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This study introduces a computational framework for ecient and accurate seismic fragility analysis based on a combination of articial ground motion modeling, polynomialchaos-based global sensitivity analysis, and hierarchical kriging surrogate modeling. The framework follows the philosophy of the Performance-Based Earthquake Engineering PEER approach, where the fragility analysis is decoupled from hazard analysis. This study addresses three criticalities that are present in the current practice. Namely, reduced size of hazard-consistent size-specic ensembles of seismic records, validation of structural simulators against large-scale experiments, high computational cost for accurate fragility estimates. The eectiveness of the proposed framework is demonstrated for the Rio Torto Bridge, recently tested using hybrid simulation within the RETRO project.

Introduction

The PEER Performance-Based Earthquake Engineering (PBEE) framework is widely used to perform seismic risk analysis. The framework is an implementation of total probability theorem, which combines the output of Probabilistic Seismic Hazard Analysis (PSHA) with fragility, damage, and loss analysis. A critical part of the framework is the coupling between hazard and structural modeling, namely, fragility analysis. It comes as no surprise that it developed into a stand-alone research eld. Given a structural system of interest, the most recent advancement in fragility analysis requires the selection of a set of suitable ground motions to be used as input for non-linear structural analysis. Then, the statistics of a Quantity of Interest (QoI), which in general is denoted as Engineering Demand Parameter (EDP), are derived as a function of a given Intensity Measure (IM), or a vector of IMs. Specically, these conditional EDP-IM relations are named fragility functions. Following this line, in recent years, a lot of research has been devoted

to creating computational fragility frameworks, including the selection and the use of real seismic real seismic time series are thought of as realizations of the ground motion model, using the same philosophy introduced by (Rezaeian andDer Kiureghian, 2008, 2010). Unlike their work, this framework uses the real seismic time series to calibrate the parameters of the articial ground motion model and the associated uncertainties. The denition of such a hazard model constitutes the basis for using a surrogate-based UQ forward analysis.

The building blocks of the computational framework are: the articial ground motion model, an expensive-to-evaluate High-Fidelity (HF) structural simulator of the reference structure validated against experiments (e.g., Hybrid Simulation (HS) in the proposed application [START_REF] Schellenberg | Advanced Implementation of Hybrid Simulation[END_REF]), and a corresponding cheaper Low-Fidelity (LF) structural simulator (e.g., obtained via dynamic substructuring of the HF simulator in this study [START_REF] De Klerk | General Framework for Dynamic Substructuring: History, Review and Classication of Techniques[END_REF]). The seismic vulnerability analysis follows these sequential steps: i) generation of a family of articial motions (compatible with the real selected ones); ii) computation of the Polynomial Chaos Expansion (PCE) of the LF simulator QoI prediction; iii) dimensionality reduction of the articial ground motion parameters based on Global Sensitivity Analysis (GSA); iv) computation of a multidelity (MF) surrogate based on Hierarchical Kriging (HK) that fuses LF and HF predictions of the QoI; v) the fragility analysis is derived as a natural byproduct of the framework.

Fragility analysis and, more broadly, seismic risk assessment based on stochastic simulations is not new, and an incomplete list of studies includes [START_REF] Mai | Seismic fragility curves for structures using nonparametric representations[END_REF][START_REF] Zentner | A general framework for the estimation of analytical fragility functions based on multivariate probability distributions[END_REF][START_REF] Trevlopoulos | Parametric models averaging for optimized nonparametric fragility curve estimation based on intensity measure data clustering[END_REF][START_REF] Altieri | An ecient approach for computing analytical non-parametric fragility curves[END_REF]. Moreover, to the best of our knowledge, the rst study using also kriging surrogate modeling is [START_REF] Gidaris | Kriging metamodeling in seismic risk assessment based on stochastic ground motion models: Seismic Risk Assessment Through Kriging Metamodeling[END_REF] and more recently [START_REF] Ghosh | Kriging Metamodeling-Based Monte Carlo Simulation for Improved Seismic Fragility Analysis of Structures[END_REF]. Dierent from the previous contributions, this paper draws a direct link between ground motion selection and the calibration of the stochastic hazard model; moreover, it introduces HK to combine predictions of simulators with dierent degrees of delity. In essence, the articial ground motion model is used to build a large ensemble of time series, which would not be possible to compose using records of real seismic events. Therefore, this study aims to bridge classical seismic fragility analysis with the most recent UQ advancements, and not to solve the full seismic risk analysis (as done in [START_REF] Gidaris | Kriging metamodeling in seismic risk assessment based on stochastic ground motion models: Seismic Risk Assessment Through Kriging Metamodeling[END_REF] by fully employing the philosophy of [START_REF] Rezaeian | Simulation of synthetic ground motions for specied earthquake and site characteristics[END_REF]). In this context, this paper introduces a combination of PCE-based GSA and HK so that the computational burden associated with the fragility analysis is drastically reduced.

The framework is applied to a real-world application consisting of a Reinforced Concrete (RC) bridge case study, which was recently tested within the RETRO project [START_REF] Paolacci | Assessment of the seismic vulnerability of an old RC viaduct with frame piers and study of the eectiveness of base isolation through PsD testing (RETRO)[END_REF][START_REF] Abbiati | Hybrid simulation of a multi-span RC viaduct with plain bars and sliding bearings: Hybrid Simulations of a Multi-Span RC Viaduct[END_REF]. LF and HF simulators are introduced, highlighting the crucial role of HS in enabling experimental validation of the bridge model [START_REF] Bursi | Nonlinear heterogeneous dynamic substructuring and partitioned FETI time integration for the development of low-discrepancy simulation models[END_REF]. Since the selected case study structure is insensitive to broadband ground motions, the articial ground motion model incorporates a pulse-like component [START_REF] Dabaghi | Stochastic model for simulation of near-fault ground motions[END_REF], and it is calibrated against a set hazard-consistent site-specic real records. The framework is applied to compute the fragility analysis related to the lateral drift of one of the twelve piers of the Rio Torto Bridge.

This paper is organized as follows. Section 2 describes the proposed seismic fragility analysis framework. Section 3 introduces the Rio Torto Bridge case study. Section 4 describes both HF and LF structural simulators of the bridge. Section 5 describes the calibration of the articial ground motion model using hazard-compatible site-specic seismic records. Section 6 summarizes the results of the seismic fragility analysis of the bridge. Section 7 includes limitations, future perspectives, and conclusions. For the sake of completeness, the entire machinery of surrogate modeling and, in particular, PCE-based GSA [START_REF] Blatman | Adaptive sparse polynomial chaos expansion based on least angle regression[END_REF][START_REF] Gratiet | Metamodel-Based Sensitivity Analysis: Polynomial Chaos Expansions and Gaussian Processes[END_REF] and HK [START_REF] Abdallah | Parametric hierarchical kriging for multidelity aero-servo-elastic simulators Application to extreme loads on wind turbines[END_REF] are reported as appendices providing a self-consistent notation.

2 Seismic fragility analysis framework

Theoretical background

Let A(t) denote the stochastic process representing the input excitation of the system. The goal is to represent the process in terms of an aleatory component (i.e., the inherent variability of the process) and an epistemic component (i.e., the parametric variability of the process).

Accordingly, it is convenient to express A(t) as follows.

