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Abstract. We study the deterministic silent self-stabilizing construc-
tion of two disjoint minimal dominating sets (MDSs) in anonymous net-
works. We focus on algorithms where nodes share only their status (i.e.
the name of their MDS to which they belong, if they belong to a MDS).
We prove that such an algorithm cannot be designed in distance-1 model
under a central daemon; therefore, we study this problem in the distance-
2 model under a central daemon.
We present an algorithm building two disjoint minimal dominating sets
such that one of them is also a maximal independent set (MIS). Any
execution of this algorithm converges in 5n moves. Our approach to
compute this value is novel: the number of moves is not computed per
node.
We propose a second algorithm faster than the first one at the expense
of the independence property of one of the constructed sets. A node
executes at most 2 moves.
If the network is not anonymous, the presented algorithms can be trans-
lated into a silent self-stabilizing algorithms converging in O(n·m) moves
in the distance-1 model under the distributed daemon where m is the
number of edges and n the number of nodes. This improves the complex-
ity of O(n ·m) moves of proposed algorithms with the same assumptions.

Keywords: algorithmic graph · distributed algorithm · self-stabilization · min-
imal dominating set · maximal independent set · distance-2 model · convergence
time

1 Introduction

The distance-2 model or the expression model permits a higher-level descrip-
tion of a self-stabilizing distributed algorithm. Some authors prefer to use the
distance-2 model [3,2,4,5] or the expression model [10,11,12,1] to design self-
stabilizing algorithms for solving graph problems. In the distance-2 model, a
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node v can access to the state information of neighbors at distance 2 from it.
In the expression model, a node v does not have access to the states of nodes
at distance two, but has access only to aggregates of these states through the
expressions of its neighbors. An expression on a node u is a value computed
according to u and u’s neighbors states. Nevertheless, the distance-2 model and
the expression model are similar in terms of computation power (i.e. the trans-
lation of an algorithm in the expression model to the distance-2 model has no
overhead in terms of moves).

As shown in [3] an algorithm designed for the distance-2 model or the expression
model under the central daemon (i.e. at each step only a single node executes
an action) can be translated into another algorithm for distance-1 model with
distributed daemon (i.e. at each step one or several nodes execute an action)
assuming a non-anonymous network. The slowdown is O(m) per move in the
expression model [10] where m is the number of edges.

In [6], deterministic self-stabilizing algorithms building two disjoint MDSs in
the distance-2 model under the central daemon are presented, they converge in
O(n2) moves. Their translations give self-stabilizing algorithms in the distance-1
model under the unfair distributed daemon converging in (n2 ·m) moves.
In [7,9] self-stabilizing distributed algorithm for finding two disjoint dominating
sets are presented in distance-1 model where nodes have identifiers. The algo-
rithm presented in [7] ensures safe convergence. The number of moves during
any execution of algorithm in [7] is not computed. In [9] a central daemon is
assumed, this algorithm converges in O(n3) moves where n is the number of
nodes.

Contribution We study the deterministic self-stabilizing construction of two dis-
joint minimal dominating sets (MDSs) in anonymous networks. We focus on
algorithms where nodes share only their status (i.e. the name of their MDS to
which they belong, if they belong to a MDS).
In Section 3, we prove that such an algorithm cannot be designed in distance-1
model even under a central daemon.
In Section 4, we present an algorithm building two disjoint sets: a maximal
independent set and a minimal dominating set. Any execution of that algorithm
converges in 5n moves. Our approach to calculating the number of moves is
new: the limit is not established on the number of moves of each node but on the
number of executions of each rule. This algorithm improves the convergence time
by a factor n of existing algorithms solving the same problem (self-stabilizing
constructions of disjoint MIS and MDS) in distance-2 model.
In Section 6, we present an algorithm building two disjoint MDSs. During any
execution, a node executes at most 2 moves. This algorithm is faster than the
first one at the expense of the independence property of one of the constructed
sets.
Using the transformer of [10], algorithms converging in O(n.m) moves under
the unfair distributed daemon in distance-1 model are obtained from the pre-
sented algorithms. The transformed algorithms are the first ones building two



disjoint MDS to converge in O(n.m) moves under the unfair distributed daemon
in distance-1 model.

