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The consideration of imprecise probability in engineering analysis to account for missing, vague or incomplete data in the description of model uncertainties is a fast-growing field of research. Probability-boxes (p-boxes) are of particular interest in an engineering context, since they offer a mathematically straightforward description of imprecise probabilities, as well as allow for an intuitive visualisation. In essence, p-boxes are defined via lower and upper bounds on the cumulative distribution function of a random variable whose exact probability distribution is unknown. However, the propagation of p-boxes on model inputs towards bounds on probabilistic measures describing the uncertainty on the model responses is numerically still very demanding, and hence is subject of intensive research. In order to provide an overview on the available methods, this paper gives a state-of-the art review for the modelling and propagation of p-boxes with a special focus on structural reliability analysis.

Introduction

Numerical models give an unparalleled insight into the response of the structure under consideration to a set of predefined loading conditions, and hence, allow for a largely virtualized design optimization workflow. Examples of such models include finite element models of structures or thermal systems, but also other numerical schemes aimed at approximating complex multiphysical systems from the nanoscopic to the largest possible level can be considered. However, despite the highly detailed numerical predictions that can be obtained, these results often do not achieve a satisfactory level of agreement with 'reality', i.e., the actual physical behaviour of the considered continuum in the effective operational environment. This discrepancy is caused by epistemic (reducible) and aleatory (caused by variation) uncertainty in the model. Usually, a distinction between model form and parametric uncertainty is made, where the former describes 1 possibly unwarranted approximations of the mathematical description of reality, whereas the latter refers to discrepancies in the parameters of these models with respect to reality. This paper solely focuses on parametric uncertainties. In recent years, several highly performing methods based on stochastic analysis [START_REF] Schuëller | Computational Methods in Stochastic Dynamics, Chapter Model Reduction and Uncertainties in Structural Dynamics[END_REF], fuzzy set theory and interval analysis [START_REF] Faes | Recent Trends in the Modeling and Quantification of Non-probabilistic Uncertainty[END_REF] have been introduced in literature to account for these type of uncertainties in the model parameters x. Also several authors compared the applicability of a selection of these techniques in applications such as Geotechnical engineering (Beer et al., 2013) or inverse uncertainty quantification for stochastic dynamics [START_REF] Broggi | Comparison of Bayesian and interval uncertainty quantification: Application to the AIRMOD test structure[END_REF], (Faes et al., 2019).

Probabilistic analysis

Probabilistic analysis is a powerful and mature tool to deal with aleatory uncertainties in numerical analyses. In order to express aleatory uncertainty in the model parameters, they are usually modelled as random variables, denoted by X = (X 1 , . . . , X nx ) with support domain D X ⊆ D x . Their values are outcomes of a random experiment where a probability P can be assigned to X taking a value within a specific measurable set that is a subset of D X . The probability that X is less than or equal to x is modelled as a joint cumulative distribution function (CDF) F X (x) = P (X 1 ≤ x 1 , . . . , X nx ≤ x nx ) for x ∈ D X . Its derivative is denoted by f X and is known as the joint probability density function (PDF). Since the inputs of the model are represented by a random vector, it follows that the model responses become random variables Y , which are distributed according to the (generally unknown) CDF F Y . Note that F X and F Y in general do not belong to the same family of distribution functions.

Let M represent a function that maps a set of n x input parameters x ∈ D x ⊆ R nx , with D x a set of feasible input parameters (e.g., non-negative Young's moduli or contact stiffness values), to a set of n y output parameters y ∈ R ny via following relationship:

y = M(x), (1) 
where M may represent numerical model that provides a discretized approximation of the continuum physics that describe the modelling problem at hand. Usually, given f X , an analyst is then interested in computing the expected value of some random variable H(X), i.e., E[H(X)].

Here, E is the expected value operator and H is a function defined on D X . Typically, in this context, H is used to compute the nth central moments of Y , with n ∈ N. Hereto, H represents the component-wise exponentiation of the model responses y = M(x), i.e., H(x) = y n , or

H(x) = (y -µ Y ) n with µ Y = E[Y ]
. In an engineering context, an analyst is mostly interested into whether their design, be it a structure, system or a complex network, will perform reliability given the uncertainties in their manufacturing and operating conditions. Usually, the probability of failure is estimated in this context to assess the reliability of their design. The probability of failure can be computed as p f = P (M(X) ≤ 0), where M with n y = 1 represents a performance function that indicates whether the design failed (M(x) ≤ 0) or not (M(x) > 0) for x ∈ D X .

In this context, H(x) is defined as H(x) = I M (x) with I M the indicator function that has value 1 in case M(x) ≤ 0, x ∈ D X , and 0 otherwise. Overall, the expected value of H(X) is determined by solving an integral equation of the following form:

P = D X H(x)f X (x) dx, (2) 
where P = E[H(X)] denotes, depending on the definition of H. For the remainder of the paper, the notation H is used to abstract the specific application (i.e., calculation of the moments or failure probability approximation) from the method that is being discussed. While at first sight it might be tempting to solve this equation using numerical quadrature schemes, such solutions become quickly unfeasible with respect to the non-linearity of the limit state function and/or the number of considered random variables [START_REF] Schuëller | Benchmark study on reliability estimation in higher dimensions of structural systems -An overview[END_REF], even though lower/upper bounds [START_REF] Marti | Approximation and derivatives of probabilities of survival in structural analysis and design[END_REF] or approximate solutions [START_REF] Taflanidis | Analytical approximation for stationary reliability of certain and uncertain linear dynamic systems with higher-dimensional output[END_REF] exist in certain cases. In general, even integrating just the joint PDF (i.e., H = 1) is not so trivial by quadrature, as they tend to be extremely non-linear, especially when the random variables are highly correlated. Therefore, Eq. ( 2) is usually solved by asymptotic approximations [START_REF] Breitung | Asymptotic approximations for probability integrals[END_REF] or advanced simulation methods such as subset simulation [START_REF] Au | Estimation of small failure probabilities in high dimensions by subset simulation[END_REF], directional importance sampling [START_REF] Misraji | Application of directional importance sampling for estimation of first excursion probabilities of linear structural systems subject to stochastic Gaussian loading[END_REF] or the probability density evolution method [START_REF] Li | The probability density evolution method for dynamic response analysis of non-linear stochastic structures[END_REF]) in case of stochastic dynamics.