A(t) = M a (t, Z a |X a ), (1) 
where M a is a parametric stochastic model (or synthesis formula), Z a is a set of random variables representing the aleatory variability, and X a a is a set of model parameters. In this setting, the model parameters are considered as random variables. However, this uncertainty is epistemic (i.e., can be reduced). Let Y denote the response QoI of a real system (e.g., the maximum displacement or internal force of a structural component), and M c (A(t), Z c |X c ) a suitable (w.r.t. the QoI) stochastic structural simulator, where X c is a set of random model parameters and Z c is a set of random variables representing the aleatory variability of the structural model (e.g., the inherent randomness of random elds in a stochastic nite element setting, [START_REF] Stefanou | The stochastic nite element method: Past, present and future[END_REF]). It follows that Y , can be written as

Y = M c (M a (t, Z a |X a ), Z c |X c ) , (2) 
= M (Z|X) ,

where

M := M c • M a , Z = [Z a ; Z c ], and X = [X a ; X c ].
Observe that even when M c is a deterministic structural simulatori.e., Z c is not presentM is a stochastic simulator. In fact, in this case, given a realization of the model parameters, x, Y is still a random variable with aleatory uncertainty determined by the propagation of Z a |x. Using Eq.3, the Cumulative Distribution Function (CDF) of Y , denoted by F Y (y), can be written as

F Y (y) = P(M(Z|X) ≤ y) = x z I (M(z|x) ≤ y) dF Z (z)dF X (x), (4) 
where I(•) denotes the indicator function, P(•) denotes probability, F Z (z), F X (x) denote the joint CDFs, and dF

Z (z) = f Z (z)dz, dF X (x) = f X (x)dx, with f X (x) and f Z (z) being the joint probability densities. Observe that Z is statistically independent of X; moreover, f X (x) = f Xc (x c )f Xa (x a )
under the (reasonable) assumption that the parameters of the seismic input and the structural simulator are statistically independent. Next, the conditional CDF of Y given a realization x is simply

F Y |X (y|x) = P(M(Z|X = x) ≤ y) = z I (M(z|x) ≤ y) dF Z (z). (5) 
Given the distribution function F Y |X , the p-quantile function returns the value y p such that F Y |X (y p |x) = p. Assuming F Y |X is continuous and strictly monotonically increasing, y p = F -1 Y |X (p|x). However, since X is a random variable, y p is also a random variable and can be written as

Y p = F -1 Y |X (p|X) = M p (X). (6) 
where, for convenience, we dene M p (•) := F -1 Y |X (p|•), and p ∈ [0, 1]. Therefore, Y p can also be viewed as stochastic process indexed by p. Moreover, M p is a deterministic model, since the aleatory variability has been marginalized in Eq.6.

Given this general framework, a few observations need to be done for this specic study. First of all, A(t) is an articial ground motion model, and X a is a physically meaningful set of ground motions parameters. Specically, if the articial ground motion model is a Gaussian ltered white noise, then Z a is a set of standard normal random variables (more details in Section 5). Second, M c is a deterministic structural simulator, where X c is the set of model parameters and Z c is not present. Finally, observe that despite its simplicity, Eq.6 involves a complex and highly non-trivial computational endeavor. In the following, this task is tackled using a non-intrusive UQ approach that assumes that M c (and therefore M) is a black-box solver.

Computational solution

In the context of earthquake engineering, the goal of this study is to determine the distribution of Y p for dierent values of p. In general, the analytical solution of Eq.6 is not available; moreover, a classical Monte-Carlo-based solution is computationally prohibitive. In fact, M c is an "expensive" model and, therefore, also M p . A natural alternative to drastically reduce the computational cost is to replace the original model with a surrogate model. Let Mp denotes a surrogate model of M p , then Ŷp = Mp (X),

where Ŷp ≈ Y p . The statistics of Ŷp are then directly used for decision making. The surrogate model should be compatible with the articial ground motion model, an HF validated structural simulator and the chosen QoI. Specically, the proposed scheme builds on a combination of PCE-based GSA and HK, and it is here summarized in the following steps.

1. Model denition and validation. Dene the QoI, a stochastic model of the input M a (Section 5), and a set of structural simulators M c (Section 4). In this study, c ∈ {LF , HF } where c = HF corresponds to the expensive-to-evaluate HF simulator whereas c = LF to a computationally cheaper LF simulator (Section 2.2 provides further detail on this choices).

The denition of the models reects the following criteria:

(a) The articial ground motion model is dened w.r.t. a local seismic catalog based on an existing suitable ground motion selection (e.g., [START_REF] Bradley | A generalized conditional intensity measure approach and holistic groundmotion selection[END_REF][START_REF] Iervolino | REXEL: computer aided record selection for code-based seismic structural analysis[END_REF][START_REF] Baker | Conditional Mean Spectrum: Tool for Ground-Motion Selection[END_REF]). In fact, this framework is designed to work complementary to any ground motion selection criteria, rather than to express a preference for a specic selection criterion or to propose a new one.

(b) The HF simulator successfully passed a comprehensive validation protocol. Validation entails a comparison of model predictions with physical experiments that adequately reproduce the real structural behavior [START_REF] Trucano | Calibration, validation, and sensitivity analysis: What's what[END_REF]. This study uses HF simulators validated using HS. This minimizes the cost of conducting realistic structural testing campaigns compared to shake table testing [START_REF] Schellenberg | Advanced Implementation of Hybrid Simulation[END_REF]. To be robust to generalization error, the HF simulator incorporates an accurate description of the physics of the real structure, which includes geometric and material properties.

Therefore, it is ranked rst in terms of computational cost for a single evaluation amongst all structural simulators M c . As a result, the HF simulator is expected to succeed in representing the structural response with predetermined accuracy within a given validation domain.

(c) The LF simulator is a computationally cheaper proxy of its HF counterpart. For example, one could decide using dierent modeling paradigms for HF and LF simulators or 2D versus 3D geometrical representations. The main assumption of HK surrogate modeling is that the bias between LF and HF simulator responses is smoother than the HF simulator response [START_REF] Ng | Multidelity Uncertainty Quantication Using Non-Intrusive Polynomial Chaos and Stochastic Collocation[END_REF]. Therefore, LF and HF simulator responses must be highly correlated. Hence, this study proposes to derive the LF simulator as a reduced-order representation of the HF simulator using dynamic substructuring [START_REF] De Klerk | General Framework for Dynamic Substructuring: History, Review and Classication of Techniques[END_REF]. In particular, it is shown how to obtain a non-linear reduced-order model as an assembly of reduced-order linear components [START_REF] Craig | Fundamentals of structural dynamics[END_REF] connected by non-linear springs.

2. Global-sensitivity-based dimensionality reduction. Create a larger LF Experimental Design (ED) {Y LF,p , X }, where Y LF,p = {y

(1)

LF,p , . . . , y

(N LF ) LF,p }, X = {x (1) , . . . , x (N LF ) }, x (n)
is a generic sample of the input parameters, and y (n) LF,p is the corresponding LF estimate of the p-quantile of the QoI. Train a set of LF surrogates, MP CE LF,p (x), based on {Y LF,p , X } using PCE [START_REF] Blatman | Adaptive sparse polynomial chaos expansion based on least angle regression[END_REF]. Perform a PCE-based GSA (Le [START_REF] Gratiet | Metamodel-Based Sensitivity Analysis: Polynomial Chaos Expansions and Gaussian Processes[END_REF] w.r.t. the QoI. Select and retain the input random variables that contribute most to the variability (variance) of the QoI and x the remaining ones to their expected value.

