Colette Johnen
email: johnen@labri.fr

Mohammed Haddad
email: mohammed.haddad@univ-lyon1.fr

Mohammed Haddad Efficient

Efficient self-stabilizing construction of disjoint MDSs in distance-2 model

Keywords: algorithmic graph, distributed algorithm, self-stabilization, minimal dominating set, maximal independent set, distance-2 model, convergence time

de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

The distance-2 model or the expression model permits a higher-level description of a self-stabilizing distributed algorithm. Some authors prefer to use the distance-2 model [START_REF] Gairing | Distance-two information in self-stabilizing algorithms[END_REF][START_REF] Dekar | Distance-2 self-stabilizing algorithm for a b-coloring of graphs[END_REF][START_REF] Hedetniemi | A selfstabilizing algorithm for optimally efficient sets in graphs[END_REF][START_REF] Hedetniemi | Self-stabilizing algorithms for unfriendly partitions into two disjoint dominating sets[END_REF] or the expression model [10,[START_REF] Turau | Self-stabilizing algorithms for efficient sets of graphs and trees[END_REF][START_REF] Yahiaoui | Self-stabilizing algorithms for minimal global powerful alliance sets in graphs[END_REF]1] to design selfstabilizing algorithms for solving graph problems. In the distance-2 model, a node v can access to the state information of neighbors at distance 2 from it. In the expression model, a node v does not have access to the states of nodes at distance two, but has access only to aggregates of these states through the expressions of its neighbors. An expression on a node u is a value computed according to u and u's neighbors states. Nevertheless, the distance-2 model and the expression model are similar in terms of computation power (i.e. the translation of an algorithm in the expression model to the distance-2 model has no overhead in terms of moves).

As shown in [START_REF] Gairing | Distance-two information in self-stabilizing algorithms[END_REF] an algorithm designed for the distance-2 model or the expression model under the central daemon (i.e. at each step only a single node executes an action) can be translated into another algorithm for distance-1 model with distributed daemon (i.e. at each step one or several nodes execute an action) assuming a non-anonymous network. The slowdown is O(m) per move in the expression model [10] where m is the number of edges.

In [START_REF] Hedetniemi | A theorem of Ore and selfstabilizing algorithms for disjoint minimal dominating sets[END_REF], deterministic self-stabilizing algorithms building two disjoint MDSs in the distance-2 model under the central daemon are presented, they converge in O(n 2) moves. Their translations give self-stabilizing algorithms in the distance-1 model under the unfair distributed daemon converging in (n 2 • m) moves. In [START_REF] Kamei | A self-stabilizing algorithm for two disjoint minimal dominating sets with safe convergence[END_REF][START_REF] Srimani | Self-stabilizing algorithm for two disjoint minimal dominating sets[END_REF] self-stabilizing distributed algorithm for finding two disjoint dominating sets are presented in distance-1 model where nodes have identifiers. The algorithm presented in [START_REF] Kamei | A self-stabilizing algorithm for two disjoint minimal dominating sets with safe convergence[END_REF] ensures safe convergence. The number of moves during any execution of algorithm in [START_REF] Kamei | A self-stabilizing algorithm for two disjoint minimal dominating sets with safe convergence[END_REF] is not computed. In [START_REF] Srimani | Self-stabilizing algorithm for two disjoint minimal dominating sets[END_REF] a central daemon is assumed, this algorithm converges in O(n 3) moves where n is the number of nodes.

Contribution

We study the deterministic self-stabilizing construction of two disjoint minimal dominating sets (MDSs) in anonymous networks. We focus on algorithms where nodes share only their status (i.e. the name of their MDS to which they belong, if they belong to a MDS). In Section 3, we prove that such an algorithm cannot be designed in distance-1 model even under a central daemon.