Imprecise probabilistic analysis

In most real-life applications, an analyst has only partial information about F X or f X due to the presence of epistemic uncertainty. This is a result of the often imprecise, diffuse, fluctuating, incomplete or vague nature of the available information. Moreover, the available information might be objective or subjective and consist of collected data (e.g., via experiments or data mining) and theoretical knowledge on the considered problem, but also expert opinions with different levels of trustworthiness (Beer et al., 2013). Some illustrations of such situations can be found in the benchmark study presented in (Oberkampf et al., 2004). In engineering analysis, the main challenge is then to formulate suitable models that incorporate these various sources of data in an objective way, without introducing unwarranted conclusions and/or ignoring significant information to ensure that the calculated results do not deviate from reality. The class of imprecise probabilistic approaches attempts to solve this general problem and includes a plethora of different methods, including Bayesian methods [START_REF] Faber | On the Treatment of Uncertainties and Probabilities in Engineering Decision Analysis[END_REF][START_REF] Kiureghian | Aleatory or epistemic? Does it matter?[END_REF][START_REF] Veneziano | Decision making with epistemic uncertainty under safety constraints: An application to seismic design[END_REF][START_REF] Bi | The role of the Bhattacharyya distance in stochastic model updating[END_REF], random sets [START_REF] Tonon | A random set approach to the optimization of uncertain structures[END_REF][START_REF] Tonon | Using random set theory to propagate epistemic uncertainty through a mechanical system[END_REF]Alvarez et al., 2017), sets of probability measures [START_REF] Fetz | Propagation of uncertainty through multivariate functions in the framework of sets of probability measures[END_REF], evidence theory-based methods (such as Dempster-Shafer Theory) [START_REF] Dubois | Possibility Theory[END_REF][START_REF] Shafer | A Mathematical Theory of Evidence turns 40[END_REF][START_REF] Helton | An exploration of alternative approaches to the representation of uncertainty in model predictions[END_REF][START_REF] Mcgill | Estimating parameter distributions in structural reliability assessment using the transferable belief model[END_REF] and interval probabilities [START_REF] Augustin | Introduction to Imprecise Probabilities[END_REF] of which probability bounds methods [START_REF] Kreinovich | A new Cauchy-based black-box technique for uncertainty in risk analysis[END_REF] and fuzzy stochastic methods (Möller and Beer, 2004a;[START_REF] Beer | Structural reliability assessment with fuzzy probabilities[END_REF] are extensions. Furthermore, a study of Monte Carlo methods for the general case of propagating imprecise probabilities is given for instance in [START_REF] Decadt | Monte Carlo Estimation for Imprecise Probabilities: Basic Properties[END_REF] or [START_REF] Troffaes | Imprecise monte carlo simulation and iterative importance sampling for the estimation of lower previsions[END_REF]. Answering the question on which of these methods is the most appropriate method from this broad class of techniques is in general not possible as the most appropriate mathematical framework depends on the nature of the available information that is available to the analyst. It should be noted that the application of the general framework of imprecise probability theory requires complex mathematical descriptions and methods. Furthermore, due to several restricting assumptions that are required, the methods are sometimes also very hard to translate to engineering practice. For a thorough treatment on the selection of the most appropriate method, the reader is referred to (Beer et al., 2013).

In many engineering applications, simplified imprecise probability models are often preferable for simpler utilization and representation. A popular representative thereof are probability-boxes (p-boxes), which provide a set of possible probability distributions for F X bounded by a lower CDF F X and an upper CDF F X . This type of credal set encompassing the unknown CDF is computationally efficient [START_REF] Hall | Uncertainty-based sensitivity indices for imprecise probability distributions[END_REF], easy to construct [START_REF] Ferson | Constructing Probability Boxes and Dempster-Shafer Structures[END_REF], and offers a simple graphical representation, see Fig. 1. This figure shows the two main types of p-boxes, being parametric and distribution-free p-boxes. Distribution-free p-boxes consider only the upper and lower CDF, and any CDF that complies with these bounds is admissible. Parametric p-boxes on the other hand impose additional constraints on admissible distribution functions, for instance by defining a family of distribution functions. A rigorous and more detailed definition of both types of p-boxes is given in Section 2.1.

Their simpler utilization and representation make the application of p-boxes particularly interesting for engineering analysis. However note that even with all their benefits over other, Figure 1: Illustration of parametric and distribution-free p-boxes. The black lines indicate the graphs of F X and F X , being the bounds on the p-boxes. The dotted lines illustrate a set of admissible distribution functions for F X that constitute the p-box.

more general, imprecise probability models, computations involving p-boxes still require large computational budgets as they incorporate effectively a set of probability distributions that all need to be accounted for. Hence, advanced methods for p-box propagation have been subject to intense research over the past decades and various efficient methods addressing numerous applications of different complexity were proposed. This paper aims at giving an overview of a selection of promising approaches for the propagation of p-boxes in engineering analysis. This is complemented by a introduction to p-boxes showing their relationship to related imprecise probability models including their translation, and capabilities how to construct p-boxes based on given information.

A guideline to read this paper 2 Probability boxes

In the following two sections, the case n x = 1 is considered for notational simplicity. This is furthermore warranted since most engineering literature on the subject, as will be clear from Section 3, either considers the univariate case of n x = 1, or when n x > 1 full independence among all X i , i = 1, . . . , n x , with F X (x) = nx i=1 F X i (x i ), x ∈ D X . For more information on the general modeling of multivariate p-boxes including dependence, the reader is referred to (Oberkampf et al., 2004;[START_REF] Montes | Bivariate p-boxes and maxitive functions[END_REF].

Theoretical background

The main idea of a p-box is that there exist a unknown CDF F X of the random variable X for which only bounds can be provided. Thus, a p-box is described by a lower CDF F X ∈ F and an upper CDF F X ∈ F, where F expresses the set of all CDFs on D X ⊆ R. These CDFs are collected as a pair F X , F X which yields a set of possible CDFs

{F X ∈ F | F X (x) ≤ F X (x) ≤ F X (x), x ∈ D X } for the unknown CDF of X.
The definition of a p-box corresponds to defining a lower probability P and upper probability P on events {X ≤ x} = (-∞, x] ∩ D X , i.e., P (X ≤ x) = F X (x) and P (X ≤ x) = F X (x) for x ∈ D X , which yields a credal set of probability measures. Via the p-box framework, the epistemic uncertainty that comes for example from incomplete data on F X (x) is accounted for by assigning an interval F X (x), F X (x) for each value of x ∈ R, see [START_REF] Ferson | Constructing Probability Boxes and Dempster-Shafer Structures[END_REF]. In case sufficient high quality information over the entire range of possible values for x is available to the analyst, F X (x), F X (x) will be a tight interval, and the p-box will be close to a crisp (deterministic) distribution. Otherwise, when less information is available, the bounds may become wider to acknowledge weaker confidence in the results. In case no further assumptions are made concerning the set of possible CDFs, this type of p-box is also denoted a distribution-free p-box. Clearly, this is the most general type of p-box, which allows for the most flexibility in the modelling of parameters subject to aleatory and epistemic uncertainty since any càdlàg function (i.e., non-decreasing and rightcontinuous) that is consistent with these bounds is admissible. Indeed, it can be shown that crisp values, intervals and crisp probability distributions are all special cases of the distributionfree p-box [START_REF] Kreinovich | A new Cauchy-based black-box technique for uncertainty in risk analysis[END_REF]. As a final note, since distribution-free p-boxes are so general in their definition, also CDFs that are questionable from a physical perspective are explicitly included in the definition.

