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ABSTRACT

Space oceanography missions, especially altimeter missions,
have considerably improved the observation of sea surface
dynamics over the last decades. They can however hardly
resolve spatial scales below ∼ 100km. Meanwhile the AIS
(Automatic Identification System) monitoring of the mar-
itime traffic implicitly conveys information on the underlying
sea surface currents as the trajectory of ships is affected by
the current. Here, we show that an unsupervised variational
learning scheme provides new means to elucidate how AIS
data streams can be converted into sea surface currents. The
proposed scheme relies on a learnable variational frame-
work and relate to variational auto-encoder approach coupled
with neural ODE (Ordinary Differential Equation) solving
the targeted ill-posed inverse problem. Through numerical
experiments on a real AIS dataset, we demonstrate how the
proposed scheme could significantly improve the reconstruc-
tion of sea surface currents from AIS data compared with
state-of-the-art methods, including altimetry-based ones.

Index Terms— Sea surface currents, data assimilation,
variational learning

1. INTRODUCTION

The monitoring of upper ocean dynamics is of key importance
for a variety of applications, ranging from maritime traffic
routing, oilspill monitoring, marine ecology or climate mod-
eling. This has motivated over the last decades the develop-
ment of numerous remote sensing technologies dedicated to
the reconstruction of sea surface currents, including among
others space altimeter missions, HF radar technologies, and
SAR imaging. On a global scale, satellite-derived altimeter
products are currently the state-of-the-art products for the sur-
face currents. However, they can hardly recover spatial scales
below∼ 100km due to the associated scarce space-time sam-
pling.

This work was supported by Eodyn, LEFE program (LEFE MANU
project IA-OAC), CNES (grant SWOT-DIEGO) and ANR Projects Melody
and OceaniX. It benefited from HPC and GPU resources from Azure (Mi-
crosoft EU Ocean awards) and from GENCI-IDRIS (Grant 2020-101030).

As suggested by recent studies [1, 2], the worldwide mon-
itoring of the maritime traffic through the Automatic Identi-
fication System (AIS) could provide new means to comple-
ment the above-mentioned remote sensing technologies. The
movement of a ship being not only determined by the con-
sidered routing but also affected by sea surface wind and cur-
rent conditions, one may regard ships as potential samplers
of sea surface currents. Given the intrinsic features of AIS
data streams, especially the non-linear relationship between
the movement of the vessel and the current and the irregu-
lar and possibly corrupted space-time sampling of AIS data,
solving this inverse problem is a complex issue.

Here, we aim to fully benefit from the available large-
scale AIS datasets, as AIS data streams involve tens of mil-
lions of messages daily on a global scale, and investigate vari-
ational deep learning to elucidate sea surface currents from
AIS data streams in a weakly supervised fashion. Our key
contributions are as follows:

• We introduce a novel physics-informed variational for-
mulation. The physical knowledge is described by a
dedicated observation model. The regularization term
is defined in a latent space where the unknown under-
lying geophysical dynamics are modeled using neural
ODE [3] prior;

• We show that we can learn the proposed variational
model directly from the AIS datasets ;

• We demonstrate the relevance of the proposed approach
for a real case-study off South Africa, which comprises
1.32 millions of AIS messages over a 80-day period.
We report a relative gain greater than 30% in terms of
reconstruction performance w.r.t. state-of-the-art meth-
ods.

The remainder is organized as follows. Section 2 briefly re-
views existing studies on AIS-derived sea surface currents,
especially the underlying observation model. We describe the
proposed learning-based approach in Section 3. We report
experiments on a real case-study in Section 4 and Section 5
provides concluding remarks.



2. PROBLEM STATEMENT AND RELATED WORK

AIS is an automatic tracking system required since 2004 by
the IMO (International Monitoring Organisation) for security.
A typical AIS message contains speed over ground and po-
sition information (both from GPS sensors), which may be
complemented by a true heading information. By nature, AIS
data streams involve an irregular space-time sampling and
may be corrupted, which make their direct exploitation in
learning schemes challenging [4].