In practice, dene X = [X α , x β ], where X α are the "important random variables," and x β = E[X β ] the rest of input parameters. A natural output of GSA are univariate eects of input parameters, which are the expectation of a QoI conditioned on the value of a single input variable (therefore, they provide information about the shape of the surrogate models). In this context they are used at step 4 for dening monotonic fragility models. A detailed summary on PCE-based GSA is reported in Appendix A.

3. Hierarchical Kriging surrogate modeling. Train a second smaller HF ED {Y HF,p , X α },

where Y HF,p = {y

(1) HF,p , . . . , y

(N HF ) HF,p }, X α = {x (1) α , . . . , x (N HF ) α }, x (n)
α is a generic sample of the selected model parameters, and y

(n) HF,p is the corresponding HF estimate of the p-quantile of the QoI. Train a set of MF surrogates MK HF,p (x α ) based on {Y HF,p , X α } using HK. In this case, the PCE surrogate of the corresponding LF quantile is used as trend function [START_REF] Han | Hierarchical Kriging Model for Variable-Fidelity Surrogate Modeling[END_REF][START_REF] Abdallah | Parametric hierarchical kriging for multidelity aero-servo-elastic simulators Application to extreme loads on wind turbines[END_REF] Despite the use of stochastic simulators (Eq.3), the outlined framework has the critical advantage of providing by construction (Eq.6) adeterministicmap between the input parameters and a given quantile of the distribution of the QoI. The nature of the uncertainty associated with this distribution is aleatory. Specically, it is the aleatory component, Z, of the stochastic model, M(Z|x). In fact, in the special case of a deterministic simulator any quantile will collapse into the deterministic solution of M(x). A cornerstone of the proposed framework is model calibration and validation with experimental data. In fact, the LF simulator can be characterized by an oversimplication of the real problem, phenomenological (and not validated) assumptions, and non-physical parameters. As a result, a rigorous global model validation becomes prohibitive, leading to not negligible model biases. On the other hand, the advantage of LF structural simulators lies in their reduced computational cost, enabling global studies. Few considerations need to be made in the context of earthquake engineering. In this case, an EDP of interest is the QoI; moreover, a vector of IM s is composed by either some of the "important" input parameters (i.e., IM ∈ X α ) or by a set of instrumental IMs (I M = [P GA, P GV, ...]). In the latter case, a statistical conversion [START_REF] Suzuki | Intensity measure conversion of fragility curves[END_REF] between the ground motion parameters and the instrumental IMs can be easily derived provided a large set of simulations.

The proposed framework allows the computation of any statistic of interest for the selected EDP , including classical fragility functions and surfaces. In the fragility analysis context, a key passage of this framework is the GSA (step 2), which provides a rigorous selection of the important input parameters (i.e., IM ) w.r.t. to the EDP variability. Observe that this condition is explicitly dependent on the quantile of (major) interest. Therefore, it potentially eliminates the loss of correlation between IM and EDP in the tail of fragility functions [START_REF] Grigoriu | To Scale or Not to Scale Seismic Ground-Acceleration Records[END_REF] (if this probability region is of interest).

3

The Rio Torto Bridge case study

The Rio Torto Bridge is an RC structure built in the '70s and located on the motorway between Florence and Bologna, Italy. The bridge comprises two independent roadways of 400 m length and is characterized by a 13-span deck sustained by twelve piers. Three out of thirteen spans Non-linear springs represent the in-plane stiness of numerical and physical piers activated by the lateral displacement of the deck. A schematic view of tested piers is also reported in Figure 1b.

The Rio Torto Bridge was selected as a case study to investigate the seismic performance of old RC bridges and possible seismic retrotting schemes within the framework of the RETRO project [START_REF] Paolacci | Assessment of the seismic vulnerability of an old RC viaduct with frame piers and study of the eectiveness of base isolation through PsD testing (RETRO)[END_REF]. The seismic response of the bridge was evaluated via HS. In detail, mock-up models of Pier #9 and #11 of 1:2.5 scale were built and tested via HS at ELSA Laboratory of the Joint Research Centre of Ispra, Italy. Figure 2a The East-West and the North-South components of the Emilia earthquake of May 29, 2012, recorded from Mirandola station and downloaded from the ITACA database [START_REF] Pacor | Overview of the Italian strong motion database ITACA 1.0[END_REF] were considered as serviceability and ultimate limit state accelerograms (SLS and ULS, respectively). The response spectra of both SLS and ULS accelerograms are shown in Section 5 where the stochastic modeling of the seismic input for the fragility analysis is described. In this study, the epistemic uncertainty of the deterministic structural simulator parameters is considered negligible w.r.t. the ground motion parameters, therefore, we set X c = xc * . Therefore, X ≡ X a and Z ≡ Z a . For a comprehensive description of the HS campaign, the reader is addressed to [START_REF] Abbiati | Hybrid simulation of a multi-span RC viaduct with plain bars and sliding bearings: Hybrid Simulations of a Multi-Span RC Viaduct[END_REF][START_REF] Bursi | Nonlinear heterogeneous dynamic substructuring and partitioned FETI time integration for the development of low-discrepancy simulation models[END_REF]. 

High-delity nite-element model

The HF simulator was implemented in OpenSees [START_REF] Mckenna | Nonlinear Finite-Element Analysis Software Architecture Using Object Composition[END_REF]. Linear Bernoulli beam elements were used for the deck, whose response was assumed not to exceed the linear regime.

Cylindrical hinges model Gerber saddles allowing for lateral and vertical rotations between deck elements while blocking relative torsional rotations. Displacement Degrees-of-Freedom (DoFs) of both abutments were constrained, but not rotations. A rigid link accounted for the oset distance between the cap beam axis and the center of gravity of the deck cross-section. Each pier was clamped at the base.

All piers were modeled using non-linear ber-based elements thus discretizing longitudinal steel reinforcement of member cross-sections. The zero-tensile-strength Concrete01 OpenSees material was adopted for concrete assuming a compressive strength f pc = 11.47 MPa and f pc = 17.16 MPa for piers characterized by solid and hollow cross-section columns, respectively. These values were calibrated based on the quasi-static response of Pier #9 and #11 obtained via HS. The Steel02

OpenSees material was adopted for steel rebars assuming a tensile strength f y = 360 MPa.

The Pinching4 OpenSees material was used to model the hysteretic shear response of transverse beam elements. Parameter values were calibrated for a series of cyclic tests conducted on a 1/4 scale mock-up model of Pier #12 documented in [START_REF] Paolacci | An experimental and numerical investigation on the cyclic response of a portal frame pier belonging to an old reinforced concrete viaduct[END_REF]. Finally, a proportional Rayleigh damping model was adopted with mass multiplier α d = 0.27300 and stiness multiplier β d = 0.00787. The vibration periods of the rst four eigenmodes of the Rio Torto Bridge computed from the HF simulator are T = {1.62, 1.55, 1.52, 0.88} sec. Figure 3 compares the hysteretic loop of the lateral restoring force of Pier #11 obtained via HS (SLS and ULS accelerograms, as built conguration) to corresponding HF simulator predictions. As can be appreciated, the HF simulator eectively reproduces the lateral restoring force response of Pier #11. A single evaluation of the time history response of the HF simulator subjected to a 15 sec accelerogram sampled at 1 msec takes about 600 sec on a standard laptop equipped with an Intel 1.80 GHz i7-8565U CPU and 16 GB RAM or similar. For a more detailed description of the HF simulator, the reader should refer to [START_REF] Abbiati | Hybrid simulation of a multi-span RC viaduct with plain bars and sliding bearings: Hybrid Simulations of a Multi-Span RC Viaduct[END_REF]. 