In Section 4, we present an algorithm building two disjoint sets: a maximal independent set and a minimal dominating set. Any execution of that algorithm converges in 5n moves. Our approach to calculating the number of moves is new: the limit is not established on the number of moves of each node but on the number of executions of each rule. This algorithm improves the convergence time by a factor n of existing algorithms solving the same problem (self-stabilizing constructions of disjoint MIS and MDS) in distance-2 model. In Section 6, we present an algorithm building two disjoint MDSs. During any execution, a node executes at most 2 moves. This algorithm is faster than the first one at the expense of the independence property of one of the constructed sets. Using the transformer of [10], algorithms converging in O(n.m) moves under the unfair distributed daemon in distance-1 model are obtained from the presented algorithms. The transformed algorithms are the first ones building two disjoint MDS to converge in O(n.m) moves under the unfair distributed daemon in distance-1 model.

Model and Concepts

A distributed system S is an undirected graph G = (V, E) where the vertex set, V , is the set of nodes and the edge set, E, is the set of communication links. We have |V | = n and |E| = m. A link (u, v) ∈ E if and only if u and v can directly communicate (links are bidirectional); so, the nodes u and v are neighbors. N (v) denotes the set of v's neighbors:

N (v) = {u ∈ V | (u, v) ∈ E}. N [v]
denotes the closed neighborhood of v (i.e. the set of nodes at distance less than 2 from v):

N [v] = N (v) ∪ {v}. Dominating set A subset D of V is dominating if any node of V -D is neighbor of a node of D. A dominating set D is minimal if any subset of D is not a dominating set of V .
Independent set A subset of V , I, is independent if its does not contain two neighboring nodes. A independent set I is maximal (denoted MIS) if the adding of any node to I would falsify the independence property. A maximal independent set is also a minimal dominating set. Ore [START_REF] Ore | Theory of graphs[END_REF] observed that any graph without isolated nodes always contains a pair of disjoint dominating sets. A corollary of Ore's observation is that in any graph without isolated nodes, two disjoint minimal dominating sets exist. For the rest of this paper, we assume that there are not any isolated nodes.

Deterministic Algorithm Each node maintains a set of variables. A node can modify only the values of its own variables. The state of a node is defined by the values of its variables. The Cartesian product of states of all nodes determines the configuration of the system. The program of each node is a set of deterministic rules. Each rule has the form: Rule i :< Guard i >-→< Action i >. The guard of a v's rule is a Boolean expression. If Guard i is satisfied by v then Rule i is enabled by v; v is said to be enabled. A move by a node v is the execution of an enabled rule by v (i.e. the updating of v' variables as it is defined in the deterministic action part of the executed rule).

A computation e is a sequence of configurations e = c 0 , c 1 , . . . , c i , . . ., where c i+1 is reached from c i by a computation step, ∀i 0. A computation e is maximal if it is infinite, or if it reaches a terminal configuration. A configuration is terminal, if and only if no node is enabled. Anonymous network. In an anonymous network, nodes do not have identifiers or node identifiers are not used by the algorithm; so all nodes execute the same algorithm (i.e. set of rules). In a non-anonymous network, every node v in the network has an identifier, denoted by id v . It is possible to order the identifier values. Distance-2 versus distance-1 model. In the distance-1 model, the guard of a rule on the node v is a Boolean expression involving the state of the nodes in the closed neighborhood of v (i.e. states of nodes in N [v]). In the distance-2 model, the guard of a rule on the node v is a Boolean expression involving the state of the nodes in the closed neighborhood of any node of N [v] (i.e. states of nodes in N [u] with u being any node of N [v]). Central daemon versus distributed daemon. Under the central daemon, during a computation step, a single enabled node executes a move (it is chosen without any fairness constraint). Under the distributed daemon, during a computation step, one or several enabled nodes are chosen without any fairness constraint to execute simultaneously a move. Silent Deterministic Self-Stabilization. Let L be a predicate on the configurations. A distributed system S is a silent deterministic self-stabilizing system to L if and only if (1) all terminal configurations satisfy L; (2) all computations reach a terminal configuration. Stabilization time of a deterministic algorithm. The stabilization time of a deterministic algorithm may be estimated in term of the total number of moves required in the worst case to reach a terminal configuration. Under a central daemon, the number of moves is the number of computation steps; but under a distributed daemon, the number of moves may be as large as n times the number of steps. Closure of Predicate. Let P be a predicate on the configurations. Let L P be the set of configurations satisfying P. L P is closed, if and only if any step from a configuration of L P reaches a configuration of L P .