AIS data are mainly used for the surveillance of the mar-
itime traffic [5, 4]. As the sea surface state (i.e. wind, current
and wave conditions) affects ship motion, a few studies have
also investigated how AIS data might inform sea surface cur-
rents [2, 1]. In [1], handcrafted heuristics have been calibrated
to convert AIS data into sea surface currents. Though promis-
ing, they may lack some physical background to guarantee
their generalization capabilities.

In this work, we consider the following linear relationship
between sea surface current U(p, t) at a given ship location p
at time t and the information conveyed in the AIS message:

Sground(t) = L(U(p, t), Ssurf (t), H(t))

= Ssurf (t)H(t) + U(p, t)
(1)

where Sground(t) denotes the speed over ground, Ssurf (t)
refers to the surface speed of the boat, H(t) ∈ S1 denotes
a vector pointing towards the known heading direction of the
ship. This is an ill-posed problem since one cannot invert
this relationship for each position along a trajectory. How-
ever, one may benefit from its space-time regularity to recover
space-time field U given a dataset of AIS messages over a
given area and time period.

In geoscience, space-time inverse problems are classically
stated as data assimilation problems. They resort to the min-
imization of variational costs, which combine an observation
model and a prior onto the considered dynamics. Formally,
this typically leads to solving

X∗ = arg min
X

J(X,Y ) +R(X) (2)

where J is the data fidelity term, Y (t) = (Sground(t), H(t))
is the observation data, X(p, t) = (Ssurf (t), U(p, t)) are the
unknown variables to estimate and R denotes the regulariza-
tion term. The later states the considered prior on the un-
known X . Optimal Interpolation (OI) [6, 7], which is applied
for the reconstruction of sea surface currents from satellite-
derived altimetry data, is an example of such a formulation,
where the observation model is linear quadratic and the prior
is Gaussian.

A key issue is the design of the regularization term R(.).
Covariance-based prior considered in OI settings [6, 7] are
known to poorly represent fine-scale processes. Besides, up-
per ocean dynamics are governed by complex Navier-Stokes
equations and the derivation of simplified representations of

sea surface dynamics, e.g. [8], may only represent specific
dynamical models. These statements make particularly ap-
pealing the recent development of learning schemes for vari-
ational models [9], especially to learn a regularization term
R(.) adapted to the considered observation dataset. We de-
tail this approach for the retrieval of sea surface currents from
AIS data in the next Section. To our knowledge, this is among
the first demonstration of the relevance of this approach to sea
surface current estimation.

3. PROPOSED APPROACH

This Section presents the proposed learning-based variational
formulation for the reconstruction of sea surface currents
from AIS data. For a given area, let us denote by Y the avail-
able set of AIS messages over a time period T (t ∈ [0, T ]) and
U the spatio-temporal sea surface current field to be recon-
structed. Each time period ∆t typically refers to 8 successive
days.

We assume that representative sets of realistic examples
of U , denoted by V , such as numerical simulations or reanal-
ysis products may also be available. Within the variational
setting described by Equation (2), we state the reconstruction
of fields U from observation data Y as the following mini-
mization

X∗,Θ∗ = arg min
X,Θ

J(X,Y ) + λURΘ(U) + λVR
?
Θ(V ) (3)

where RΘ and R?
Θ are priors with trainable parameters Θ to

be defined in the next Section. λU and λV are weight param-
eters balancing the regularization terms w.r.t. the data fidelity
term. It has to be noticed that our purpose is to jointly min-
imize the above variational cost w.r.t. unknown states U and
model parameters Θ.

3.1. Observation term J

Given the observation model defined by Equation (1), we de-
fine the observation term J in (3) on the considered spatio-
temporal domain Ω as follows. Given that AIS data are pro-
vided as time series of geospatial sparse data merged into con-
secutive tensors, it is first required to reformulate the obser-
vation model w.r.t. the space-time grid considered for spatio-
temporal fields. U ∈ R(T/∆t)×NxNy×2 is a spatio-temporal
grid containing current component to estimate, where T is the
final time (typically 80 days), ∆t is the time step (8 days) and
(Nx, Ny) refer to spatial dimensions.