Low-delity state-space model

A linearized version of the HF simulator supported the computation of reduced-order mass and stiness matrices of deck and piers of the LF simulator via component-mode synthesis [START_REF] Craig | Fundamentals of structural dynamics[END_REF], which is a specic dynamic substructuring method (de [START_REF] De Klerk | General Framework for Dynamic Substructuring: History, Review and Classication of Techniques[END_REF].

In detail, the reduced-order model of the deck was obtained via static condensation retaining only lateral displacement DoFs of piers and Gerber saddles,

u = v v = m -1 (l • r -c • v -k • u -t • a g (t)) , (8) 
where u and v are the 18 retained displacement and velocity DoFs, respectively; k, c and m are reduced-order stiness, damping and mass matrices, respectively, whereas t is the seismic mass vector. The latter multiplies the seismic accelerogram a g (t) to obtain the seismic loading.

The 18 × 12 Boolean matrix l collocates the 12 pier restoring forces stored in r = {r 1 , . . . , r 12 } to the related state-space equation. A non-linear single-DoF system based on a Bouc-Wen restoring force was calibrated to mimic the response of the corresponding pier in the HS structural simulator,

     ui = v i vi = m -1 i [g i (t) -c i v i -r i -t i a g (t)] ṙi = [A i + (β i sign (r i v i ) -γ i ) |r i | n ] v i , (9) 
where u i , v i , and r i are the three state variables, namely, displacement, velocity, and hysteretic restoring force, whereas g i (t) represent the deck reaction force of the i-th pier. Mass m i and seismic mass t i were obtained via static condensation as well. For each pier, the top lateral displacement DoF was retained as master DoF, whereas the others were condensed. Consistently with the HF simulator, viscous damping c i was computed assuming a proportional Rayleigh damping with mass multiplier α d = 0.27300 and stiness multiplier β d = 0.00787. The parameters A, β, γ and n refer to the Bouc-Wen model [START_REF] Ikhouane | Systems with hysteresis: analysis, identication and control using the Bouc-Wen model[END_REF], which describes the evolution of the hysteretic restoring force r i . As analogously done for damping, mass, and seismic mass, the parameter A, which represents the initial stiness of the non-linear spring, was obtained via static condensation of the HF pier model. On the other hand, n was assumed constant and equal to one, whereas β and γ were calibrated to match the static response of the corresponding OpenSees pier model subjected to ten sinusoidal displacement cycles producing 0.5 % drift. Figure 4 
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Stochastic modeling of the seismic input

The lateral motion of the Rio Torto Bridge is characterized by a relatively long period of vibration.

Consequently, its reliability is not strongly aected by broadband motions. On the contrary, it is vulnerable to pulse like motions with frequencies close to the structural ones. Generally, the presence of a strong pulse component is more likely in near eld motions. As a consequence, this study employs the stochastic model proposed by Dabaghi and Der Kiureghian [START_REF] Dabaghi | Stochastic model for simulation of near-fault ground motions[END_REF], which is designed for such type of excitations.

The model is composed by a residual broad-band process (as done in [START_REF] Rezaeian | A stochastic ground motion model with separable temporal and spectral nonstationarities[END_REF]), and a modied version of the Mavroeidis, pulse model with random parameters [START_REF] Mavroeidis | A Mathematical Representation of Near-Fault Ground Motions[END_REF],

V pul (t) = M pul (t, X pul ) = 1 2 V p cos 2π t -T max,p T p + ν - D r γT p 1 + cos 2π γ t -T max,p T p , t i,p < t ≤ t f,p . ( 10 
)
where X pul = [V p , T p , T max,p , γ, ν]. Specically, V p and T p are pulse amplitude and period, respectively, γ represents the number of oscillations within the pulse, ν is the phase angle shift w.r.t. the time modulation function, and T max,p is a location parameter for the peak of the excitation. D r has been introduced in [START_REF] Dabaghi | Stochastic model for simulation of near-fault ground motions[END_REF] to guarantee zero residual displacement at the end of the excitation, and it is dened as

D r = V p T p sin (ν + γπ) -sin (ν -γπ) 4π (1 -γ 2 ) . (11) 
Finally, t i,p = T max,p -0.5γT p , and t f,p = T max,p + 0.5γT p represent the start and the end of the pulse motion. While the pulse is modeled in the velocity domain, the residual is modeled in the acceleration domain, i.e., a res (t) = a (t)vpul (t) * . Since the residual of the acceleration is a broadband motion, the model follows the same principles of [START_REF] Rezaeian | A stochastic ground motion model with separable temporal and spectral nonstationarities[END_REF], i.e.,

A res (t) = M res (t, Z|X res ) = q (t| X q ) h(t|X h ) * W (t, Z) σ h (t, Z| X h ) , (12) 
where * denotes time convolution; X res = [X q , X h ]; q (t| X q ) is a parametric time modulating function with random parameters X q ; h(t|X h ) is the impulse-response function of a linear lter * lower case letters are used to indicate the single excitation; moreover, notice the time derivative on the pulse component.

with time varying random parameters, where X h represents a set of time invariant parameters; W (t, Z) = Nt n δ(tt n )Z n is a band-limited white noise process, where Z = [Z 1 , ...Z Nt ] is a standard normal vector; and σ h (t, Z| X h ) is the variance of the convoluted process (i.e., the numerator of Eq.12). The modulating function proposed in [START_REF] Dabaghi | Stochastic model for simulation of near-fault ground motions[END_REF] for near-eld motions is q (t| X q ) = C t Tmax,q α , 0 < t ≤ t max,q C exp [-β (t -T max,q )] , t max,q < t, (13) where X q = [α, β, C, T maxq ] are the parameters of the function. Specically, α and β are shape parameters controlling the ramping and decreasing phase of the residual, C is a scale factor, and T max,q is a location parameter dening the peak of the residual excitation. Moreover, it can be shown that a one-to-one mapping exists between these parameters and D 5-95,Ia,res = T 95,Ia,res -T 5,Ia,res , T 30,Ia,res , and I a,res where T p,Ia,res is the time corresponding to the p % of the cumulative Arias intensity of the residual, I a,res . It follows that X q can be written as X q = [I a,res , T 30,Ia,res , D 5-95,Ia,res ]. The lter is dened by

h(t|X h ) = ω f (t) 1 -ζ 2 f exp [-ω f (t) ζ f • t] sin ω f (t) 1 -ζ 2 f • t . (14) 
In Eq.14, the main frequency, ω f (t), is evolving linearly with time. Specically, ω f (t) = ω mid + ω (t -T 30;Ia ), where ω mid is the frequency at time T 30;Ia r es (i.e., at 30 % of the cumulative Arias intensity of the residual) and ω is the rate of change of the frequency with time. The damping of the lter,

ζ f , is considered time invariant. It follows that X h = [ω mid , ω, ζ].
For further details the reader should refer to [START_REF] Dabaghi | Stochastic model for simulation of near-fault ground motions[END_REF]. Finally, the articial ground motion model can be written as

A(t) = M a (t, Z|X a ) = M res (t, Z|X res ) + Ṁpul (t, X pul ) = A res (t) + Vpul (t), (15) 
where X a = [X res , X pul ].