Complexity of Self-stabilizing construction of two disjoint MDSs

In this section, the complexity of a self-stabilizing algorithm building two disjoint minimal dominating sets is studied. The status of a node has three possible values: either it belongs to the first minimal dominating set, to the second one or it does not belong to any minimal dominating set.

Theorem 1. In the distance 1-model, there is no deterministic silent self-stabilizing construction of two disjoint MDSs converging under the central daemon, if nodes share only their status.

Proof. Let us study the 3 following local configurations on node v: Without any loss of generality, we study in the following the algorithms where a node in the local configuration l 3 is disabled.

1. no node of N [v]
The label of a node in a configuration of the Figure 1 is the name of its local configuration. The configuration in Figure 1.a and the configuration in Figure 1.b have two disjoint MDSs : these configurations are the only legitimate ones up to a rotation in a ring of size 5. So in at least one of these 2 configurations, no node is enabled as we study silent algorithms. In the both configurations, there is a node having one of the following local configurations:

a node in the first MDS having its two neighbors in the second MDS (local configuration l 4) a node in the second MDS having a single neighbor in the first MDS (local configuration l 5). a node not belonging to any MDS has a neighbor in the first MDS and the other one in the second MDS (local configuration l 6).

The local configuration of any node in the configuration Figure 1.c is l i with i ∈ {3...6}. We conclude that all nodes are disabled in this configuration. So this configuration is terminal for any deterministic silent self-stabilizing construction of two disjoint MDSs where nodes share only their status.

In the configuration Figure 1.c, the ring is proper colored (the coloration is greedy); but there is not two MDSs. Thus this configuration is not legitimate, so we have established the impossibility result.

The If v verifying redOk(v) is not dominated by a blue node then v can take the color blue (beBlue2(v) is verified). If a neighbor of v verifying isolatedRed is not dominated by a blue node then v can take the color blue (beBlue1(v) is verified).

To compute the value of redOk(v), beBlue1(v), and beN otBlue(v) the node v has to know the color of nodes at distance-2 of itself.

The Figure 2 illustrates the algorithm execution. During the first step, the node x quits the BlueSet (executing RBlueOut) because all nodes of N [x] has several blue neighbors. During the second step, the node v executes RRedOut because it has a red neighbor. During the third step, w takes the red color (i.e. it executes RRedIn); now RedSet is a maximal independent set (configuration d). In the sequel of the execution, no red move will be executed (RedSet will stay unchanged). In the configuration d, beBlue1(x) is verified: w verifying isolatedRed(w) has not blue neighbor. So the node x takes the color blue by executing RBlueIn: to give to w a blue neighbor. In the configuration e, beBlue2(v) is verified; so, the node v takes also the blue color. In the configuration f , BlueSet is a dominating set not minimal, beN otBlue(x) and beN otBlue(z) are verified. After the execution of RBlueOut by x a terminal configuration is reached.

BlueSet is a minimal dominating set (configuration g).

Proof of correctness of algorithm 1

Lemma 1. In a terminal configuration c, RedSet is a maximal independent set, and BlueSet is a minimal dominating set Proof. Let c be a terminal configuration. In c, no node verifies the predicate notRedDom; so a node that does not have the color red has a neighbor having the color red. In c, no node verifies the predicate Algorithm 1: self-stabilizing construction of disjoint MIS and MDS