2 Model and Concepts

A distributed system S is an undirected graph G = (V,E) where the vertex set,
V , is the set of nodes and the edge set, E, is the set of communication links. We
have |V | = n and |E| = m. A link (u, v) ∈ E if and only if u and v can directly
communicate (links are bidirectional); so, the nodes u and v are neighbors. N(v)
denotes the set of v’s neighbors: N(v) = {u ∈ V | (u, v) ∈ E}. N [v] denotes the
closed neighborhood of v (i.e. the set of nodes at distance less than 2 from v):
N [v] = N(v) ∪ {v}.

Dominating set A subset D of V is dominating if any node of V −D is neighbor
of a node of D. A dominating set D is minimal if any subset of D is not a
dominating set of V .

Independent set A subset of V , I, is independent if its does not contain two
neighboring nodes. A independent set I is maximal (denoted MIS) if the adding
of any node to I would falsify the independence property. A maximal indepen-
dent set is also a minimal dominating set.
Ore [8] observed that any graph without isolated nodes always contains a pair
of disjoint dominating sets. A corollary of Ore’s observation is that in any graph
without isolated nodes, two disjoint minimal dominating sets exist.
For the rest of this paper, we assume that there are not any isolated nodes.

Deterministic Algorithm Each node maintains a set of variables. A node can
modify only the values of its own variables. The state of a node is defined by the
values of its variables. The Cartesian product of states of all nodes determines the
configuration of the system. The program of each node is a set of deterministic
rules. Each rule has the form: Rulei :< Guardi >−→< Actioni >. The guard
of a v’s rule is a Boolean expression. If Guardi is satisfied by v then Rulei is
enabled by v; v is said to be enabled. A move by a node v is the execution of
an enabled rule by v (i.e. the updating of v’ variables as it is defined in the
deterministic action part of the executed rule).
A computation e is a sequence of configurations e = c0, c1, . . . , ci, . . ., where ci+1

is reached from ci by a computation step, ∀i > 0. A computation e is maximal if
it is infinite, or if it reaches a terminal configuration. A configuration is terminal,
if and only if no node is enabled.
Anonymous network. In an anonymous network, nodes do not have identifiers
or node identifiers are not used by the algorithm; so all nodes execute the same
algorithm (i.e. set of rules). In a non-anonymous network, every node v in the
network has an identifier, denoted by idv. It is possible to order the identifier
values.
Distance-2 versus distance-1 model. In the distance-1 model, the guard of
a rule on the node v is a Boolean expression involving the state of the nodes



in the closed neighborhood of v (i.e. states of nodes in N [v]). In the distance-2
model, the guard of a rule on the node v is a Boolean expression involving the
state of the nodes in the closed neighborhood of any node of N [v] (i.e. states of
nodes in N [u] with u being any node of N [v]).
Central daemon versus distributed daemon. Under the central daemon,
during a computation step, a single enabled node executes a move (it is cho-
sen without any fairness constraint). Under the distributed daemon, during a
computation step, one or several enabled nodes are chosen without any fairness
constraint to execute simultaneously a move.
Silent Deterministic Self-Stabilization. Let L be a predicate on the config-
urations. A distributed system S is a silent deterministic self-stabilizing system
to L if and only if (1) all terminal configurations satisfy L; (2) all computations
reach a terminal configuration.
Stabilization time of a deterministic algorithm. The stabilization time
of a deterministic algorithm may be estimated in term of the total number of
moves required in the worst case to reach a terminal configuration. Under a
central daemon, the number of moves is the number of computation steps; but
under a distributed daemon, the number of moves may be as large as n times
the number of steps.
Closure of Predicate. Let P be a predicate on the configurations. Let LP be
the set of configurations satisfying P. LP is closed, if and only if any step from
a configuration of LP reaches a configuration of LP .

3 Complexity of Self-stabilizing construction of two
disjoint MDSs

In this section, the complexity of a self-stabilizing algorithm building two disjoint
minimal dominating sets is studied. The status of a node has three possible
values: either it belongs to the first minimal dominating set, to the second one
or it does not belong to any minimal dominating set.

Theorem 1. In the distance 1-model, there is no deterministic silent self- sta-
bilizing construction of two disjoint MDSs converging under the central daemon,
if nodes share only their status.