In order to nd parameter ranges consistent with the seismic hazard characteristic of the site, the articial ground motion model was calibrated against real seismic records following the procedure explained in [START_REF] Dabaghi | Stochastic model for simulation of near-fault ground motions[END_REF]. In detail, the seismic records of real events were selected based on the disaggregation analysis of the PGA with probability of exceedance of 2 % in 50 years [START_REF] Bazzurro | Disaggregation of seismic hazard[END_REF] reported in a previous work of the last author [START_REF] Alessandri | Aftershock risk assessment and the decision to open trac on bridges[END_REF] * . Then, it was found that only pulse-like ground motions were likely to cause damage to the structure. Consequently, only pulse-like motions were retained and used for the calibration of the articial ground motion model. It follows that the analysis of this case study focuses on pulse-like excitations. Table 1 reports the list of the 16 selected records, whose corresponding accelerograms were downloaded from the ITACA database [START_REF] Pacor | Overview of the Italian strong motion database ITACA 1.0[END_REF].

All records belong to the Emilia earthquake occurred on May 29, 2012 (Italy). Each of the 16 records listed in Table 1 comprise N-S and E-W acceleration records, which were decomposed into principal components as explained in [START_REF] Baker | Quantitative classication of near-fault ground motions using wavelet analysis[END_REF]. Velocity pulses were found on 12 over 16 × 2 components only, which were retained for the calibration. Figure 5 reports displacement, velocity and acceleration response spectra of the 12 retained components as well as the response spectra of the SLS and ULS accelerograms used for the RETRO experimental campaign. The response spectra of the selected records, which correspond to the gray lines, fall within the range established by the response spectra of SLS and ULS accelerograms adopted during experiments and, therefore, utilized to calibrate the HF simulator of the Rio Torto Bridge. The articial * In principle, peak ground velocity is a more suited intensity measure for structures characterized by long vibration periods such as the Rio Torto Bridge. However, the fragility analysis reported in [START_REF] Alessandri | Aftershock risk assessment and the decision to open trac on bridges[END_REF] shows that PGA well correlates with pier drift for this specic case. ground motion model with pulse-like motion was calibrated for each of the 12 retained records following the procedure described in [START_REF] Dabaghi | Stochastic model for simulation of near-fault ground motions[END_REF]. The parameter estimates are reported in Table 2. Noteworthy, correlation between each pair of ground motion model parameters was small and therefore neglected in the following. However, if relevant, parameter correlation can be recovered when sampling fragility models (e.g., using copulas (Torre et al., 2019b)). Figure 6 compares 50 realizations of articial records to the reference real record (with parameters listed in the second entry of Table 2).

Seismic fragility analysis of the bridge

The most critical nonlinearity characterizing the structural response of the bridge is associated with shear failure of transverse beams of piers. Such structural elements are characterized by poor shear reinforcement and thus prone to brittle failure. This damage mechanism is activated by in-plane lateral deection of the pier and, therefore, highly correlated with drift [START_REF] Alessandri | Aftershock risk assessment and the decision to open trac on bridges[END_REF]. Accordingly, lateral drift peak of piers was selected as QoI/EDP for fragility models.

Consistently with the notation introduced in the previous sections, input variables and QoIs of for the fragility analysis read, Y = {u 1 , . . . , u 12 } , X ≡ X a = {V p , T p , γ, ν, T max,p , I a,res , T 30,Ia,res , D 5-95,Ia,res , ω mid , ζ}

where u i represents the lateral drift peak of pier i-th. However, due to space limitation, only the results related to the lateral drift peak of Pier #11, which is referred to as response QoI hereinafter, are reported and discussed.

A GSA of the QoI was performed to retain only the relevant parameters of the articial ground motion model. Since GSA is used to uncover the inner workings of the LF simulator, in this stage, it is legitimate to assume that all input variables are independently distributed. For a given sample X = x, 100 realizations of Z were found to be sucient to provide stable estimates of the QoI quantiles. Noteworthy, the same number of realizations was adopted in the work of Gidaris et al. [START_REF] Gidaris | Kriging metamodeling in seismic risk assessment based on stochastic ground motion models: Seismic Risk Assessment Through Kriging Metamodeling[END_REF] to estimate mean and variance of the QoIs prior to surrogate modeling. According to step 2 of the proposed framework, a large LF ED was evaluated for 200 samples of X considering the quantiles P = {0.05 : 0.05 : 0.95}. Given that the computational cost of the LF simulator was 20 sec/run, the computational cost of the LF ED was 20 × 200 × 100 = 400, 000 sec (about 4.6 days). The corresponding PCE-based total Sobol' indices are reported in Table 3 for the response QoI quantiles P = {0.1 : 0.1 : 0.9} only. In this regard, the leave-one-out errors loo highlight fairly accurate PCEs (similar errors were obtained up to 0.99 quantiles for all piers). For all quantiles, the contribution of V p , T p , I a,res , ω mid and ζ to the variability of the QoI is dominant. The same result was observed for all the other piers.

Accordingly, constant average values reported in Table 2 were set for all other parameters in the following MF surrogate modeling stage. Among retained parameters, univariate eects spot monotonic increasing relationships with the response QoI for V p , I a,res and ζ. In this regard, Figure 7 reports the univariate eects of these parameters obtained from the LF surrogate model.

Accordingly, V p and I a,res were employed as IMs for computing the fragility models.

Following step 3 of the framework, a small HF ED of 10 samples was evaluated using the HF simulator of the bridge considering, X α = {V p , T p , I a,res , ω mid , ζ},

x β = E {γ, ν, T max,p , T 30,Ia,res , D 5-95,Ia,res , ω mid } .

(
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For each sample of the HF ED, estimates of response QoI quantiles were computed considering 100 realizations of the ground motion model. Given that the computational cost of the HF simulator was about 600 sec/run, the computational cost of the HF ED was about 600 × 10 × 100 = 

Figure 7: Univariate eects for the response QoI (drift peak of Pier #11) for the quantiles P = {0.1 : 0.1 : 0.9}. Lighter curves refer to quantile p = 0.1 while darker curves refer to quantile p = 0.9. 600, 000 sec (about 7 days).

The main assumption of HK surrogate modeling is that the bias between LF and HF simulator responses is smoother than the HF simulator response [START_REF] Ng | Multidelity Uncertainty Quantication Using Non-Intrusive Polynomial Chaos and Stochastic Collocation[END_REF]. Therefore, instead of absolute accuracy, the only requirement for the LF simulator response is to be highly correlated with the HF simulator response. The correlation plots of Figure 8 demonstrates that LF and HF simulators satisfy such requirement. Following step 3 of the framework, a MF surrogate model of the QoI was computed using HK.

The LF surrogate model computed at step 2 was used as trend function. Accordingly, MFn indicates the MF surrogate model (and the corresponding fragility model) computed with n samples of the HF ED. In all cases, a Matérn 5/2 correlation function R (X -X |θ) was adopted. Since PCE is a powerful denoiser (see Torre et al. (Torre et al., 2019a)), the LF surrogate can be trained on noisy estimates of the QoI quantiles based on a smaller number of samples of Z resulting in a substantial reduction of computational cost for the LF ED. To support this statement, an additional set of MF surrogate models (and the corresponding fragility model) was computed considering LF surrogates trained on noisy QoI estimates obtained with 20 ground motion realizations.