Besides distribution-free p-boxes, there are parametric p-boxes, which are described by a family of CDFs whose parameters θ i ∈ R are unknown up to the property that they must be contained within intervals [θ i , θ i ], i = 1, . . . , n θ . These parameters describe specific distribution properties and are collected in the vector θ ∈ R n θ . The Cartesian product of the intervals is also denoted as D θ , i.e., it holds θ ∈ D θ . Hence, a parametric p-box yields the set of possible CDFs {F X (•, θ) ∈ F | θ ∈ D θ } for the unknown CDF of the random variable X. An example of a parametric p-box can be defined as the Gaussian distribution family with parameters

θ = (µ, σ) contained in D θ = [µ X , µ X ] × [σ X , σ X ].
Parametric p-boxes have the property to clearly distinguish between aleatory uncertainty, represented by the distribution family, and epistemic uncertainty, represented by the intervals for the parameters θ. The upper and lower bounding CDFs of a parametric CDF can be computed as

F X (x) = min{F X (x, θ) | θ ∈ D θ }, (3) 
F X (x) = max{F X (x, θ) | θ ∈ D θ } (4)
for x ∈ D X . Note that the distribution-free p-box defined by these bounds does not correspond to the parametric p-box as the latter one is more restrictive in general, i.e. there are CDF within these bounds not belonging to the family of the parametric p-box. Both types of p-boxes are illustrated in Fig. 1.

In order to account for more information about the shape of CDFs, such as an admissible distribution family, symmetry, or about bounds on one or more statistical moments of F X , a p-box can also be described by a quintuple F X , F X , µ I X , σ I X , F , see (Beer et al., 2013). Here, e.g. the confidence interval of the mean value µ I

x ⊆ [-∞, ∞], the confidence interval σ I

x ⊆ [0, ∞] of the standard deviation, and the family of admissible CDFs F ⊆ F can be specified. Note that also a distribution-free p-box can also be represented as a quintuple, noted F X , F X , [-∞, +∞], [0, ∞], F . The p-box framework was recently extended to account for imprecision in stochastic processes by explicitly accounting for additional epistemic uncertainty in the process' autocorrelation structure [START_REF] Dannert | A probabilitybox approach on uncertain correlation lengths by stochastic finite element method[END_REF]Faes and Moens, 2019a).

In the following subsections, the connection of p-boxes to some closely related uncertainty models for imprecise probabilities is demonstrated. This may help the reader in both understanding the similarities and differences between p-boxes and these models and converting them into p-boxes or vice versa.

Hierarchical probabilistic models

An alternative approach to deal with parametric p-boxes is to apply hierarchical probabilistic models. Following this approach, the epistemic uncertainty related to the parameters θ of the CDF F X (•, θ) are represented using a random variable Θ with distribution F Θ . On the one hand, hierarchical probabilistic models can be regarded as a special case of a p-box where intervals are used to bound possible values of θ. According to possibility theory, these intervals encode the set of all distribution functions bounded by the interval. As such, selecting a single distribution function out of this set introduces knowledge into the analysis that might not be fully objective. On the one hand, parametric p-boxes might be constructed using credible intervals from Bayesian methods along with hierarchical probabilistic models, see Section 3.4. In this case, p-boxes describe an excerpt of this modelling where the tails of F Θ are neglected.

Using hierarchical probabilistic models, the effect of the epistemic uncertainty on the probabilistic measure under consideration depends on the applied propagation schemes. For instance, when re-weighting schemes such as presented in (Wei et al., 2019a,b;Faes et al., 2020) are applied to infer the bounds, this is not problematic since they allow for a clear separation between aleatory and epistemic uncertainty. In these types of methods, the distribution F Θ is a purely instrumental tool to determine a functional relationship between P and θ, the influence of which is integrated out of the result in later stages of the analysis, see Section 4. However, when this single distribution is used to make strong inference on the bounds of P, e.g., via sampling, this will lead to inherent bias on the results of the analysis.

Random sets

A p-box can be regarded as a special case of a random set, which has important implications for some of the propagation methods explained in Section 4. To see this, consider a probability space (Ω, F Ω , P Ω ) and a subset K X of the power set of D

X ⊆ X. A random set Γ X is then a mapping Γ X : Ω → K X , α → Γ X (α), where each Γ X (α) ∈ K X ,α ∈ Ω, is called a focal element. When distribution-free p-boxes are defined as Γ X (α) = F -1 X (α), F -1
X (α) for α ∈ Ω and Ω = [0, 1] with uniform probability distribution, they are a specific case of random sets, see [START_REF] Alvarez | On the calculation of the bounds of probability of events using infinite random sets[END_REF]. Furthermore note that for finite K X , random sets correspond to a Demspter-Shafer structures, see also [START_REF] Alvarez | On the calculation of the bounds of probability of events using infinite random sets[END_REF].

Since a random set is not capable of representing a single distribution family, a direct relationship with parametric p-boxes cannot be established [START_REF] Patelli | Uncertainty Management in Multidisciplinary Design of Critical Safety Systems[END_REF]Alvarez et al., 2017). Conversion is possible however by first converting the parametric p-box into a distribution-free p-box, see Eq. ( 3) and (4). Moreover, Γ X (α) can also be defined directly here via the inverse distributions of the family

F X (•, θ), θ ∈ D θ , i.e., Γ X (α) = min θ∈D θ F -1 X (α, θ), max θ∈D θ F -1 X (α, θ) , (5) 
as shown in (Alvarez et al., 2017).

Fuzzy probabilities

An extension to the p-box is provided by fuzzy probabilities, which allow for considering a fuzzy set of probability models, each having their own level of plausibility according to the available information (Beer et al., 2013). According to this framework, the fuzzy membership function serves as an instrument to combine various plausible intervals [F α X (x), F α X (x)], α ∈ [0, 1], for x ∈ D X to define distribution-free p-boxes in a single scheme, and hence, allows for assessing the sensitivity of the bounds P α and P α of P. Indeed, sensitivities of P are found by considering the rate of change of the bounds on the interval with respect to the size of the input intervals represented in the fuzzy numbers. It holds [

F α i X (x), F α i X (x)] ⊆ [F α j X (x), F α j X (x)], x ∈ D X and therefore [P α i , P α i ] ⊆ [P α j , P α j ] for 0 ≤ α j ≤ α i ≤ 1.
Furthermore, the concept can be also applied to parametric p-boxes, see (Möller and Beer, 2004b). Here, the fuzzy membership function is used to assign an α-level to the parameters θ of F X (•, θ). Then, the same analysis can be conducted as for distribution-free p-boxes. As the methods discussed further in the paper, which are developed for p-boxes, can always be applied to fuzzy probabilities in an α-cut sense, the latter are not discussed in more detail.

Construction of p-boxes for engineering analysis

This section provides an overview how distribution-free and parametric p-boxes can be constructed based on given information. Here, a distinction is made between the three types of information: incomplete or imprecise distribution properties, datasets, or multiple sources of p-boxes. In the following, the focus is put on distribution-free p-boxes first. They are recommended when there is no knowledge in favour of a particular distribution family. If this information is available but the parameters θ of F X (•, θ) are unknown, parametric p-boxes are preferred. A guide to find an appropriate construction method is provided in Table 1.

Furthermore note that distribution-free p-boxes can be always constructed as an approximation or an actual conversion of uncertainty models yielding lower and upper probabilities for events X ≤ x, see Section 2. For a general introduction on the construction of p-boxes, the reader is referred to [START_REF] Ferson | Constructing Probability Boxes and Dempster-Shafer Structures[END_REF], where most of the approaches presented in the following are included. A comparison of selected methods can be found, e.g. in [START_REF] Montgomery | Bayesian Probability Boxes in Risk Assessment[END_REF][START_REF] Schöbi | Surrogate models for uncertainty quantification in the context of imprecise probability modelling[END_REF].