Proof. Let us study the 3 following local configurations on node v:

1. no node of N [v] belongs to a MDS (local configuration l1).

2. no node of N(v) belongs to a MDS and v belongs to the second MDS (local
configuration l2).

3. no node of N(v) belongs to a MDS and v belongs to the first MDS (local
configuration l3).

Assume that a node in the local configuration l1, l2, or l3 is enabled. Let us study
the algorithm on a chain of 3 nodes (v1, v2, and v3). From a configuration where
v1 and v3 are not in a MDS, there is an infinite execution where v2 is the only
node to execute a rule at each step. So no one can design a silent self-stabilizing



node in the first MDS node in the second MDS

l4 l5 l6

a. configuration in a ring of size 5

l6 l5 l4

b. configuration in a ring of size 5

l5 l6 l3 l6 l5

l4

c. configuration in a ring of size 6

Fig. 1. 3 configurations

algorithm where a node in the local configuration l1, l2, or l3 is enabled. It is
easy to see that any self-stabilizing algorithm would have to ensure that a node
v in the local configuration l1 is enabled. So either a node is disabled in the local
configuration l3 or in the local configuration l2.

Without any loss of generality, we study in the following the algorithms where
a node in the local configuration l3 is disabled.

The label of a node in a configuration of the Figure 1 is the name of its local
configuration. The configuration in Figure 1.a and the configuration in Figure 1.b
have two disjoint MDSs : these configurations are the only legitimate ones up
to a rotation in a ring of size 5. So in at least one of these 2 configurations, no
node is enabled as we study silent algorithms. In the both configurations, there
is a node having one of the following local configurations:

– a node in the first MDS having its two neighbors in the second MDS (local
configuration l4)

– a node in the second MDS having a single neighbor in the first MDS (local
configuration l5).

– a node not belonging to any MDS has a neighbor in the first MDS and the
other one in the second MDS (local configuration l6).

The local configuration of any node in the configuration Figure 1.c is li with
i ∈ {3...6}. We conclude that all nodes are disabled in this configuration. So this
configuration is terminal for any deterministic silent self-stabilizing construction
of two disjoint MDSs where nodes share only their status.
In the configuration Figure 1.c, the ring is proper colored (the coloration is
greedy); but there is not two MDSs. Thus this configuration is not legitimate,
so we have established the impossibility result. �



4 Self-stabilizing algorithm of disjoint MIS and MDS

The algorithm 1 builds a MIS (the set RedSet) and a MDS (the set BlueSet).
A node v belongs to RedSet (resp. BlueSet) if color(v) = red (resp. color(v) =
blue). The membership to one of this set is determined by the value of a single
shared variable color. So, the intersection of RedSet and BlueSet is empty.

If v is not dominated by a red node then v can take the color red (notRedDom(v)
is verified). If a red node v is dominated by another red node then it can quit
RedSet (beNotRed(v) is verified).

The construction of RedSet is priority to the construction of BlueSet. A node
v can join of quit the set BlueSet only when the red domination over itself is
permanent (i.e. redOk(v) is verified). When v is dominated by a node u verifying
the predicate isolatedRed. The node u is a red node having not red neighbor;
so u will stay in RedSet forever.

If every node of N [v] is dominated by several blue nodes then v, a blue node
verifying redOk(v), may quit BlueSet - beNotBlue(v) is verified.

If v verifying redOk(v) is not dominated by a blue node then v can take the
color blue (beBlue2(v) is verified). If a neighbor of v verifying isolatedRed is not
dominated by a blue node then v can take the color blue (beBlue1(v) is verified).

To compute the value of redOk(v), beBlue1(v), and beNotBlue(v) the node v
has to know the color of nodes at distance-2 of itself.

The Figure 2 illustrates the algorithm execution. During the first step, the node
x quits the BlueSet (executing RBlueOut) because all nodes of N [x] has sev-
eral blue neighbors. During the second step, the node v executes RRedOut be-
cause it has a red neighbor. During the third step, w takes the red color (i.e.
it executes RRedIn); now RedSet is a maximal independent set (configura-
tion d). In the sequel of the execution, no red move will be executed (RedSet
will stay unchanged). In the configuration d, beBlue1(x) is verified: w verifying
isolatedRed(w) has not blue neighbor. So the node x takes the color blue by exe-
cuting RBlueIn: to give to w a blue neighbor. In the configuration e, beBlue2(v)
is verified; so, the node v takes also the blue color. In the configuration f , BlueSet
is a dominating set not minimal, beNotBlue(x) and beNotBlue(z) are veri-
fied. After the execution of RBlueOut by x a terminal configuration is reached.
BlueSet is a minimal dominating set (configuration g).