Following step 4 of the framework, the fragility models reported in Figure 9 were computed via Monte-Carlo-based UQ forward analysis of MF surrogate models using V p and I a,res as IMs.

These IMs are associated with the two largest total Sobol' indices (Table 3) and provided with an average monotonic relationship with the QoI/EDP (Figure 7). Specically, Figures 9a-b-c [START_REF] Alessandri | Aftershock risk assessment and the decision to open trac on bridges[END_REF]. As can be appreciated from Figure 9, the two fragility models show a quite good agreement, demonstrating that noisy LF quantile estimates computed with 20 ground motion realizations are suciently accurate to support the following MF surrogate modeling stage.

In order to demonstrate the accuracy of the proposed methodology, both fragility models are compared to crude Monte Carlo estimates of the failure probability of the HF simulator. In detail, nine validation points were obtained as Cartesian product between V p = {0.2, 0.3, 0.4} and I a,res = {0.4, 0.6, 1.0}. In this regard, the red diamonds of Figure 9 indicate mean value and 95 % condence interval of each failure probability estimate obtained with 100 samples of the HF simulator response i.e., circa 600, 000 sec (about 7 days) per point of computational time.

For the sake of clarity, for each fragility model, two orthogonal sections intersecting the mid validation point (V p = 0.3 and I a,res = 0.6) are also included in Figure 9. The 95 % condence interval of the MF-10 fragility model is also reported as red-shaded area. Besides the sections of the MF-10 fragility model and its 95 % condence interval, three additional fragility models are compared, namely LF, MF-8 and MF-9. As can be observed, fragility models computed from the LF surrogate are highly biased whereas fragility models computed from MF-8 and MF-9

surrogates are almost indistinguishable from MF-10.

For both fragility models the cost for the HF ED was about 600,000 sec of computation (about 7 days). However, the cost for the LF ED considerably dropped from 400,000 to 80,000 sec of computation (from about 4.6 to 0.9 days) by reducing the number of ground motion realizations utilized for quantile estimation from 100 to 20. As a matter of comparison, the total cost for the nine validation points obtained via MCS of the HF simulator was about 5, 400, 000 sec of computation (circa 63 days).

Although both LF and MF surrogate models were computed assuming independent uniformly distributed ground motion parameters, fragility models can be easily re-sampled considering a joint PDF calibrated for the specic seismic hazard. Also, provided with such simulation framework, ground motion parameters can be mapped to instrumental IMs as illustrated in [START_REF] Suzuki | Intensity measure conversion of fragility curves[END_REF].

Notice that with 100 simulations the mean estimate is stable, while the condence bounds should be considered as indicative. Since polynomial-chaos expansion acts as a denoiser, low-delity surrogate models can be computed on noisy quantile estimates obtained with 20 realizations of the ground motion model achieving a considerable reduction of computational cost.

Any stopping criteria for the adaptive construction of both LF and HF EDs should rely on the convergence of the fragility model instead of the surrogate models.

This study was designed to overcome several limitations present in the current computational fragility practice. Since the proposed methodological approach is in its infancy, room for important advancements is identied in the areas of i) surrogate modeling for stochastic simulators ii) dimensionality reduction for stochastic ground motions models iii) optimal experimental design for the validation of high-delity models. Gaussian distribution [START_REF] Santner | The design and analysis of computer experiments[END_REF] with parameters

µ y * c = E Y * c | X c , Y c , = f c (x * ) T βc + r T (x * )R -1 Y c -F c βc , (B.5) σ 2 y * c = Var Y * c | X c , Y c , = σ2 c 1 -r T (x * ) R -1 r (x * ) + F T c R -1 r (x * ) -f c (x * ) T F T c R -1 F c -1 F T c R -1 r (x * ) -f c (x * ) , (B.6)
where r(x * ) = θc ) = [R(x *x (1) | θc ), ..., R(x *x (Nc) | θc )] T is the cross-correlation vector between the point x * and each of the points of X c . In this study, we use a nested combination of surrogate models to dene a HK surrogate [START_REF] Abdallah | Parametric hierarchical kriging for multidelity aero-servo-elastic simulators Application to extreme loads on wind turbines[END_REF]. Specically, a PCE surrogate of the LF simulator is used as a trend for the kriging surrogate of the HF simulator. For the two levels c ∈ [LF , HF ], the HK predictor at an unobserved point x * can be written as [START_REF] Han | Hierarchical Kriging Model for Variable-Fidelity Surrogate Modeling[END_REF]: In this study, computations of kriging surrogates were performed using UQLab, which is a MATLAB toolbox for UQ developed by the Chair of Risk, Safety and Uncertainty Quantication of ETH Zurich [START_REF] Marelli | UQLab: A Framework for Uncertainty Quantication in Matlab[END_REF][START_REF] Lataniotis | UQLab user manual Kriging (Gaussian process modeling)[END_REF].

µ

Figure 1 :

 1 Figure 1: The Rio Torto Bridge case study: a) side view retrieved from (Abbiati et al., 2015); b) hybrid model retrieved from[START_REF] Bursi | Nonlinear heterogeneous dynamic substructuring and partitioned FETI time integration for the development of low-discrepancy simulation models[END_REF] 

  provides a picture of the entire installation at the JRC of Ispra while Figure 2b reports an overview of the nite-element model utilized to design the experiments.

4Figure 2 :

 2 Figure 2: Tested piers: a) picture of the setup at JRC Ispra; b) nite-element model of Pier #11 implemented in OpenSees (McKenna et al., 2010)

Figure 3 :

 3 Figure 3: Measured and simulated hysteresis loops of the lateral restoring force of Pier #11: a) SLS; b) ULS.

  compares the dynamic response of Pier #11 obtained from time history analyses of LF and HF structural simulators considering the ULS accelerogram of the HS campaign described in Section 3. A single evaluation of the time history response of the LF simulator subjected to a 15 sec accelerogram sampled at 1 msec takes about 20 sec on a standard laptop equipped with an Intel 1.80 GHz i7-8565U CPU and 16 GB RAM.

Figure 4 :

 4 Figure 4: LF and HF simulations of the seismic response of Pier #11: a) displacement, b) restoring force.

Figure 5 :

 5 Figure 5: Selected records with pulse-like components: a) acceleration; b) velocity; c) displacement response spectra. Grey lines refer to single retained records with pulse-like component whereas black dashed lines indicate the corresponding 95 % condence interval. Blue and red lines indicate SLS and ULS records used for the HS campaign, respectively. The periods of the rst four eigenmodes of the Rio Torto Bridge estimated with the HF simulator are also reported.

Figure 6 :

 6 Figure 6: Response spectra of 50 realizations of the articial ground motion model calibrated against the second record of Table 2: a) acceleration; b) velocity; c) displacement response spectra. Red lines refer to the reference record, grey lines represent the 50 realizations of the articial ground motion model, and black dashed lines indicate the corresponding 95 % condence interval.