Incomplete distribution properties

In the case that only a limited number of distribution properties are known, like its shape or support, moments, or quantiles, various methods to construct a p-box are available, see [START_REF] Ferson | Constructing Probability Boxes and Dempster-Shafer Structures[END_REF]. These methods use the information about the distribution properties to derive proper bounds on the distribution. Often, they are based on well-known statistical inequalities. In the following, three methods addressing the support D X and the first two moments of a random variable X are presented exclusively. These assume limited but precisely known distribution properties.

Support

If only the support of a distribution is known, the interval D X = [x, x] can be used as a representation in case the support is bounded. This corresponds to a p-box described by two unit step functions H x and H x at its minimum and maximum values x and x, i.e., F X (x) = H x (x) and F X (x) = H x (x) for x ∈ D X .

Mean and variance

If the values of the mean µ X and the variance σ 2 X are known, the two-sided Chebyshev's inequality can be used to construct a p-box as described in [START_REF] Oberguggenberger | Reliability bounds through random sets: Non-parametric methods and geotechnical applications[END_REF], i.e.,

F X (x) = 0 for x < µ + σ, 1 -σ 2 (x-µ) 2 , for x ≥ µ + σ, (6) 
F X (x) = σ 2 (x-µ) 2 , for x < µ -σ, 1, for x ≥ µ -σ. (7) 
for x ∈ D X . Instead of Chebyshev's inequality, Cantelli's inequality is used to construct a p-box based on the mean and variance in [START_REF] Troffaes | A cantelli-type inequality for constructing nonparametric p-boxes based on exchangeability[END_REF].

Mean, variance, and support

If both its bounded support D X and its first two moments are known, the p-box bounds can be formulated as

F X (x) =              0 for x ≤ µ + σ 2 µ-x , 1 -b(1+a)-c-b 2 a for µ + σ 2 µ-x < x < µ + σ 2 µ-x , 1 1+ σ 2 (x-µ) 2 for µ + σ 2 µ-x ≤ x < x, 1 for x ≥ x, (8) 
F X (x) =            0 for x ≤ x, 1 1+ (x-µ) 2 σ 2 for x < x ≤ µ + σ 2 µ-x , 1 -b 2 -ab+c 1-a for µ + σ 2 µ-x < x < µ + σ 2 µ-x , 1 for x ≥ µ + σ 2 µ-x , (9) 
where a =

x-x x-x , b = µ-x x-x , c = σ 2 (x-x) 2
, see e.g. (Zhang et al., 2013). Eq. ( 8) and ( 9) are based on the one-sided Chebyshev's inequalities and are tighter compared to the bounds in Section 3.1.1 and 3.1.2.

Dataset

In case limited information about the probability distribution is available in form of a dataset X ⊂ R nx , the properties that are used in the methods of Section 3.1 can be estimated. In order to account for this estimation however, these methods need to be slightly adapted to inform the p-boxes, as described in [START_REF] Saw | Chebyshev Inequality with Estimated Mean and Variance[END_REF][START_REF] Troffaes | A cantelli-type inequality for constructing nonparametric p-boxes based on exchangeability[END_REF] for the sample mean and sample variance. Moreover, there are also methods which do not require an estimation of distribution properties for a given dataset: the methods of Kolmogorov-Smirnoff confidence bounds and robust Bayes. They are widely used in literature and are described briefly below. Note that data-based methods generally do not provide absolute bounds for p-boxes due to their nature, e.g. by using a confidence level smaller than 1 to avoid conservatism.

Distribution support estimation

In case very few data-points are available, estimating the bounds of the support of the pbox might be the only option for an analyst. This estimation can for instance be based on worst-case likelihood estimation [START_REF] Crespo | On the quantification of aleatory and epistemic uncertainty using Sliced-Normal distributions[END_REF], potentially in combination with Bayesian approaches [START_REF] Imholz | Robust uncertainty quantification in structural dynamics under scarse experimental modal data: A bayesian-interval approach[END_REF]. Scenario optimization [START_REF] Campi | A General Scenario Theory for Nonconvex Optimization and Decision Making[END_REF] can also be used in this context to obtain bounds with a proven degree of robustness under mild assumptions.

Kolmogorov-Smirnoff confidence bounds

Given a dataset X with N samples, an empirical distribution F X can be computed. Then, Kolmogorov-Smirnoff (K-S) confidence bounds for F X define the bounds of a p-box as proposed in [START_REF] Ferson | Constructing Probability Boxes and Dempster-Shafer Structures[END_REF]. For x ∈ D X , it holds

F X (x) = min(1, max(0, F X (x) -D α N )), (10) 
F X (x) = min(1, max(0, F X (x) + D α N )), (11) 
where D α N is a K-S critical value at significance level α for a dataset with N samples which can be found in [START_REF] Kolmogoroff | Confidence Limits for an Unknown Distribution Function[END_REF].

Robust Bayes

Furthermore, a p-box can be obtained by using robust Bayes methods, introduced by [START_REF] Berger | Statistical Decision Theory and Bayesian Analysis[END_REF]. Here, the basic idea is to consider the parameters θ also as random variables expressed in Θ and to apply standard Bayesian inference to all plausible likelihood functions L(•, X ) and all plausible prior distributions. Here, f Θ denotes the PDF of the prior and L(•, X ) is the likelihood of observing X depending on the incorporated distribution family F X (•, θ). This implies a class of posterior PDFs of Θ, denoted by f Θ (•|X ), via Bayes theorem

f Θ (θ|X ) = L(X , θ) D Θ L(X , θ)f Θ (θ) dθ f Θ (θ) (12) 
and pairwise combination. Then, a p-box can be constructed by the envelope of all resulting CDFs using Bayesian point estimates, see (Schöbi and Sudret, 2017a), or credible intervals/regions like discussed in Section 3.4.2, see [START_REF] Montgomery | Bayesian Probability Boxes in Risk Assessment[END_REF]. Moreover, a Bayesian pointwise approach that considers specific percentiles of all resulting CDFs can be used for the construction of a p-box as well, see [START_REF] Aldenberg | Uncertainty of the Hazardous Concentration and Fraction Affected for Normal Species Sensitivity Distributions[END_REF].

Aggregation of p-boxes

In the methods above, the intention was to obtain a p-box based-on given information. If there are already n p p-boxes [F (j)

X , F

X ] available to describe a single quantity, aggregation methods can be used. In the following, three popular methods, namely the envelope, intersection, and mixture strategy, are reviewed. For further methods, the reader is once again referred to [START_REF] Ferson | Constructing Probability Boxes and Dempster-Shafer Structures[END_REF].

Envelope and intersection

If there are multiple p-boxes of which it at least one encompasses the unknown CDF of X, but there is no information which p-boxes really encompass it, the envelope strategy can be used.

Here, an envelope p-box is defined as

F X (x) = min{F (j) X (x) | j = 1, . . . , n s }, (13) 
F X (x) = max{F (j) X (x) | j = 1, . . . , n s } (14)
for x ∈ D X . This corresponds to a conservative modelling. Opposite to the envelope strategy, there is the intersection strategy for which all available p-boxes are considered as reliable. Here, the intersection of all p-boxes is used, see [START_REF] Ferson | Constructing Probability Boxes and Dempster-Shafer Structures[END_REF]. For this strategy, the min and max operators in Eq. ( 13) and ( 14) are exchanged.