Shared variable of v • color(v) ∈ {red, blue, ⊥} Macro on v • #Blue(v) is |{w ∈ N [v] | color(w) = blue}| • myRedN gb(v) is the nodes set defined as {u ∈ N (v) | isolatedRed(u)} Predicates in v • isolated(v) ≡ ∀w ∈ N (v) we have color(w) = red • notRedDom(v) ≡ color(v) = red ∧ isolated(v) • beN otRed(v) ≡ color(v) = red ∧ ¬isolated(v) • isolatedRed(v) ≡ color(v) = red ∧ isolated(v) • redOk(v) ≡ ∃u ∈ N [v] verifying isolatedRed(u) • beBlue1(v) ≡ color(v) = ⊥ ∧ ∃u ∈ myRedN gb(v) verifying #Blue(u) = 0 • beBlue2(v) ≡ color(v) = ⊥ ∧ #Blue(v) = 0 • beN otBlue(v) ≡ color(v) = blue ∧ ∀u ∈ N [v] we have #Blue(u) > 1 Rules on v RRedIn(v) : notRedDom(v) -→ color(v) := red; RRedOut(v) : beN otRed(v) -→ color(v) := ⊥; RBlueIn(v) : redOk(v) ∧ (beBlue1(v) ∨ beBlue2(v)) -→ color(v) := blue; RBlueOut(v) : redOk(v) ∧ beN otBlue(v) -→ color(v) := ⊥;
beN otRed; so all neighbors of a red node have not the color red. We conclude that in c, redOk(v) is verified by any node and (isolated(v) ⇐⇒ color(v) = red).

Assume that a node v verifies #Blue(v) = 0, in c. By hypothesis, v's color is not blue. v has the color red otherwise v could executed the rule RBlueIn. The node v has a least a neighbor u (there is no isolated node) : v ∈ myRedN gb(u).

The color u is ⊥ by hypothesis and because isolatedRed(v) is verified in c. So, u verifies the predicate beBlue1(u): u is enabled in c. There is a contradiction. We conclude that in a terminal configuration, BlueSet is a dominating set. In c no node verifies the predicate beN otBlue; so BlueSet is a minimal dominating set.

Convergence of algorithm 1

First, we compute the number of red moves along any execution; then the number of blue moves. The execution of the rule RBlueIn, or RBlueOut (resp. RRedIn or RRedOut) by a node is a blue (resp. red) move. Lemma 2. The predicate isolatedRed(v) is closed.

Proof. Let c1 be a configuration where isolatedRed(v) = true. Let cs be a computation step from c1 reaching the configuration c2. The node v is disabled in c1; so v has the red color in c2.

Let u be a node of N (v). u verifies ¬notRedDom(u) in c1. So, the node u cannot take the red color during cs. We conclude that in c2, isolatedRed(v) is still verified.

Corollary 1. The predicate redOk(v) is closed.

On a node verifying the predicate redOk(v), the rule RRedIn is disabled.

Lemma 3. A node v is disabled forever after executing a RRedIn move.

Proof. Assume that from the configuration c, v executes the rule RRedIn to reach the configuration c . In c, none v's neighbor has the color red.

As v is the single node to execute an action during this computation step; in c , we have isolatedRed(v). A node verifying isolatedRed is disabled. According to Lemma 2, isolatedRed(v) stays verified along any execution. So, the node v is and stay disabled along any execution after its RRedIn move.

Lemma 4. Along any execution, a node executes at most one time a RRedOut move.

Proof. Between two consecutive RRedOut moves by a node v, this node executes at least one time the rule RRedIn. After a RRedIn move, a node v is disabled forever (Lemma 3). So a node v cannot execute severals RRedOut moves.

Number of Blue moves. We compute the number of blue moves along any execution. Notice that the execution of RBlueIn (or RBlueOut) may be not the last move of a node as show in the execution of the Figure 2. We does not compute the number of blue moves done by a node but the global number of blue moves during an execution. We prove that after a computation step where a node execute RBlueIn a new node verifies the following predicate blueOk(u)∧ #Blue(u) ≥ 1 (Lemma 7). This predicate is closed (Lemma 6).

A blue node verifying BlueStable(v) will never take the red color.

Definition 1. BlueStable(v) ≡ (color(v) = blue ∨ redOk(v))
Lemma 5. The predicate BlueStable(v) is closed.

Proof. Let c1 be a configuration where BlueStable(v) is verified. Assume that in c1, color(v) = blue. Till v does not execute the rule RBlueIn BlueStable(v) is verified (as color(v) = blue). Let cs be a step from c to c where the node v executes a RBlueIn move. The predicate redOk(v) is verified in c according to the guard rule. If redOk(v) is verified in c then BlueStable(v) is verified along any execution from c because redOk(v) is closed (Corollary 1).