Figure 8 :

 8 Figure 8: Correlation between LF and HF response quantiles (drift peak of Pier #11) on the HF ED samples X α .

Figure 9 :

 9 Figure 9: Fragility models and related mid sections along V p and I a,res computed for a lateral drift threshold of 1 %. Underlying LF surrogates trained with response quantiles obtained from 100 (a-b-c) and 20 (d-e-f ) ground motion realizations.

  Appendix A. PCE-based Sobol' sensitivity indiceswhere R n,m = R(X n , X m ) is the correlation matrix between the N c samples, and F c = [f c (X (1) ), ..., f c (X (Nc) )] T is the information matrix. Next, given a desired test point x * , the random variable of the unobserved output Y* c |X c , Y c = M K c (x * |X c , Y c ) has conditional

  y * HF = MP CE LF (x * ) βHF + r(x * ) T R -1 (Y HF -F LF βHF ), (B.7)where MP CE LF (x * ) is PCE surrogate of the LF simulator, Y HF is the vector of output from the HF simulator, F LF = [M LF (x 1 ), ..., M LF (x Nc )], and βHF is a constant. The variance of the HK predictor is similar to Eq.B.6, i.e. r(x * ) T R -1 r(x * )+F T LF R -1 r(x * ) -MP CE LF (x * ) T F T LF R -1 F LF -1 F T LF R -1 r(x * ) -MP CE LF (x * ) .

  

  . A short summary of HK surrogate modeling is reported in Appendix B.4. Probabilistic characterization of the QoI. Compute the statistics of the QoI of interest (including fragility analysis) via Monte-Carlo-based UQ analysis using the HK surrogate model. Specically, given an ordered sequence of quantiles P = [p 1 , ..., p n ], steps 2-3 can be implemented sequentially to obtain n maps (i.e., surrogate models) between Y P and X. Therefore, this n ordered sequence of surrogate models provides the complete discretized CDF of the QoI w.r.t. the input X = x, i.e. F (y P |x). Observe that such description is sufcient for a fast inversion of Eq.6. Finally, fragility models of the QoI w.r.t. the important

random variables (X α ) are computed by MCS. Observe that not all the marginal fragility w.r.t. the single important variables are necessarily monotonous. Therefore, following the current practice, only the monotonic increasing fragilities are suitable for the PEER-PBEE framework. The univariate eects of QoI quantiles computed at step 2 guides this nal selection.

Table 1 :

 1 Selected records associated with the Emilia earthquake of May 29, 2012 (Italy).

	Event ID	Time [h:m:s]	M W D [km] Station code Latitude [deg] Longitude [deg]
	IT-2012-0011	07:00:02	6	4.1	MRN	44.878231	11.061743
	IT-2012-0011	07:00:02	6	4.1	MIRE	44.878212	11.061747
	IT-2012-0011	07:00:02	6	9.3	T0814	44.793300	10.969200
	IT-2012-0011	07:00:02	6	4.5	MIRH	44.882400	11.063100
	IT-2012-0011	07:00:02	6	5.1	MIR02	44.886948	11.073198
	IT-2012-0011	07:00:02	6	0.5	MIR01	44.844042	11.071316
	IT-2012-0011	07:00:02	6	11.2	MIR03	44.938400	11.104500
	IT-2012-0011	07:00:02	6	13	MIR04	44.927433	11.178312
	IT-2012-0010	10:55:56	5.5	6.8	T0819	44.887300	10.898700
	IT-2012-0011	07:00:02	6	11.3	T0813	44.877800	11.199200
	IT-2012-0011	07:00:02	6	14.4	T0800	44.848600	11.247900
	IT-2012-0011	07:00:02	6	6.1	SAN0	44.838000	11.143000
	IT-2012-0011	07:00:02	6	8.6	MIR08	44.916900	11.089500
	IT-2012-0011	07:00:02	6	9.9	T0802	44.875000	11.181600
	IT-2012-0011	07:00:02	6	10.7	T0818	44.934800	11.030400
	IT-2012-0011	07:00:02	6	14.3	T0811	44.783800	11.226500

Table 2 :

 2 Parameters of Dabaghi and Der Kiureghian's model identied on the pulse-like motions.Average values µ, standard deviations σ, and coecients of variations CoV and min and max bounds are computed over the 12 selected records.

	Record	V p	T p	γ	ν	t max,p I a,res T 30,Ia,res D 5-95,Ia,res	ω mid	ω	ζ
	1	0.282	2.094	2.906	1.272	2.739	1.029	2.040	7.095	29.327	0.823	0.338
	2	0.282	2.197	2.348	3.262	2.133	0.777	2.260	7.490	33.884	0.950	0.444
	3	0.292	2.072	2.893	1.302	2.546	0.932	1.975	7.020	25.006	0.493	0.304
	4	0.276	2.139	2.434	3.327	1.947	0.619	2.105	7.115	23.464	1.264	0.405
	5	0.303	2.334	2.831	1.409	2.615	0.515	2.070	7.040	20.953	0.472	0.423
	6	0.249	2.394	2.491	2.985	1.834	0.297	2.055	7.465	19.566	1.368	0.579
	7	0.363	2.602	2.449	3.507	2.580	0.897	2.270	7.265	39.586	0.135	0.585
	8	0.196	2.425	2.917	1.687	3.251	0.716	2.385	7.890	43.533	-0.344	0.462
	9	0.392	2.282	2.350	4.530	2.862	0.881	2.305	7.185	32.215	0.212	0.306
	10	0.292	1.949	2.339	2.616	1.472	0.408	1.530	4.195	23.015	1.948	0.408
	11	0.218	1.762	2.418	3.069	1.748	0.335	1.390	3.115	33.868	0.949	0.378
	12	0.205	2.688	2.212	1.924	3.352	0.298	2.025	6.720	30.052	-0.875	0.349
	min	0.196	1.762	2.212	1.272	1.472	0.297	1.390	3.115	19.566	-0.875	0.304
	max	0.392	2.688	2.917	4.530	3.352	1.029	2.385	7.890	43.533	1.948	0.585
	µ	0.279	2.245	2.549	2.574	2.423	0.642	2.034	6.633	29.539	0.616	0.415
	σ	0.056	0.254	0.249	1.001	0.573	0.255	0.286	1.378	7.159	0.742	0.089
	CoV	0.201	0.113	0.098	0.389	0.236	0.398	0.141	0.208	0.242	1.203	0.214

Table 3 :