5 Proof of correctness of algorithm 1

Lemma 1. In a terminal configuration c, RedSet is a maximal independent set,
and BlueSet is a minimal dominating set

Proof. Let c be a terminal configuration.
In c, no node verifies the predicate notRedDom; so a node that does not have the
color red has a neighbor having the color red. In c, no node verifies the predicate



Algorithm 1: self-stabilizing construction of disjoint MIS and MDS

Shared variable of v

• color(v) ∈ {red, blue,⊥}

Macro on v
• #Blue(v) is |{w ∈ N [v] | color(w) = blue}|
• myRedNgb(v) is the nodes set defined as {u ∈ N(v) | isolatedRed(u)}

Predicates in v
• isolated(v) ≡ ∀w ∈ N(v) we have color(w) 6= red

• notRedDom(v) ≡ color(v) 6= red ∧ isolated(v)

• beNotRed(v) ≡ color(v) = red ∧ ¬isolated(v)

• isolatedRed(v) ≡ color(v) = red ∧ isolated(v)

• redOk(v) ≡ ∃u ∈ N [v] verifying isolatedRed(u)

• beBlue1(v) ≡ color(v) = ⊥ ∧ ∃u ∈ myRedNgb(v) verifying #Blue(u) = 0

• beBlue2(v) ≡ color(v) = ⊥ ∧ #Blue(v) = 0

• beNotBlue(v) ≡ color(v) = blue ∧ ∀u ∈ N [v] we have #Blue(u) > 1

Rules on v

RRedIn(v) : notRedDom(v) −→ color(v) := red;

RRedOut(v) : beNotRed(v) −→ color(v) := ⊥;

RBlueIn(v) : redOk(v) ∧ (beBlue1(v) ∨ beBlue2(v)) −→ color(v) := blue;

RBlueOut(v) : redOk(v) ∧ beNotBlue(v) −→ color(v) := ⊥;

beNotRed; so all neighbors of a red node have not the color red. We conclude that
in c, redOk(v) is verified by any node and (isolated(v) ⇐⇒ color(v) = red).

Assume that a node v verifies #Blue(v) = 0, in c. By hypothesis, v’s color is
not blue. v has the color red otherwise v could executed the rule RBlueIn. The
node v has a least a neighbor u (there is no isolated node) : v ∈ myRedNgb(u).
The color u is ⊥ by hypothesis and because isolatedRed(v) is verified in c. So,
u verifies the predicate beBlue1(u): u is enabled in c. There is a contradiction.
We conclude that in a terminal configuration, BlueSet is a dominating set.

In c no node verifies the predicate beNotBlue; so BlueSet is a minimal domi-
nating set. �

5.1 Convergence of algorithm 1

First, we compute the number of red moves along any execution; then the number
of blue moves. The execution of the rule RBlueIn, or RBlueOut (resp. RRedIn
or RRedOut) by a node is a blue (resp. red) move.



node in the MIS node in the MDS

u v w x y z

configuration a

u v w x y z

configuration b

u v w x y z

configuration c

u v w x y z

configuration d

u v w x y z

configuration e

u v w x y z

configuration f

u v w x y z

configuration g

Fig. 2. an execution of algorithm 1 reaching a terminal configuration

Number of Red moves. We prove that a node executes at most one time the
rule RRedIn - Lemma 3. Then, we prove a node executes at most one time the
rule RRedOut - Lemma 4.

Lemma 2. The predicate isolatedRed(v) is closed.

Proof. Let c1 be a configuration where isolatedRed(v) = true. Let cs be a
computation step from c1 reaching the configuration c2. The node v is disabled
in c1; so v has the red color in c2.
Let u be a node of N(v). u verifies ¬notRedDom(u) in c1. So, the node u
cannot take the red color during cs. We conclude that in c2, isolatedRed(v) is
still verified. �

Corollary 1. The predicate redOk(v) is closed.