Mixture

If there are multiple p-boxes which were constructed for specific situations that suffer under variability, the mixture strategy can be used for the condensation in a single p-box. Here, the idea is to use weights w j > 0 with W = ns j=1 w j to express the relative frequencies. Then, the mixture p-box is defined as

F X (x) = 1 W ns j=1 w j F (j) X (x), (15) 
F X (x) = 1 W ns j=1 w j F (j) X (x) (16) 
for x ∈ D X . A special case are even weights, e.g., w j = 1, j = 1, . . . , n s with W = n s , which correspond to an arithmetic averaging of the p-boxes.

Parametric p-box construction

In order to construct a parametric p-box, the distribution family must be known. Hence, the problem of constructing a p-box reduces to establishing bounding intervals for the corresponding parameters θ of F X (•, θ). Usually, these intervals are assumed or estimated for a given dataset, see the methods below. Note that all methods to obtain a parametric p-box can be also used to build a distribution-free p-box by using Eq. ( 3) and (4) which yield the envelope of the parametric p-box.

Bounds on distribution parameters

In case bounds on the parameters θ are available, e.g., from expert knowledge, the intervals for these parameters can be specified directly. For lower bounds θ i and an upper bounds θ i , i = 1, . . . , n θ their domain is denoted by D θ (see Section 2.1). If there are n s sources that provide different intervals, aggregation methods similar to Section 3.3 could be used, e.g., an envelope of all candidate domains D (j)

θ , where θ i = min{θ

(j) i | j = 1, . . . , n s } and θ i = max{θ (j) i | j = 1, . . . , n s }, i = 1, . . . , n θ .

Dataset

Given a dataset X , there are several methods to obtain interval estimates for the parameters θ of F X (•, θ). Popular methods comprise confidence intervals from classical statistics, which cover the unknown, but deterministic parameters with a probability α, or credible intervals from Bayesian statistics, in which the random vector Θ, representing the parameters of the CDF, can be found with a probability α, see [START_REF] Held | Likelihood and Bayesian Inference[END_REF] for further information on their computation. Note that in general independence between the parameters θ needs to be assumed for n θ > 1 in order to obtain interval regions.

Propagation methods for p-boxes

This section discusses commonly applied numerical schemes for propagating p-boxes towards bounds on the n th central moment of the model response to a load and/or the probability of failure of the designed structure, system or complex network. In the case where X is represented as a p-box, a direct calculation of P, as introduced in Eq. ( 2), is no longer possible since a set of PDFs that are consistent with the definition of the p-box has to be considered. Indeed, the consideration of a set of f X causes the probabilistic measure P to become set-valued, too. The solution of this problem requires dedicated numerical procedures, which are described in the proceeding sections.

Double loop approaches

In case X represents a distribution-free p-box, the lower and upper bounds P ≤ P ≤ P can be obtained by solving the following optimization problems:

P = min f X D X H(x)f X (x) dx (17) 
and:

P = max f X D X H(x)f X (x) dx. ( 18 
)
Note that these optimization problems are potentially very complicated since the optimization has to be carried out over the set of all possible f X consistent with the definition of the p-box.

Hence, this constitutes a non-convex, discontinuous optimization problem, which are notoriously difficult so solve exactly. In certain cases, tighter bounds on P can be obtained by means of linear programming, without having to construct the probability bounds of the input random variables [START_REF] Liu | Structural reliability analysis based on probability and probability box hybrid model[END_REF][START_REF] Wang | Computing tight bounds of structural reliability under imprecise probabilistic information[END_REF].

A first approach simplify the optimization problems is to slice the p-box in order to transform the above problem into the propagation of a large number of intervals, each having a corresponding probability mass, which are then propagated through M to infer bounds on P. The propagation of intervals is a well-understood problem in the context of uncertainty propagation [START_REF] Faes | Recent Trends in the Modeling and Quantification of Non-probabilistic Uncertainty[END_REF]. However, following this approach the required number of evaluations of Eq. ( 1) scales exponentially with n x [START_REF] Zhang | Interval Monte Carlo methods for structural reliability[END_REF]. This led to the development of methods such as interval Monte Carlo simulation [START_REF] Zhang | Interval Monte Carlo methods for structural reliability[END_REF] or interval Quasi Monte Carlo simulation (Zhang et al., 2013). These methods manage to break this exponential scaling of the computational cost by bounding P using following formulations:

P = 1 n N k=1 H(r k ), (19) 
P = 1 n N k=1 H(r k ) ( 20 
)
with H(r k ) and H(r k ) defined as:

H(r k ) = max{H(x) | F -1 X (r k ) ≤ x ≤ F -1 X (r k )}, (21) 
H(r k ) = min{H(x) | F -1 X (r k ) ≤ x ≤ F -1 X (r k )}. ( 22 
)
The parameters r k , j = 1, . . . , N are realisations of a sample of N independent and identically distributed (i.i.d.) random variables according to a multivariate standard uniform distribution. As is clear from these equations, a large number of model evaluations is still required to estimate of the bounds on P with sufficiently small variance, especially since an interval propagation problem (Eq. ( 21)) has to be solved for each r k . Note that in the general case, this interval problem has to be solved using global optimization approaches to accommodate possible non-convexity in M with respect to x and/or θ [START_REF] Qiu | Anti-optimization of structures with large uncertain-butnon-random parameters via interval analysis[END_REF]. Further improvement in computational efficiency can be obtained by resorting to efficient interval propagation schemes such as those based on Bernstein polynomials [START_REF] Zettler | Robustness analysis of polynomials with polynomial parameter dependency using Bernstein expansion[END_REF][START_REF] Crespo | Reliability analysis of polynomial systems subject to p-box uncertainties[END_REF], Cauchy deviates [START_REF] Kreinovich | A new Cauchy-based black-box technique for uncertainty in risk analysis[END_REF]) (as recently applied in [START_REF] Calder | Quantification of Incertitude in Black Box Simulation Codes[END_REF] and [START_REF] De Angelis | Black-box propagation of failure probabilities under epistemic uncertainty[END_REF]), the Transformation method [START_REF] Hanss | Applied Fuzzy Arithmetic[END_REF] or Taylor series expansion methods [START_REF] Neher | From Interval Analysis to Taylor Models -An Overview[END_REF][START_REF] Enszer | Probability bounds analysis for nonlinear dynamic process models[END_REF]. Further improvements in terms of efficiency can be obtained by using saddle-point approximations, as introduced in [START_REF] Xiao | Saddlepoint approximationbased reliability analysis method for structural systems with parameter uncertainties[END_REF]. A more general version of the interval Monte Carlo approach was introduced by Alvarez in [START_REF] Alvarez | On the calculation of the bounds of probability of events using infinite random sets[END_REF][START_REF] Alvarez | A Monte Carlo-based method for the estimation of lower and upper probabilities of events using infinite random sets of indexable type[END_REF] based on random sets (see also subsection 2.3). The main advantage of considering the full random set is that this representation is more general, and hence, intervals and Dempster-Shafer structures can be considered as well in the same framework [START_REF] Alvarez | Estimation of the lower and upper bounds on the probability of failure using subset simulation and random set theory[END_REF]. Furthermore, the framework allows for including efficient sampling schemes, such as e.g., subset simulation [START_REF] Alvarez | Estimation of the lower and upper bounds on the probability of failure using subset simulation and random set theory[END_REF].