Corollary 2. blueOk(v) ≡ (∀u ∈ N [v] we have BlueStable(u)). The predicate blueOk(v) is closed.
If a node v verifying blueOk has a Blue neighbor then along any execution it will have at least a Blue neighbor (because v's blue neighbor can only execute the rule RBlueOut). Lemma 6. On node v, the predicate blueOk(v) ∧ #Blue(v) ≥ 1 is closed.

Proof. The predicate blueOk(v) is closed (Corollary 2). Let c1 be a configuration where blueOk(v) ∧ #Blue(v) = 1. Let us name u, the single node of N [v] having the color blue in c1. The node u verifies ¬notRedDom(u) in c1 because redOk(u) is verified.

The node u verifies ¬beN otBlue(u) in c1 because #Blue(v) = 1. So, the node u is disabled in c1. We conclude that in the reached configuration after any computation step from c1, we have #Blue(v) ≥ 1. Let c2 be a configuration where #Blue(v) > 1. We denotes by nb the value of #Blue(v) in c2. During any computation step from c2, a single node of N [v] executes a move (because a central daemon is assumed). So, in the reached configuration, we have #Blue(v) ∈ [nb -1, nb + 1]. We conclude that #Blue(v) ≥ 1 in c2.

Lemma 7. Let c → c be a computation step where a node v executes a RBlueIn move. There is at least a node u such that (1) the predicate blueOk(u)∧#Blue(u) ≥ 1 is not verified in c but (2) it is verified in c .

Proof. Let cs be a step from c1 to c2 where a node v executes a RBlueIn move. Assume that beBlue2(v) is verified in c. We have #Blue(v) = 0 in c. The predicate blueOk(v) is verified in c. The predicate blueOk(v) is closed (Corollary 2). As v is the single node to execute an action during cs; blueOk(v)∧#Blue(v) = 1 is verified, in c but not in c. Assume that beBlue1(v) is verified in c. In c, v has a neighbor u verifiying #Blue(u) = 0 and isolatedRed(u). The predicate blueOk(u) is verified in c because (isolatedRed(u) ⇒ blueOk(u)). As v is the single node to execute an action during cs; blueOk(u) ∧ #Blue(u) = 1 is verified, in c but not in c. Theorem 2. Along any execution, there is at most n RBlueIn moves and 2n RBlueOut moves.

Proof. After a RBlueIn move a new node u verifies the predicate blueOk(u) ∧ #Blue(u) ≥ 1 (Lemma 7). As this predicate is closed (Lemma 6), we conclude that any execution has at most n RBlueIn moves. On a node, the number of RBlueOut moves is at most the number of RBlueIn moves plus one more. We conclude that any execution has at most 2n RBlueIn moves.

Self-stabilizing algorithm building two disjoint MDSs

The algorithm 2 builds the sets RedSet and BlueSet. These set are two disjoint MDSs. The algorithm 2 is a self-stabilizing algorithm in the distance-2 model under a central daemon; the two disjoint MDSs are built in less than 2n moves A node v belongs to RedSet (resp. BlueSet) if and only if color(v) = red (resp. color(v) = blue). As, the membership to one of these sets is determined by the value of a single variable shared: color; the intersection of RedSet and BlueSet is empty. Moreover, macros #Red(u) and #Blue(u) may also be considered as expressions in the expression model.

The construction of RedSet has priority over the construction of BlueSet. If a node v has not a closed neighbor belonging to RedSet (i.e. the predicate notRedDom(v) is satisfied) then v can join the RedSet (i.e. the guard of the rule RRedIn is satisfied). If every nodes of closed neighborhood of v has several nodes belonging to RedSet and v belongs to RedSet (i.e. the predicate beN otRed(v) is satisfied) then v can quit RedSet (i.e. the guard of the rule RRedOut or the guard the rule RBlueIn is satisfied).