On a node verifying the predicate redOk(v), the rule RRedIn is disabled.

Lemma 3. A node v is disabled forever after executing a RRedIn move.

Proof. Assume that from the configuration c, v executes the rule RRedIn to
reach the configuration c′. In c, none v’s neighbor has the color red.



As v is the single node to execute an action during this computation step; in c′,
we have isolatedRed(v). A node verifying isolatedRed is disabled.
According to Lemma 2, isolatedRed(v) stays verified along any execution. So,
the node v is and stay disabled along any execution after its RRedIn move. �

Lemma 4. Along any execution, a node executes at most one time a RRedOut
move.

Proof. Between two consecutive RRedOut moves by a node v, this node executes
at least one time the rule RRedIn. After a RRedIn move, a node v is disabled
forever (Lemma 3). So a node v cannot execute severals RRedOut moves. �

Number of Blue moves. We compute the number of blue moves along any
execution. Notice that the execution of RBlueIn (or RBlueOut) may be not
the last move of a node as show in the execution of the Figure 2. We does not
compute the number of blue moves done by a node but the global number of
blue moves during an execution. We prove that after a computation step where
a node execute RBlueIn a new node verifies the following predicate blueOk(u)∧
#Blue(u) ≥ 1 (Lemma 7). This predicate is closed (Lemma 6).

A blue node verifying BlueStable(v) will never take the red color.

Definition 1. BlueStable(v) ≡ (color(v) 6= blue ∨ redOk(v))

Lemma 5. The predicate BlueStable(v) is closed.

Proof. Let c1 be a configuration where BlueStable(v) is verified.
Assume that in c1, color(v) 6= blue. Till v does not execute the rule RBlueIn
BlueStable(v) is verified (as color(v) 6= blue). Let cs be a step from c to c′ where
the node v executes a RBlueIn move. The predicate redOk(v) is verified in c
according to the guard rule.
If redOk(v) is verified in c then BlueStable(v) is verified along any execution
from c because redOk(v) is closed (Corollary 1). �

Corollary 2. blueOk(v) ≡ (∀u ∈ N [v] we have BlueStable(u)). The predicate
blueOk(v) is closed.

If a node v verifying blueOk has a Blue neighbor then along any execution
it will have at least a Blue neighbor (because v’s blue neighbor can only execute
the rule RBlueOut).

Lemma 6. On node v, the predicate blueOk(v) ∧#Blue(v) ≥ 1 is closed.

Proof. The predicate blueOk(v) is closed (Corollary 2).
Let c1 be a configuration where blueOk(v) ∧ #Blue(v) = 1. Let us name
u, the single node of N [v] having the color blue in c1. The node u verifies
¬notRedDom(u) in c1 because redOk(u) is verified.



The node u verifies ¬beNotBlue(u) in c1 because #Blue(v) = 1. So, the node
u is disabled in c1. We conclude that in the reached configuration after any
computation step from c1, we have #Blue(v) ≥ 1.
Let c2 be a configuration where #Blue(v) > 1. We denotes by nb the value of
#Blue(v) in c2. During any computation step from c2, a single node of N [v]
executes a move (because a central daemon is assumed). So, in the reached
configuration, we have #Blue(v) ∈ [nb− 1, nb + 1].
We conclude that #Blue(v) ≥ 1 in c2. �

Lemma 7. Let c→ c′ be a computation step where a node v executes a RBlueIn
move. There is at least a node u such that (1) the predicate blueOk(u)∧#Blue(u) ≥
1 is not verified in c but (2) it is verified in c′.

Proof. Let cs be a step from c1 to c2 where a node v executes a RBlueIn move.
Assume that beBlue2(v) is verified in c. We have #Blue(v) = 0 in c. The pred-
icate blueOk(v) is verified in c. The predicate blueOk(v) is closed (Corollary 2).
As v is the single node to execute an action during cs; blueOk(v)∧#Blue(v) = 1
is verified, in c′ but not in c.
Assume that beBlue1(v) is verified in c. In c, v has a neighbor u verifiying
#Blue(u) = 0 and isolatedRed(u). The predicate blueOk(u) is verified in c
because (isolatedRed(u) ⇒ blueOk(u)). As v is the single node to execute an
action during cs; blueOk(u) ∧#Blue(u) = 1 is verified, in c′ but not in c. �

Theorem 2. Along any execution, there is at most n RBlueIn moves and 2n
RBlueOut moves.