In the case of parametric p-boxes, Eq.( 17) and Eq.( 18) can be solved directly since the set of all possible f X is readily parameterized. In this case, for each realisation of these parameters of f X , a reliability problem is solved, for instance for linear limit-state functions using FORM as presented in [START_REF] Du | Unified uncertainty analysis by the first order reliability method[END_REF], or in more general cases using simulation methods. Using simulation methods, even in the simplest case where the p-box describes a set of possible f X by means of interval-valued statistical moments, such calculation can be prohibitively demanding from a numerical standpoint. On the one hand, the calculation of the failure probability for a fixed value of the parameters associated with the stochastic process is quite costly. On the other hand, solving the associated optimization problems in this simple case is far from trivial, as it constitutes a double loop problem, where the inner loop comprises probability estimations, leading to possibly non-smooth behaviour of the objective function due to the inherent variance on the estimator of P. Hence, apart from considering near-trivial simulation models, the propagation of p-box-valued parameters towards the bounds on the probabilistic measure P is computationally intractable. Note that in some very specific cases, analytical solutions are also available (Sadeghi et al., 2020).

Decoupling methods

The class of decoupling methods aims at decoupling the double loop, presented in Eqs. ( 17) and ( 18) by separating the propagation of aleatory and epistemic uncertainties. This class of methods includes techniques based on importance sampling and operator norm theory. Both methods are restricted to parametric p-boxes, more precisely, p-boxes that are constructed by defining some parameters θ of the distribution F X (x|θ) to be interval valued.

Importance sampling-based methods

The core idea of importance sampling based methods is to propagate a single, well-chosen realisation fX of a parameterized p-box (where fX is optimal with respect to a predefined measure), and reweigh the obtained samples of y to infer bounds on P.

A first such method is Extended Monte Carlo simulation, as introduced by (Wei et al., 2019a), which is applicable to the propagation of parameterized p-boxes subjected to epistemic uncertainty in their first two moments, as well as the probability of failure. As a first step, the parameters θ of the p-box, which account for µ x and σ x in the quintuple description, are represented by a subjective probability model

f Θ (θ) = n θ i=1 f Θ i (θ i ).
Then, a local estimation for P, being pf , is derived as:

P(θ) = 1 N N k=1 H(x k ) f X (x k | θ) f X (x k | θ * ) (23) 
which is an unbiased estimator, but highly affected by the selection of θ * . 'Local' in this context denotes that the estimator is derived for a fixed value of θ inside its support θ I . This fixed value, θ * , should be selected such that it minimizes the variance on the estimator P(θ) [START_REF] Wei | Extended monte carlo simulation for parametric global sensitivity analysis and optimization[END_REF], similarly to conventional Importance Sampling, as:

θ * = argmin D θ T (θ, θ * )f Θ (θ) d θ (24) with T (θ, θ * ) = V [H(X)f X (X | θ)/f X (X | θ * )] and V the variance operator with respect to f X (• | θ * ).
The global version of this approach is based on realizations (x k , θ k ), k = 1, . . . , N of a joint sample distributed according to a joint PDF f X,Θ . The estimator P(θ) is in this case expressed as:

P(θ) = 1 N N k=1 H(x k ) f X (x k | θ) f X (x k | θ k ) (25) 
where x k and θ k are generated by applying the correct inverse probabilistic transform to the corresponding variables of a multivariate standard uniform distribution. The global estimator gives a better estimation of P over the entire support of θ, at the cost of lower accuracy around θ * and a higher computational cost, since in this case, also convergence in terms of the effect of θ has to be ensured.

An alternative optimal sampling density to propagate parameterized p-boxes following a reweighted sampling scheme was proposed by (Zhang andShields, 2018, 2019). Following the approach of (Zhang andShields, 2018, 2019), the optimal density should obtained by minimizing the total expected squared Hellinger distance between f X (• | θ) and the optimal sampling density f X (• | θ * ) under an isoperimetric constraint that ensures that the derived optimal sampling density is a valid density function. The main difference with optimal sampling density presented in Eq. ( 24) is that this approach is not aimed at minimizing the variance, but rather that the sampling density is as close as possible to the target density.

Advanced Line Sampling

As an alternative decoupling strategy to deal with p-box valued uncertainty, Advanced Line Sampling was recently introduced (de Angelis et al., 2015). Opposed to 'conventional' line sampling [START_REF] Koutsourelakis | Reliability of structures in high dimensions, part I: Algorithms and applications[END_REF], this approach adaptively looks for the so-called important direction in standard normal space. Furthermore, due to this adaptive refinement, the same important direction can be used for the entire p-box analysis. Additionally, the method allows for reusing samples that are generated within the inner loop to be re-used during other iterations of the outer loop, significantly increasing the computational efficiency [START_REF] De Angelis | Advanced line sampling for efficient robust reliability analysis[END_REF].

Based on these properties, a gain in computational efficiency of a factor of 4 over regular linesampling approaches can be obtained, as reported in [START_REF] De Angelis | Advanced line sampling for efficient robust reliability analysis[END_REF].

Operator norm theory

Operator norm theory provides an alternative pathway to decouple the double loop in Eq. ( 17) and ( 18), as presented first in (Faes et al., 2020) for the case of the class of linear models M.

In case an affine formulation of the imprecise random variables in terms of their parameters is possible, the propagation of the imprecise stochastic load can be performed in a two-step procedure. First, the values of the epistemic parameters that yield an extremum for P are determined by maximizing/minimizing the operator norm. Specifically, the operator norm is computed over the product of the linear mapping provided by the numerical model M with a basis B that represents the auto-correlation of the load on the model:

θ * = argmin θ∈θ I A(θ) p (1) ,p (2) (26) 
θ * = argmax θ∈θ I A(θ) p (1) ,p (2) (27) 
with A = MB, where B can for instance be determined following the well-known Karhunen-Loève expansion (Faes et al., 2020). The operator norm ||A|| p (1) ,p (2) is generally defined as [START_REF] Tropp | Topics in Sparse Approximation[END_REF]:

||A|| p (1) ,p (2) = inf c ≥ 0 : ||Av|| p (1) ≤ |c| • ||v|| p (2) ∀v ∈ R n KL , (28) 
and gives a measure for how much A lengthens vector v in the maximum case. The practical calculation of the operator norm is case dependent. For instance, when considering first excursion problems [START_REF] Soong | Random Vibration of Mechanical and Structural Systems[END_REF][START_REF] Marti | Differentiation of probability functions: The transformation method[END_REF][START_REF] Zhang | First-excursion probability of uncertain structures[END_REF], i.e., P ≡ p f , the selection of p (1) → ∞ and p (2) = 2 has been found to be a good choice (Faes and Valdebenito, 2020). In this case, the operator norm corresponds to the maximum L 2 norm of a row of A [START_REF] Tropp | Topics in Sparse Approximation[END_REF]. Then, two failure probabilities, corresponding to p f (θ * ) and p f (θ * ) have to be computed to determine the bounds on P. As such, the double loop is effectively replaced by two deterministic optimizations and two crisp reliability estimations. Gains in computational efficiency with several orders of magnitude have been reported (Faes et al., 2020;Faes and Valdebenito, 2020). The main drawback of the method is the limited scope, since the approach is only applicable to uncertain linear models with epistemic uncertain structural parameters, subjected to imprecisely defined load conditions.