Algorithm 2: self-stabilizing construction of two disjoint MDSs

Variable of v shared

• color(v) ∈ {red, blue, ⊥} Macros on v • #Red(u) is |{w ∈ N [u] | color(w) = red}| • #Blue(u) is |{w ∈ N [u] | color(w) = blue}| Predicates on v • notRedDom(v) ≡ (#Red(v) = 0) • beN otRed(v) ≡ (∀u ∈ N [v] | (#Red(u) > 1)) ∧ (color(v) = red) • beN otBlue(v) ≡ (∀u ∈ N [v] | (#Blue(u) > 1)) ∧ (color(v) = blue) • redOk(v) ≡ (∀u ∈ N [v] | (#Red(u) ≥ 1)) • blueOk(v) ≡ (∀u ∈ N (v) | (color(u) = red) ∨ (#Blue(u) ≥ 1)) ∧ (#Blue(v) ≥ 1) • canBeBlue(v) ≡ redOk(v) ∧ (color(v) = ⊥)

Rules on v

RRedIn : notRedDom(v) -→ color(v) := red;

RRedOut : beN otRed(v) ∧ blueOk(v) -→ color(v) := ⊥; RBlueIn : (beN otRed(v) ∨ canBeBlue(v)) ∧ ¬blueOk(v) -→ color(v) := blue; RBlueOut : redOk(v) ∧ beN otBlue(v) -→ color(v) := ⊥;
If a node v has not a closed neighbor belonging to BlueSet then the predicate ¬blueOk(v) is satisfied. If every nodes of closed neighborhood of v has several nodes belonging to BlueSet and v belongs to BlueSet then the predicate beN otBlue(v) is satisfied. The verification of ¬blueOk(v) (resp. beN otBlue(v)) is not enough to allow the nodev to quit BlueSet (resp. to join it). A node v can join or quit the set BlueSet (i.e. executing the rule RBlueIn or the rule RBlueOut) only when the red domination in its neighborhood is certain; more precisely, when every node in its neighborhood is dominated by at least node of RedSet (i.e. the predicate redOk(v) is satisfied). Notice that the condition to join RedSet is not similar to the condition to join BlueSet. If a red neighbor of node v, u is not dominated by a blue node (i.e. the following predicate is verified (color(u) = red) ∧ (#Blue(u) = 0) then ¬blueOk(v) is verified. So the node v may join BlueSet even if v is dominated by a blue node; in the case where one of its red neighbor is not dominated by a blue node.

The Figure 3 illustrates the algorithm execution. During the first step, the node u executes the rule RRedIn. Now, RedSet is a minimal dominating set; hence no red move will be executed during the end of the execution. In the configuration b, #Blue(v) = 0 and #Blue(z) = 0; so, the node v joins BlueSet, then the node z does the same move. In the configuration d, #Blue(x) = 0 and color(x) = red so ¬blueOk(z) is verified, during the last step, w executes the rule RBlueIn. Proof. A node satisfying the predicate notRedDom is enabled (it can execute the rule RRedIn). A node satisfying the predicate beN otRed is enabled (it can execute the rule RBlueIn or the rule RRedOut). We conclude that RedSet is a minimal dominating set. Let c be a terminal configuration. In c, the predicate redOk is satisfied by every node. So, no node satisfies the predicate beN otBlue in c.

Fig. 2 .

 2 Fig. 2. an execution of algorithm 1 reaching a terminal configuration

Fig. 3 . 2 Observation 1 Lemma 8 .

 3218 Fig. 3. an execution of algorithm 2 reaching a terminal configuration

 belongs to a MDS (local configuration l 1). 2. no node of N (v) belongs to a MDS and v belongs to the second MDS (local configuration l 2). 3. no node of N (v) belongs to a MDS and v belongs to the first MDS (local configuration l 3).Assume that a node in the local configuration l 1 , l 2 , or l 3 is enabled. Let us study the algorithm on a chain of 3 nodes (v1, v2, and v3). From a configuration where v1 and v3 are not in a MDS, there is an infinite execution where v2 is the only node to execute a rule at each step. So no one can design a silent self-stabilizing

		node in the first MDS			node in the second MDS
	l4	l5	l6	l6	l5	l4
	a. configuration in a ring of size 5			b. configuration in a ring of size 5
		l5	l6	l3	l6	l5
			l4			
			c. configuration in a ring of size 6	