Proof. After a RBlueIn move a new node u verifies the predicate blueOk(u) ∧
#Blue(u) ≥ 1 (Lemma 7). As this predicate is closed (Lemma 6), we conclude
that any execution has at most n RBlueIn moves.
On a node, the number of RBlueOut moves is at most the number of RBlueIn
moves plus one more. We conclude that any execution has at most 2n RBlueIn
moves. �

6 Self-stabilizing algorithm building two disjoint MDSs

The algorithm 2 builds the sets RedSet and BlueSet. These set are two disjoint
MDSs. The algorithm 2 is a self-stabilizing algorithm in the distance-2 model
under a central daemon; the two disjoint MDSs are built in less than 2n moves

A node v belongs to RedSet (resp. BlueSet) if and only if color(v) = red (resp.
color(v) = blue). As, the membership to one of these sets is determined by the
value of a single variable shared: color; the intersection of RedSet and BlueSet
is empty. Moreover, macros #Red(u) and #Blue(u) may also be considered as
expressions in the expression model.

The construction of RedSet has priority over the construction of BlueSet. If
a node v has not a closed neighbor belonging to RedSet (i.e. the predicate



notRedDom(v) is satisfied) then v can join the RedSet (i.e. the guard of the rule
RRedIn is satisfied). If every nodes of closed neighborhood of v has several nodes
belonging to RedSet and v belongs to RedSet (i.e. the predicate beNotRed(v)
is satisfied) then v can quit RedSet (i.e. the guard of the rule RRedOut or the
guard the rule RBlueIn is satisfied).

Algorithm 2: self-stabilizing construction of two disjoint MDSs

Variable of v shared

• color(v) ∈ {red, blue,⊥}

Macros on v
• #Red(u) is |{w ∈ N [u] | color(w) = red}|
• #Blue(u) is |{w ∈ N [u] | color(w) = blue}|

Predicates on v
• notRedDom(v) ≡ (#Red(v) = 0)

• beNotRed(v) ≡ (∀u ∈ N [v] | (#Red(u) > 1)) ∧ (color(v) = red)

• beNotBlue(v) ≡ (∀u ∈ N [v] | (#Blue(u) > 1)) ∧ (color(v) = blue)

• redOk(v) ≡ (∀u ∈ N [v] | (#Red(u) ≥ 1))

• blueOk(v) ≡
(∀u ∈ N(v) | (color(u) 6= red)∨(#Blue(u) ≥ 1))∧(#Blue(v) ≥ 1)

• canBeBlue(v) ≡ redOk(v) ∧ (color(v) = ⊥)

Rules on v

RRedIn : notRedDom(v) −→ color(v) := red;

RRedOut : beNotRed(v) ∧ blueOk(v) −→ color(v) := ⊥;

RBlueIn : (beNotRed(v) ∨ canBeBlue(v)) ∧ ¬blueOk(v) −→
color(v) := blue;

RBlueOut : redOk(v) ∧ beNotBlue(v) −→ color(v) := ⊥;

If a node v has not a closed neighbor belonging to BlueSet then the predi-
cate ¬blueOk(v) is satisfied. If every nodes of closed neighborhood of v has sev-
eral nodes belonging to BlueSet and v belongs to BlueSet then the predicate
beNotBlue(v) is satisfied. The verification of ¬blueOk(v) (resp. beNotBlue(v))
is not enough to allow the nodev to quit BlueSet (resp. to join it).
A node v can join or quit the set BlueSet (i.e. executing the rule RBlueIn or the
rule RBlueOut) only when the red domination in its neighborhood is certain;
more precisely, when every node in its neighborhood is dominated by at least
node of RedSet (i.e. the predicate redOk(v) is satisfied).
Notice that the condition to join RedSet is not similar to the condition to
join BlueSet. If a red neighbor of node v, u is not dominated by a blue node
(i.e. the following predicate is verified (color(u) = red) ∧ (#Blue(u) = 0) then



¬blueOk(v) is verified. So the node v may join BlueSet even if v is dominated
by a blue node; in the case where one of its red neighbor is not dominated by a
blue node.