Surrogate modelling for p-boxes

Surrogate models approximate well-selected 'regions' of M by a computationally more efficient surrogate model M(• | a). For instance, in the specific case of reliability analysis, M(• | a) is designed to be highly accurate in the region around the limit state function (i.e., M(x) = 0. This surrogate M, which is parameterized by a vector a ∈ R na , is usually trained by means of an a set of training data {(x i , y i ) | i = 1, ..., N } via a supervised learning approach as to minimize the discrepancy between ŷi = M(x i | a) and y i , according to a predefined measure (e.g., in an L 2 sense). These training data are generated either a priori (e.g., in case of sensitivity analysis) or enriched following active learning approaches (Marelli and Sudret, 2018a;[START_REF] Lelièvre | AK-MCSi: A Kriging-based method to deal with small failure probabilities and time-consuming models[END_REF], which is most commonly applied in the field of reliability analysis. Examples of such maps to represent M that have been used in the context of propagating p-boxes include Gaussian process models (Zhang et al., 2019) (also known as Kriging), polynomial response surface models [START_REF] Sofi | Propagation of uncertain structural properties described by imprecise Probability Density Functions via response surface method[END_REF] or techniques based on Taylor series expansions [START_REF] Gao | Hybrid probabilistic interval analysis of bar structures with uncertainty using a mixed perturbation monte-carlo method[END_REF]. Also adaptive schemes based on Kriging have been introduced in literature (Schöbi and Sudret, 2017a) that are applicable to both parametric and distribution-free p-boxes. In this section, three classes of methods are explained in detail that are highly promising from an engineering point of view due to their 'black-box' nature (i.e., they require no interaction with the inner operations of M), theoretical implications and numerical efficiency. Note that in essence, each type of surrogate model can be used in combination with a double-loop approach since they are very cheap to evaluate. The selection of the appropriate type of surrogate model in fact only depends on M.

Polynomial Chaos Expansions & Kriging models

Polynomial chaos expansion (PCE) and Kriging are two widely used surrogate modelling techniques that approximate M via intricate regression schemes. In general, PCE and Kriging have different fields of application in the propagation of uncertainties. On the one hand, if the analyst is interested in propagating uncertainty in general (e.g., when H(x) = (yµ Y ) n ) PCE generally is better suited. Conversely, when considering reliability analysis, Kriging approaches are generally more performing since they allow for performing active learning [START_REF] Lelièvre | AK-MCSi: A Kriging-based method to deal with small failure probabilities and time-consuming models[END_REF][START_REF] Angelikopoulos | X-TMCMC: Adaptive kriging for Bayesian inverse modeling[END_REF][START_REF] Ling | Efficient methods by active learning kriging coupled with variance reduction based sampling methods for time-dependent failure probability[END_REF], even though active learning approaches for PCE have also been introduced (Marelli and Sudret, 2018b).

A sparse PCE surrogate model is given by:

M(x | a) = α∈A a α φ α (x), (29) 
where φ α are multivariate orthonormal polynomials and A ⊂ N nx is a finite set of multi-indices that is obtained by sparse decomposition. In (Schöbi and Sudret, 2017b), distribution-free pboxes are propagated in a two-level approach in which first M, and second M and M (in the sense of Eq (21) and ( 22)) are substituted using sparse PCE. The training set is generated for an auxiliary input vector X and least angle regression (LARS) is used for training. In case of parametric p-boxes, it is proposed in [START_REF] Liu | Efficient uncertainty propagation for parameterized p-box using sparse-decomposition-based polynomial chaos expansion[END_REF] to model the sparse PCE coefficients a α as quadratic polynomial functions of the parameters θ of the p-box and using a double-loop sampling for the propagation.

Whereas PCE methods focus on the global behaviour of M and are therefore suitable for a general propagation of p-boxes, Kriging methods focus on a local behaviour of M and are therefore often preferred for reliability analysis. Indeed, in this context, a high accuracy in the vicinity where {M = 0} is especially crucial. Using Kriging, a surrogate M for the limit-state function is considered to be a realization of a Gaussian process. It is:

M(x | a) = β T a ψ(x) + Z a (x, ω), (30) 
where the first term, consisting of coefficients β a and regression functions ψ, is the mean value of the process, and the second term is a zero-mean, stationary Gaussian process, characterized by a variance and an auto-correlation function depending on a. Similar to above, a two-level approach in which first M, and second M and M are substituted is considered for distributionfree p-boxes in (Schöbi and Sudret, 2017a). Here, adaptive Kriging Monte Carlo simulation (AK-MCS) is used for an accurate estimation of the failure probabilities and random slicing is used to obtain P and P, see Eq. ( 19) and (20). Also in (Schöbi and Sudret, 2017a), a failure probability P(θ) which depends on the parameters θ is estimated via AK-MCS and efficient global optimization (EGO) for parametric p-boxes. A similar, but more detailed, Kriging-based procedure for parametric p-boxes is also described in [START_REF] Xiao | Adaptive kriging-based efficient reliability method for structural systems with multiple failure modes and mixed variables[END_REF].

High-dimensional model representation based methods

The Extended Monte Carlo framework, as introduced in Section 4.2.1 allows for propagating parametrized p-boxes by a single probabilistic simulation and a reweighting step. Nonetheless, still a considerable number of evaluations of M are required, which might impede practical applications. Therefore, in (Wei et al., 2019a), both the local and global Extended Monte Carlo methods were integrated with a high-dimensional model representation (HDMR) decomposition of M as a surrogate modelling strategy. Following a HDMR deceomposition, P can be represented as:

P(θ) = p f,0 + n θ i=1 p f,i (θ i ) + 1≤i<j≤d p f,ij ([θ i , θ j ]) + . . . + p f,12...n θ (θ). (31) 
Note that HDMR decompositions are more widely applicable than to represent P. In the context of propagating p-boxes, in (Wei et al., 2019a), it is proposed to apply a cut-HDMR strategy in combination with the local Extended Monte Carlo Method, allowing for a rigorous estimation of the variances of the estimators, as well as an estimation of the sensitivity of the parameters in θ. Similarly, it is proposed to perform a Random Slicing HDMR decomposition in combination with the Global Method. For the details concerning the implementation of these techniques, as well as the corresponding proofs, the reader is referred to (Wei et al., 2019a). These methods were recently also extended to be applied in combination with Line Sampling in [START_REF] Song | Non-intrusive imprecise stochastic simulation by line sampling[END_REF].

An alternative application of the Sobol-Hoeffding decomposition in the context of propagating imprecise probabilities through numerical models is given by [START_REF] Fina | Polymorphic uncertainty modeling for the simulation of geometric imperfections in probabilistic design of cylindrical shells[END_REF]. In [START_REF] Fina | Polymorphic uncertainty modeling for the simulation of geometric imperfections in probabilistic design of cylindrical shells[END_REF], the authors apply a fuzzy probabilistic approach in the study of designing cylindrical shells under geometric imperfections, which are modelled as a random field. Specifically, imprecision in the auto-correlation structure of the random field is accounted for by means of fuzzy arithmetic, and the S-H decomposition is applied to speed up the corresponding α-level optimization.

