.63 -0.76 -0.50 1.00 -0.61 -0.53 0.44

pH 0.53 -0.42 0.50 0.50 0.35 -0.61 1.00 0.95 -0.77

BE 0.48 -0.36 0.48 0.43 0.29 -0.53 0.95 1.00 -0.72

Lactate -0.36 0.35 -0.35 -0.33 -0.21 0.44 -0.77 -0.72 1.00

Table 2: Correlation coefficients between the four individual features, their vectorial combi-
nations, and the three measurements pH, Be and Lactate. Data from all 14 animals and all
available time-windows were used.

mLT σLT RLT hLT

mean, over animals and over k -0.0067 0.0688 -0.0262 0.5957

mean, over animals, fixed k = 0 -0.0009 0.0579 0.0128 0.8811

std, over animals and over k 0.0155 0.0282 0.1630 0.4127

std, over animals, fixed k = 0 0,0040 0.0221 0.1082 0.1970

Table 3: Means and standard deviations (std) of the four FHR features over the population of
14 animals. First and third lines: averages over animals and over time-windows (k). Second
and fourth lines: averages over animals, using the first (k = 0) time-window [0;T ] only.

32



CVD time D time delta

animal tCVD ∆ABP tD tCVD − tD

(ID) (hh:mm) (mmHg) (hh:mm) (hh:mm)

Hypoxic

8003 01:55 (03:09) -6 01:56 (03:10) -00:01

473351 01:11 (05:19) 5 01:11 (05:19) 00:00

473376 01:50 (04:43) 2 02:07 (05:00) -00:17

473726 02:01 (04:10) 8 01:55 (04:04) 00:06

473362 00:59 (03:07) 11 01:16 (03:24) -00:17

Normoxic

473352 01:09 (05:08) 1 01:06 (05:05) 00:03

5054 03:25 (04:56) 13 03:29 (05:00) -00:04

461060 02:03 (05:02) -9 01:51 (04:50) 00:12

5060 02:35 (03:44) -6 02:20 (03:29) 00:15

473360 03:41 (05:52) 0 00:44 (02:55) 02:57

473378 02:07 (05:24) 13 01:58 (05:15) 00:09

473727 01:34 (03:12) 15 01:51 (03:29) -00:17

473377 02:14 (04:42) 6 02:22 (04:50) -00:08

473361 03:09 (05:05) 5 02:49 (04:45) 00:20

Table 4: Cardiovascular decompensation (CVD) times. Comparison of the visually determined
versus computed predictions: tCVD from [27] as reference, and our new distance time tD,
computed by requiring D > 2.5 for at least 3 consecutive time-windows, spanning a total
duration of 30 minutes. Times are counted from the first UCO, and values in parenthesis
indicate times counted from the beginning of the experiment, to compare with figures. ∆ABP
indicates the ABP difference at tCVD. The color indicates during which UCO phase CVD
occured: mild (green), moderate (magenta) or severe (red). The last column reports the
difference tCVD − tD between the reference CVD time, always earlier than tpH, and the new
tD. Positive values indicate a detection earlier than tCVD. All data are derived from 4 Hz
sampled FHR signal.
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animal ID baseline mild UCO moderate UCO severe UCO

Hypoxic

8003 1% 2% 6% 22%

473351 3% NaN 4% 9%

473376 2% 1% 3% 8%

473726 0% 1% 1% 16%

473362 2% 2% 16% 8%

Normoxic

473352 5% NaN 1% 11%

5054 1% 0% 1% 2%

461060 1% 0% 11% 42%

5060 9% 20% 1% 23%

473360 9% 4% 4% 18%

473378 0% 0% 2% 24%

473727 5% 3% 8% 17%

473377 1% 0% 1% 6%

473361 5% 3% 1% 10%

Table 5: Average fraction of missing data points in the FHR signal in a given regime. For
each time-window of size T = 20 minutes, we divide the number of missing data points by the
expected number of points (=20×60×4), and we then average this ratio over all time-windows
available in a given regime.
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