Given these notations, the observation cost J is defined in
the following way:

J(X,Y ) =

T∑
t=0

‖L(U(t), Ssurf (t), H(t))− Sground(t)‖1,Ωt

(4)



where Ωt is the observable spatial domain at time t. We may
point out that we consider a L1 norm in the observation model
to account for possibly noisy and/or corrupted AIS messages.

3.2. Space-time dynamics modeling

In this work, we investigate the use of a learnable spatio-
temporal regularizaton term RΘ in the considered variational
inversion. Given the sparse space-time sampling of AIS data,
we expect the regularization term to strongly encode the
space-time dynamics. More precisely, we assume the consid-
ered space-time dynamics can be well approximated by the
solution of an ODE in a low-dimensional manifold. Let us
denote by Z the low-dimensional latent state. The considered
state-space formulation is as follows: U(., t) = Φ(Z(t))

Z ′(t) = f(Z(t))
Z(0) = Z0

(5)

where f is a learnable ODE operator which governs the la-
tent dynamics, Φ the mapping from the latent space to the
space spanned by state U and Z0 the unknown initial condi-
tion of latent state. Besides, following [10], mapping operator
Φ only depends on a few components of Z(t) to ensure the
fact that the dynamics of geophysical field is governed by a
non-autonomous ODE.

We may point out that compared with previous works [3,
11, 10], we address here the identification of this latent ODE
representation, when the observation Y is not a direct obser-
vation of state U and is sparsely sampled in space and time.

3.3. End-to-end learning

Given an AIS dataset for a given area and time period, we
aim at jointly learning the considered regularization prior and
reconstructing the unknown sea surface currents U . Based on
the considered latent ODE representations introduced above,
the latter comes to estimate the initial conditions for time win-
dows of interest. We also constrain the inversion for succes-
sive time windows to be consistent. The end-to-end learning
then comes to solve the Equation 3, i.e. finding good es-
timates of U and spatio-temporal data driven regularization
priors.

Inspired by variational auto-encoder framework[12], we
propose to make use of a spatial regularization term defined
as follows:

R?
Θ(U) =

T∑
t=0

KL(Ψ(Ut)||N (0, 1)) + ‖Ut − Φ(Ψ(Ut))‖2

(6)
where Ψ is a learnable operator from spatio-temporal space
to the latent space, KL(Ψ(Ut)||N (0, 1)) is the Kullback-
Leibler divergence between a zero-mean and unit-variance
normal distribution and the marginal distribution of latent

states and ‖Ut − Φ(Ψ(Ut))‖2 is a reconstruction-based auto-
encoder loss. To further take into account the dynamics of the
sea surface currents, we propose to add in the regularization
a penalty loss related to the state-space formulation:

RΘ(U) = R?
Θ(U) +

T−∆t∑
t=0

‖RKI(Z(t), f)− Z(t+ ∆t)‖2

(7)
where RKI is a Runge-Kutta integrator constraining the dy-
namics of the latent variable Z in time.

Given the scarcity of the sampling of AIS data as well
as the noise patterns observed in AIS data streams, we may
further constrain the learning step through the use of addi-
tional datasets, especially numerical simulations or reanaly-
ses. Though model outputs, including assimilated ones, often
depict string mismatch with observation data, they can be re-
garded as representative examples for the underlying dynam-
ics. This is similar in spirit to energy-based GAN [13]. The
overall regularization is then defined as the weighted sum of
a spatio-temporal regularization RΘ(U) and a spatial regular-
ization R?

Θ(V ) on the external example datasets.