Interval predictor models

An interval predictor model (IPM), as introduced in [START_REF] Crespo | Interval Predictor Models With a Linear Parameter Dependency[END_REF], is a type of surrogate model that approximates M by means of an interval-valued map MI (•, θ) : R nx → IR, where IR is the set of all intervals in R. This map can be constructed with a minimal number of assumptions on the mapping provided by M. Specifically, MI (x, θ) given by: MI (x, θ) = y = θ T φ(x) | θ ∈ θ I (32) with φ a basis (e.g., polynomial or trigoniometric), θ the fitting parameters of the IPM and θ I = [θ, θ] an n θ -dimensional hyper-rectangular set. An optimal IPM is constructed by minimizing E (θθ)|φ(x)| . Scenario Optimization [START_REF] Campi | A General Scenario Theory for Nonconvex Optimization and Decision Making[END_REF] can be used to judge the generalization properties of the IPM. In case the corresponding optimization problem is convex, the reliability R of the IPM (i.e., the probability that a future unobserved data point will be contained in the IPM) is bounded by:

P (R ≥ 1 -) > 1 -β, (33) 
where and β are the confidence and reliability parameters, which for our hyper-rectangular model can be obtained from

β ≥ k + n θ -1 k k+n θ -1 i=0 N i i (1 -) N -i , ( 34 
)
where k is the number of data points discarded by some algorithm and can be chosen as a very small number (e.g., = 1 • 10 -06 ). An approach to apply IPMs in the context of propagating parametrized p-boxes is introduced by (Sadeghi et al., 2020). They show that IPMs can be used as surrogate model to speed up the calculation of Eq.( 17) and Eq.( 18), including a strategy to intelligently construct the set {(x i , y i ) | i = 1, ..., N }. Furthermore, they show that the IPM can also be used as a surrogate model for g, which in its turn can be used in combination with importance sampling to determine [P, P]. Other applications include estimating the bounds on P resulting from the surrogate model inaccuracy in a deterministic case (Faes et al., 2019).

The main advantages of these techniques are that (1) they are completely black-box as they don't require any assumption on M and (2) that under the mild assumption of convexity of the training guaranteed reliability bounds on the accuracy are obtained based on the rigorous framework of Scenario Optimization, which was recently extended to non-convex optimization problems too [START_REF] Campi | A General Scenario Theory for Nonconvex Optimization and Decision Making[END_REF]. Unfortunately, active learning of this type of surrogate models is not feasible, since this violates the required assumptions on independence between the training samples (Faes et al., 2019).

Concluding discussion

As an attempt to create some clarity in the applicability of the multitude of available methods for the propagation of p-boxes, Table 2 summarizes the discussed methods, including their class, limitations and to which type of p-box they are applicable. Note that no precise statements on accuracy and/or numerical efficiency are given, as these depend fully on the problem under consideration. For instance, for linear models, the operator norm will undoubtedly give the best results from all 'direct' solution methods, as it reduces the solution of the problem to two deterministic optimization problems and two reliability analyses. On the other hand, for highly nonlinear problems, this method will fail, and potentially methods based on surrogate modelling will outperform the other methods. To make a fully fair comparison between these methods in this respect, a dedicated benchmark is study is required, which falls outside the scope of this paper. It should be noted, however, that in case there is no prerogative to use the numerical model, the computational efficiency of propagating imprecise probabilities with surrogate modelling approaches is orders of magnitude higher as compared to the approaches that directly use the numerical model. This is particularly true when advanced active learning methods such as AK-MCS [START_REF] Lelièvre | AK-MCSi: A Kriging-based method to deal with small failure probabilities and time-consuming models[END_REF] are applied in the context of reliability analysis.

Generally, optimization approaches such as double loop or sampling methods provide inner approximations of the bounds on P f as they generate realisations within [F X (x), F X (x)] and try to approach P, respectively P from the inside-out [START_REF] Patelli | Uncertainty Management in Multidisciplinary Design of Critical Safety Systems[END_REF]. Note that, in case distribution-free p-box methods such as those based on random sets are applied to parametric p-boxes, this effectively constitutes an outer approximation.

Conclusions

The development of highly efficient approaches to perform engineering computations with imprecise probabilities, represented as p-boxes, is a quickly expanding field of research. The main

  

Table 1 :

 1 An overview where an appropriate p-box construction method can be found based on the given information and p-box type.

	type	distribution-free p-box	parametric p-box
	incomplete distribution information mean, variance, support: Sec. 3.1 parameters: Sec. 3.4.1
	dataset	Sec. 3.2	Sec. 3.4.2
	multiple sources	Sec. 3.3	

Depending on the need of the reader, this paper can be used in several ways. For instance, a newcomer in the field of imprecise probabilities and/or p-boxes might use the entire manuscript to get the overall ideas on the methods, as well as obtain the references to recent key works in the field. In this case, it is recommended to consider all sections of the paper. On the other hand, an analyst that is knowledgeable with imprecise probabilities, but is unsure how to model them based on available data will gain most from the information in Section 3. Conversely, if an analyst is unsure which state-of-the-art propagation method is best applicable for their problem, they are kindly referred to Section 4 and the references therein included. To give the full overview; Section 2 describes the theoretical foundations of p-boxes and their analysis. Section 3 discusses the construction of p-boxes based on various sources of information. Section 4 highlights a selection of developments for the propagation of p-boxes, published during the last few years and ends with a summarizing table. Finally, Section 5 lists the conclusions of this paper.

More general imprecise probability models can be considered too, please refer to Section

2.3 for more information
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No adaptive refinement (Sadeghi et al., 2020 challenge in this context is to overcome the required double loop propagation framework to estimate the bounds on probabilistic measures of the structure under consideration (such as, e.g., the probability of failure). Apart from near-trivial numerical simulation models, such double loop calculations are computationally intractable without resorting to high-performance computing facilities.

This problem is currently being tackled from two sides: (1) by improving the propagation efficiency of p-boxes aimed at breaking the double loop and (2) developing efficient surrogate models for the numerical models to be used in the double loop. Concerning the former set of solutions, highly efficient propagation schemes have been introduced in recent years. However, these methods are either limited in terms of the admissible descriptions of the uncertainty, or the non-linearity of the underlying numerical model. Future developments in these areas should concentrate on expanding the scope of applicability of these techniques. Concerning the latter, surrogate models usually only require some smoothness constraints on the underlying numerical model, which allows for a greater flexibility. Nonetheless, the accuracy of the calculation of the bounds on the probabilistic measures is limited to the accuracy of the underlying surrogate model. Furthermore, also the training of these surrogate models can entail a non-negligible numerical cost, which is commonly mitigated by resorting to active learning.

As such, to conclude, the last 15 years brought many highly performing approaches to compute with imprecise probabilities in general, and p-boxes in specific. The main challenge at this point appears to translate this set of highly performing methods to industrial applications involving multi-physical and/or million degree-of-freedom numerical models.