The Figure 3 illustrates the algorithm execution. During the first step, the node
u executes the rule RRedIn. Now, RedSet is a minimal dominating set; hence no
red move will be executed during the end of the execution. In the configuration
b, #Blue(v) = 0 and #Blue(z) = 0; so, the node v joins BlueSet, then the node
z does the same move. In the configuration d, #Blue(x) = 0 and color(x) = red
so ¬blueOk(z) is verified, during the last step, w executes the rule RBlueIn.

node in the first MDS node in the second MDS

u v w x y z

configuration a

u v w x y z

configuration b

u v w x y z

configuration c

u v w x y z

configuration d

u v w x y z

configuration e

Fig. 3. an execution of algorithm 2 reaching a terminal configuration

7 Proof of correctness of Algorithm 2

Observation 1 If a node satisfies the predicate notRedDom(v) (resp. ¬blueOk(v))
then color(v) 6= red (resp. color(v) 6= blue).

Lemma 8. In a terminal configuration RedSet and BlueSet are minimal dom-
inating sets.

Proof. A node satisfying the predicate notRedDom is enabled (it can execute
the rule RRedIn). A node satisfying the predicate beNotRed is enabled (it can
execute the rule RBlueIn or the rule RRedOut). We conclude that RedSet is a
minimal dominating set.
Let c be a terminal configuration. In c, the predicate redOk is satisfied by every
node. So, no node satisfies the predicate beNotBlue in c.



Assume that a node v satisfies #Blue(v) = 0, in c. As v is not isolated, we have
|N [v]| > 1.
If color(v) = ⊥ then v can execute the rule RBlueIn from c. So, color(v) = red.
Let u be a neighbor of v, If color(u) = ⊥ then ¬blueOk(u) is satisfied so u can
execute the rule RBlueIn from c.
Therefore, all nodes of N [v] have the color red in c. So ∀w ∈ N [v] we have
#Red(w) > 1. We conclude that v satisfies the predicate beNotRed(v). So, v is
enabled: there is a contradiction.
Hence, in c, every node v satisfies #Blue(v) > 0. We conclude that BlueSet is
a minimal dominating set, as no node satisfies the predicate beNotBlue in c. �

7.1 Convergence of Algorithm 2

After the execution of ROutBlue or ROutRed, a node is disabled forever -
Lemma 12. The execution of RRedIn is the last move of a node - Lemma 14.
Assume that during its first move, a node v executes RInBlue. The second
move of v (if it exists), would be its last one as it would be the execution of rule
RBlueOut or rule RRedIn. So a node v executes at most two moves.

Lemma 9. The predicate redOk(v) is closed for every node v.

Proof. We prove that the predicate #Red(v) ≥ 1 is closed for every node v.
Let c1 be a configuration where #Red(v) = 1. Let u be the single node

of N [v] having the color red in c1. The node u satisfies ¬beNotRed(u), and
¬canBeBlue(u). So, the node u is disabled in c1. We conclude that in the con-
figuration reached after any computation step from c1, we have #Red(v) ≥ 1.
Let c2 be a configuration where nr = #Red(v) > 1. During any computation
step from c2, a single node of N [v] executes a move (because a central daemon
is assumed). So, in the configuration reached after any computation step from
c2, we have #Red(v) ∈ [nr− 1, nr + 1]. We conclude that #Red(v) ≥ 1 in c2. �

Lemma 10. The predicate redOk(v) ∧ #Blue(v) ≥ 1 is closed for every node
v.

Proof. Let c1 be a configuration where redOk(v) ∧#Blue(v) = 1. Let u be the
single node of N [v] having the color blue in c1. The node u satisfies ¬notRedDom(u)
in c1 (because redOk(v)⇒ #Red(u) > 0). The node u satisfies ¬beNotBlue(u)
in c1 (because #Blue(v) = 1). So, the node u is disabled in c1. Therefore in the
configuration reached after any computation step from c1, we have #Blue(v) ≥
1.
Let c2 be a configuration where redOk(v) ∧#Blue(v) > 1. We denoted nb the
value of #Blue(v) in c2. During any computation step from c2, a single node
of N [v] executes a move (because a central daemon is assumed). So, in the
configuration reached after a computation step from c2, we have #Blue(v) ∈
[nb− 1, nb + 1]. So, #Blue(v) ≥ 1 in c2.
We conclude that redOk(v) ∧ #Blue(v) ≥ 1 is closed, as redOk(v) is closed
(Lemma 9). �



Lemma 11. The predicate redOk(v) ∧ blueOk(v) is closed.