 3 PCE-based total Sobol' indices of the response QoI (drift peak of Pier #11). I a,res T 30,Ia,res D 5-95,Ia,res ω mid ζ

	P t max,p 0.100 loo V p T p γ ν 0.035 0.548 0.463 0.026 0.002 0.001	0.012	0.003	0.001	0.008	0.008
	0.200	0.023	0.553	0.428	0.032	0.004	0.002	0.013	0.001	0.006	0.010	0.005
	0.300	0.020	0.554	0.415	0.030	0.003	0.002	0.020	0.001	0.005	0.011	0.005
	0.400	0.018	0.551	0.404	0.024	0.008	0.000	0.025	0.006	0.004	0.020	0.010
	0.500	0.019	0.545	0.390	0.028	0.004	0.002	0.036	0.002	0.003	0.021	0.012
	0.600	0.022	0.562	0.356	0.025	0.001	0.002	0.051	0.001	0.002	0.025	0.016
	0.700	0.017	0.560	0.325	0.025	0.001	0.003	0.065	0.002	0.005	0.036	0.021
	0.800	0.029	0.547	0.284	0.022	0.001	0.003	0.092	0.002	0.008	0.047	0.031
	0.900	0.040	0.522	0.222	0.025	0.004	0.006	0.132	0.004	0.015	0.064	0.047

  refer to the fragility model based on a LF surrogate model trained with QoI quantile estimates obtained with 100 ground motion realizations. Similarly, Figures 9d-e-f refer to the fragility model based on a LF surrogate model trained with QoI quantile estimates obtained with 20 ground motion realizations. Both fragility models consider a threshold value ȳ = 0.01 for the QoI/EDP (Pier #11 drift peak), which is associated with onset of concrete cover spalling and crack opening in transverse beams
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Assume that the vector of input variables X has support D X and follows an independent joint PDF f X (X) = M m f Xm (x m ) where f Xm is the marginal PDF of the m-th input variable. Any square-integrable mapping Y = M (X) w.r.t. the probability measure associated with f X , can be written as a sum of functions of increasing dimension as [START_REF] Sobol | Sensitivity estimates for nonlinear mathematical models[END_REF]:

M m,l (X m , X l ) + . . . + M 1,2,...,M (X) , (A.1) or equivalently:

where M 0 is the mean value of Y , u = {m 1 , . . . , m s } ⊂ {1, . . . , M } are index sets, and X u denotes a subvector of X containing only the components indexed by u. The number of summands in the above equation is 2 M -1. The uniqueness and orthogonality of Sobol'-Hoeding decomposition allow for the following decomposition of the variance D of Y :

where D u denotes the partial variance:

The Sobol' index S u can be dened as the fraction of the total variance D u that corresponds to the set of input variables indexed by u:

(1) m describe the inuence of each param- eters X m considered separately. Second-order indices S

(2) ml describe the inuence from pairs of parameters {X m , X l } not already accounted for by X m or X l separately. High-order indices combine inuences from larger sets of parameters. The total sensitivity indices S (tot) m represent the total eect of an input variable X m accounting for its main eect and all interactions with other input variables. It follows that S

(tot) m = 1 -S ∼m , where S ∼m is the sum of all S u with u not including m. Sobol' indices can be evaluated by Monte Carlo simulation [START_REF] Saltelli | Global Sensitivity Analysis[END_REF], which requires O(10 3 ) model evaluations for each index S u . Sobol' indices can be obtained analytically at no additional cost than computing the PCE. A concise description of PCE-based Sobol' sensitivity indices estimation is given herein; for further details, the reader is referred to [START_REF] Gratiet | Metamodel-Based Sensitivity Analysis: Polynomial Chaos Expansions and Gaussian Processes[END_REF]. PCE relies on the decomposition of Y = M (X), as a linear superposition of non-linear functions as follows:

where {Ψ α , α ∈ A} is a set of multivariate polynomials that are orthogonal w.r.t. the input vector with independent components X

) is a multi-index that identies the polynomial degree in each of the input variables, and y α denotes the corresponding polynomial coecient (coordinate). Following the orthonormality condition, E M PCE (X) = y 0 . For practical purposes, the innite sum in Eq.A.6 needs to be truncated to a nite series. This is commonly achieved by maximum-degree or hyperbolic norm truncation (for more details, see [START_REF] Blatman | Adaptive sparse polynomial chaos expansion based on least angle regression[END_REF]). In order to compute the PCE, rst, a socalled ED, consisting of a set of realization of the input vector X = {x (1) , . . . , x (N ) } and the corresponding model evaluations Y = {y (1) , . . . , y (N ) }, is generated. Then, the set of coecients y α is estimated by minimizing the expected mean-square approximation error on the ED by solving:

In the present application, the ED was formed by sampling the input variable space with a Sobol' low-discrepancy sequence. The minimization in Eq.A.7 was solved using the hybrid least angle regression method originally proposed in [START_REF] Blatman | Adaptive sparse polynomial chaos expansion based on least angle regression[END_REF]. It is straightforward to obtain the Sobol' decomposition of Y in an analytical form by observing that the summands M PCE u (X u ) in Eq.A.2 can be written as:

where A u = {α ∈ A : α k = 0 if and only if k ∈ u} denotes the set of multi-indices such that ∪A u = A. Consequently, due to the uniqueness of Sobol'-Hoeding decomposition, there is an analytical expression of M PCE u of Eq.A.8, which serves as a proxy of M u . The analytical expression of the total variance of a PCE is given by [START_REF] Xiu | The WienerAskey polynomial chaos for stochastic dierential equations[END_REF]:

Similarly, the partial variance D u reads:

(A.10) Accordingly, the Sobol' indices of any order can be approximated by a simple combination of the squares of the PCE coecients by substituting Eqs.A.10 and A.9 in Eq.A.5. For instance, the rst-order Sobol' indices, which describe the inuence of each input variable X m considered separately, read: .11) whereas the total Sobol' indices, which represent the total eect of an input variable X m accounting for its main eect and all interaction with other input variables, are given by:

(A.12)

Sobol' indices provide quantitative insight on the importance of an input variable. However, they do not include information about the direction in which an input variable aects the model response Y . So-called univariate eects can answer this question [START_REF] Deman | Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in a multi-layered hydrogeological model[END_REF][START_REF] Harenberg | Uncertainty quantication and global sensitivity analysis for economic models[END_REF]. A univariate eect is the expectation of Y conditioned on the value of a single input variable. Univariate eects have a closed analytical form for PCE models, closely related to the rst-order Sobol' decomposition,

In this study, computations of both PCE and Sobol' indices were performed using UQLab, which is a MATLAB toolbox for UQ developed by the Chair of Risk, Safety and Uncertainty Quantication of ETH Zurich (Marelli andSudret, 2014, 2019;Marelli et al., 2019).

Appendix B. HK surrogate modeling

Let {M c , c = 1, . . . C} being a series of simulators sorted by increasing level of delity, and y c the associated output, y c = M c (x). In addition, let MK c dene the Kriging surrogate model of the simulator M c (x). A Kriging surrogate model is dened as an innite collection of jointly Gaussian random variables (i.e., a Gaussian stochastic process). Any nite sample of the process is a Gaussian random vector, which is completely dened by the multivariate Gaussian distribution [START_REF] Rasmussen | Gaussian processes in machine learning[END_REF]. In this context, the input X is sampled at N c distinct locations within the support D X , and the corresponding scalar output , with mean µ c (X), and covariance matrix Σ c (X). Therefore, the kriging surrogate model of the c simulator can be dened as (Cressie, 1992;[START_REF] Santner | The design and analysis of computer experiments[END_REF][START_REF] Rasmussen | Gaussian processes in machine learning[END_REF])

where β c is a vector of regression coecients, f c (X) is a vector collecting a series of basis functions, σ 2 c is the variance of the process, and Z (X) is a zero-mean, unit-variance stationary Gaussian process. Therefore, Z (X) is fully determined by the correlation function R (X, X | θ) = R (X -X |θ) between two distinct points (X, X ) in the input space, where θ is a set of hyper-parameters. Given the input ED X c and the output set Y c , β c , θ c , and σ c are generally determined by generalized least squares as follow [START_REF] Santner | The design and analysis of computer experiments[END_REF][START_REF] Dubourg | Adaptive surrogate models for reliability analysis and reliability-based design optimization[END_REF] (B.4)