4. APPLICATION TO A REAL AIS DATASET

4.1. Experimental setting

We demonstrate the relevance of the proposed framework
through an application to a real raw AIS dataset. We con-
sider a case-study area off South Africa. This area depicts
strong and complex sea surface dynamics which are not well
resolved by satellite-derived altimetry [14]. Our dataset com-
prises more than 1 million AIS messages for a 80-day time
period from January 1st 2016. Fig.1 provides an illustration
of the daily sampling pattern of the AIS data. We also con-
sider GLORYS reanalysis product [15] as a complementary
dataset of numerical outputs V which may be used during the
training phase as described above.

For performance evaluation, we also collect a dataset of
in 682 situ measurements provided by 80 drifters. They pro-
vide independent measurements to evaluate the quality of the
reconstructed fields in terms of mean square error. For bench-
marking purposes, we consider the state-of-the-art altimetry
product, referred to AVISO1, and an AIS-derived product
combining expert-based processing and optimal interpolation
[1].

Regarding the proposed framework, the auto-encoder ar-
chitecture for the latent representation is as follows: a succes-
sion of four convolution layers with ReLu activation followed
by a 60-dimensional dense layer for the encoder, a succession
of four ConvTranspose layers with ReLU activation except

1We refer the reader to the following link for additional
information on altimeter-derived AVISO sea surface currents.
https://www.aviso.altimetry.fr/en/data/products/sea-surface-height-
products.html



Fig. 1. Example of daily coverage of the AIS data available
on a daily basis, here January 16st 2016, for the considered
case-study area, off South Africa.

for the last one where we consider and tanh activation for the
decoder, i.e. operator Φ. As mentionned previously, opera-
tor Φ only exploits some components of latent state Z, here
the ten first. Regarding the ODE operator, we implement a
network with 5 dense layers with Soft ReLu activations.

4.2. Results

We report in Tab.1 a comparison of the performance of the
proposed framework, referred to as VAE-NODE, w.r.t. two
baselines. We train the proposed framework either using
solely AIS data or using both AIS data and GLORYS data.
The former leads to much poorer reconstruction performance,
whereas the latter clearly outperforms both the AIS-derived
baseline and altimetry-derived one with a relative improve-
ment greater than 40% in mean square error. We provide an
illustration of the reconstructed velocity fields in Fig.2. As
expected, the retrieved sea surface current depicts informa-
tion at finer scales (e.g., the width of the current coming from
the North-East of the area) and sharper gradients compared
with the altimeter-derived product. Whereas the AIS-derived
baseline involves local artifacts, which relate to noise patterns
of the AIS dataset and local outliers for simplified observation
model (1), the proposed framework retrieves more consistent
space-time dynamics. This is regarded as a direct outcome
of the considered regularisation through the proposed latent
ODE representation. When using AIS and GLORYs data in
the training phase, we retrieve much larger velocity values
along the high-current area. As the two configurations reach
similar values for training loss J , this suggests that the addi-
tional use of GLORYS data greatly improves the interpolation
capabilities of the trainable latent ODE representation.

Fig. 2. Reconstructed velocity fields for January 16th 2016
for the altimetry (top, right) and AIS baselines (top left) and
the two configurations of the proposed framework with (bot-
tom right) and without (bottom left) the use of GLORYS data
in the training phase.

Table 1. Reconstruction performance evaluate from indepen-
dent in situ data

Data Method MSE
Satellite altimetry OI 0.1833
AIS OI 0.1815
AIS VAE-NODE 0.2508
AIS + GLORYS VAE-NODE 0.1098

5. CONCLUSION

This paper addresses the reconstruction of sea surface current
from AIS maritime traffic data. We show that deep learning
framework provides new means to address complex inverse
problems with irregularly-sampled and noisy real data. We
combine a latent ODE representation with a variational for-
mulation. It allows us to exploit some physical knowledge,
explicitly through the considered observation model and im-
plicitly through the exploitation of numerical outputs during
the training phase.

These results support the relevance of AIS-derived geo-
physical products to complement satellite-derived ones. Fu-
ture work will further investigate the evaluation of the pro-
posed framework on other case-studies as well as comple-
mentary methodological developments, including data fusion
issues for instance to combine altimetry and AIS data.
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