Proof. Let c be a configuration where the predicate redOk(v) ∧ blueOk(v) is
satisfied. Let c′ be a configuration reached from c by a single computation step.
In c, we have redOk(v)∧#Blue(v) ≥ 1 by hypothesis. As this predicate is closed
(Lemma 10), in c′ we have redOk(v) ∧#Blue(v) ≥ 1.
Let u be a neighbor of v having the color red in c′. In c, by hypothesis we have
#Red(u) ≥ 1 so the rule RRedIn is disabled on u in c. Therefore the color u in
c is also red. By definition of blueOk(v), we have #Blue(u) ≥ 1, in c. Therefore,
in c′, we have redOk(u)∧#Blue(u) ≥ 1 as this predicate is closed (Lemma 10).
Thus in c′, any neighbor, w of v satisfies the predicate (color(w) 6= red) ∨
(#Blue(w) ≥ 1). We conclude that redOk(v) ∧ blueOk(v) is satisfied in c′. �

If a node v can execute the RRedOut rule or the RBlueOut rule in the
configuration c; then it verifies the predicate (redOk(v) ∧ blueOk(v)) in c and
along any execution from c. So, the guard of rule RRedIn and the guard of the
rule RBlueIn are never verified by v along any execution from c.

Lemma 12. A node is disabled forever after executing the RRedOut rule or the
RBlueOut rule.

Proof. Let cs be a computation step from c to c′ where a node v executes a
RRedOut move or a RBlueOut move. In c, the guard of the RRedOut rule or
the guard of the RBlueOut rule is satisfied.
The predicate redOk(v) is satisfied in c (we have beNotRed(v) ⇒ redOk(v)).
In c, the predicate blueOk(v) is satified as (beNotBlue(v) ⇒ blueOk(v)). The
predicate redOk(v) ∧ blueOk(v) is closed (Lemma 11). The rule RBlueIn and
the rule RRedIn are and stay disabled on v along any execution from c.
The next move by a node v after executing a RRedOut move or a RBlueOut
move would be a RRedIn move or aRBlueIn move because color(v) = ⊥. We
conclude that from c′, v is forever disabled. �

If a node v verifies (#Red(v) = 1 ∧ color(v) = red) in the configuration c;
then v is disabled in c and RRedIn is disabled on any v’s neighbor in c. So, this
predicate is always verified by v along any execution from c.
If this predicate is verified by v then v is disabled; this predicate is verified after
the execution by v of rule RRedIn.

Lemma 13. The predicate #Red(v) = 1 ∧ color(v) = red is closed.

Proof. Let c be a configuration where v satisfies the predicate #Red(v) = 1 ∧
color(v) = red. v is disabled in c because the predicate ¬beNotRed(v) is satisfied.
So after any computation step from c, we have color(v) = red.
In c, the predicate ¬notRedDom(u) is satisfied by any v’ neighbor; they cannot
execute the rule RRedIn in any computation step from c. So after any compu-
tation step from c, we have #Red(v) = 1.
We conclude that after any computation step from c, we have #Red(v) = 1 ∧
color(v) = red. �



Lemma 14. A node v is disabled forever after executing a RRedIn move.

Proof. Assume that in the configuration c, v executes the rule RRedIn to reach
the configuration c′. In c, none v’s neighbors has the color red.
As v is the single node to execute an action during this computation step; in c′,
we have #Red(v) = 1 ∧ color(v) = red.
According to Lemma 13, along any execution from c′, we have #Red(v) = 1 ∧
color(v) = red. We conclude that the node v is and stays disabled along any
execution after its RRedIn move. �

Corollary 3. A node performs at most two moves.

Proof. If the first move of a node v is RRedIn, ROutBlue or ROutRed, it would
be it last move (Lemma 12 and 14).
Assume that the first move of a node v is RInBlue. The second move of v (if it
exists), would be either a RBlueOut move or a RRedIn move. The second move
would be its last one. So v performs at most two moves. �
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