Fig. 1. 3 configurations

algorithm where a node in the local configuration l 1 , l 2 , or l 3 is enabled. It is easy to see that any self-stabilizing algorithm would have to ensure that a node v in the local configuration l 1 is enabled. So either a node is disabled in the local configuration l 3 or in the local configuration l 2 .

 algorithm 1 builds a MIS (the set RedSet) and a MDS (the set BlueSet). A node v belongs to RedSet (resp. BlueSet) if color(v) = red (resp. color(v) = blue). The membership to one of this set is determined by the value of a single shared variable color. So, the intersection of RedSet and BlueSet is empty.If v is not dominated by a red node then v can take the color red (notRedDom(v) is verified). If a red node v is dominated by another red node then it can quit RedSet (beN otRed(v) is verified).The construction of RedSet is priority to the construction of BlueSet. A node v can join of quit the set BlueSet only when the red domination over itself is permanent (i.e. redOk(v) is verified). When v is dominated by a node u verifying the predicate isolatedRed. The node u is a red node having not red neighbor; so u will stay in RedSet forever.

If every node of N [v] is dominated by several blue nodes then v, a blue node verifying redOk(v), may quit BlueSet -beN otBlue(v) is verified.

This study was partially supported by anr project estate : ANR-16 CE25-0009-03

 Lemma 11. The predicate redOk(v) ∧ blueOk(v) is closed.

Proof. Let c be a configuration where the predicate redOk(v) ∧ blueOk(v) is satisfied. Let c be a configuration reached from c by a single computation step. In c, we have redOk(v)∧#Blue(v) ≥ 1 by hypothesis. As this predicate is closed (Lemma 10), in c we have redOk(v) ∧ #Blue(v) ≥ 1. Let u be a neighbor of v having the color red in c . In c, by hypothesis we have #Red(u) ≥ 1 so the rule RRedIn is disabled on u in c. Therefore the color u in c is also red. By definition of blueOk(v), we have #Blue(u) ≥ 1, in c. Therefore, in c , we have redOk(u) ∧ #Blue(u) ≥ 1 as this predicate is closed (Lemma 10). Thus in c , any neighbor, w of v satisfies the predicate (color(w) = red) ∨ (#Blue(w) ≥ 1). We conclude that redOk(v) ∧ blueOk(v) is satisfied in c . The next move by a node v after executing a RRedOut move or a RBlueOut move would be a RRedIn move or aRBlueIn move because color(v) = ⊥. We conclude that from c , v is forever disabled.

If a node v verifies (#Red(v) = 1 ∧ color(v) = red) in the configuration c; then v is disabled in c and RRedIn is disabled on any v's neighbor in c. So, this predicate is always verified by v along any execution from c. If this predicate is verified by v then v is disabled; this predicate is verified after the execution by v of rule RRedIn.

Proof. Let c be a configuration where v satisfies the predicate #Red(v) = 1 ∧ color(v) = red. v is disabled in c because the predicate ¬beN otRed(v) is satisfied. So after any computation step from c, we have color(v) = red. In c, the predicate ¬notRedDom(u) is satisfied by any v' neighbor; they cannot execute the rule RRedIn in any computation step from c. So after any computation step from c, we have #Red(v) = 1. We conclude that after any computation step from c, we have #Red(v) = 1 ∧ color(v) = red. Lemma 14. A node v is disabled forever after executing a RRedIn move.

Proof. Assume that in the configuration c, v executes the rule RRedIn to reach the configuration c . In c, none v's neighbors has the color red. As v is the single node to execute an action during this computation step; in c , we have #Red(v) = 1 ∧ color(v) = red. According to Lemma 13, along any execution from c , we have #Red(v) = 1 ∧ color(v) = red. We conclude that the node v is and stays disabled along any execution after its RRedIn move. Corollary 3. A node performs at most two moves.

Proof. If the first move of a node v is RRedIn, ROutBlue or ROutRed, it would be it last move (Lemma 12 and 14). Assume that the first move of a node v is RInBlue. The second move of v (if it exists), would be either a RBlueOut move or a RRedIn move. The second move would be its last one. So v performs at most two moves.