
HAL Id: hal-03138932
https://hal.science/hal-03138932v1

Preprint submitted on 11 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Seismic Fragility Analysis based on Artificial Ground
Motions and Surrogate Modeling of Validated Structural

Simulators
G. Abbiati, M. Broccardo, Iman Abdallah, S. Marelli, F. Paolacci

To cite this version:
G. Abbiati, M. Broccardo, Iman Abdallah, S. Marelli, F. Paolacci. Seismic Fragility Analysis based
on Artificial Ground Motions and Surrogate Modeling of Validated Structural Simulators. 2021. �hal-
03138932�

https://hal.science/hal-03138932v1
https://hal.archives-ouvertes.fr


SEISMIC FRAGILITY ANALYSIS BASED ON ARTIFICIAL

GROUND MOTIONS AND SURROGATE MODELING OF

VALIDATED STRUCTURAL SIMULATORS

G. Abbiati, M. Broccardo, I. Abdallah, S. Marelli, F. Paolacci

CHAIR OF RISK, SAFETY AND UNCERTAINTY QUANTIFICATION

STEFANO-FRANSCINI-PLATZ 5
CH-8093 ZÜRICH
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Abstract

This study introduces a computational framework for e�cient and accurate seismic
fragility analysis based on a combination of arti�cial ground motion modeling, polynomial-
chaos-based global sensitivity analysis, and hierarchical kriging surrogate modeling. The
framework follows the philosophy of the Performance-Based Earthquake Engineering PEER
approach, where the fragility analysis is decoupled from hazard analysis. This study ad-
dresses three criticalities that are present in the current practice. Namely, reduced size of
hazard-consistent size-speci�c ensembles of seismic records, validation of structural simula-
tors against large-scale experiments, high computational cost for accurate fragility estimates.
The e�ectiveness of the proposed framework is demonstrated for the Rio Torto Bridge, re-
cently tested using hybrid simulation within the RETRO project.

Keywords: Fragility analysis ; surrogate modeling ; hierarchical kriging ; polynomial chaos
expansion ; global sensitivity analysis ; arti�cial ground motion.

1 Introduction

The PEER Performance-Based Earthquake Engineering (PBEE) framework is widely used to
perform seismic risk analysis. The framework is an implementation of total probability theo-
rem, which combines the output of Probabilistic Seismic Hazard Analysis (PSHA) with fragility,
damage, and loss analysis. A critical part of the framework is the coupling between hazard and
structural modeling, namely, fragility analysis. It comes as no surprise that it developed into a
stand-alone research �eld. Given a structural system of interest, the most recent advancement
in fragility analysis requires the selection of a set of suitable ground motions to be used as input
for non-linear structural analysis. Then, the statistics of a Quantity of Interest (QoI), which in
general is denoted as Engineering Demand Parameter (EDP), are derived as a function of a given
Intensity Measure (IM), or a vector of IMs. Speci�cally, these conditional EDP-IM relations are
named fragility functions. Following this line, in recent years, a lot of research has been devoted
to creating computational fragility frameworks, including the selection and the use of real seismic
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records and non-linear time history analysis. An incomplete list of studies in this topic includes
(Vamvatsikos and Cornell, 2002; Porter et al., 2007; Baker, 2015; Noh et al., 2015). However,
within this perimeter, a number of open issues have been raised by the opinion paper of Bradley
(Bradley, 2013) and further elaborated in the state-of-the-art review of Silva and co-authors
(Silva et al., 2019). Departing from these studies, this paper aims to address three criticalities:

1. In recent years, there have been signi�cant advancements in ground motion selection proce-
dures, which have partially solved the problem of de�ning a suitable set of seismic records
for structural analysis. However, although these selections are su�cient to describe impor-
tant characteristics of the hazard for a given structure of interest, the number of available
records is usually insu�cient to compute accurate estimates of the QoIs statistics.

2. The validation of structural simulators and the quanti�cation of the associated model un-
certainty against representative experiments�despite being critical�is often overlooked.
This is due to practical reasons. Structural testing is usually not a�ordable beyond the
component level due to the limited capacity of experimental facilities. Also, the budget
allocated for structural testing is typically su�cient for running a small number of de-
structive experimental tests, which cannot cover the entire range of IMs for the fragility
analysis.

3. The computation of fragility analysis requires a large number of time history analyses. It
follows that computational cost of structural simulators limits de facto the total number
of simulations. This is a classical problem in simulation-based Uncertainty Quanti�ca-
tion (UQ), which is tackled by replacing the computationally expensive simulator with
an equivalent (with respect to, w.r.t., the QoI) response surface a.k.a. surrogate model.
However, de�ning surrogate models for non-linear dynamic analysis is challenging and still
not completely addressed by the current state of the art of fragility computation. As a
consequence, the accuracy of the fragility is limited by available computational resources.

This study introduces a computational framework for e�cient and accurate seismic fragility
analysis based on a combination of arti�cial ground motion modeling and surrogate modeling.
Moreover, the goal is to integrate the know-how developed in ground motion selection and to
follow the original spirit of the PEER-PBEE framework to decouple the task of hazard and
fragility analysis. Speci�cally, given a suitable set of real seismic time series, we de�ne an
arti�cial ground motion model equipped with engineering-meaningful parameters. The selected
real seismic time series are thought of as realizations of the ground motion model, using the same
philosophy introduced by (Rezaeian and Der Kiureghian, 2008, 2010). Unlike their work, this
framework uses the real seismic time series to calibrate the parameters of the arti�cial ground
motion model and the associated uncertainties. The de�nition of such a hazard model constitutes
the basis for using a surrogate-based UQ forward analysis.

The building blocks of the computational framework are: the arti�cial ground motion model, an
expensive-to-evaluate High-Fidelity (HF) structural simulator of the reference structure validated
against experiments (e.g., Hybrid Simulation (HS) in the proposed application (Schellenberg
et al., 2009)), and a corresponding cheaper Low-Fidelity (LF) structural simulator (e.g., obtained
via dynamic substructuring of the HF simulator in this study (de Klerk et al., 2008)). The seismic
vulnerability analysis follows these sequential steps: i) generation of a family of arti�cial motions
(compatible with the real selected ones); ii) computation of the Polynomial Chaos Expansion
(PCE) of the LF simulator QoI prediction; iii) dimensionality reduction of the arti�cial ground
motion parameters based on Global Sensitivity Analysis (GSA); iv) computation of a multi-
�delity (MF) surrogate based on Hierarchical Kriging (HK) that fuses LF and HF predictions of
the QoI; v) the fragility analysis is derived as a natural byproduct of the framework.
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Fragility analysis and, more broadly, seismic risk assessment based on stochastic simulations is
not new, and an incomplete list of studies includes (Mai et al., 2017; Zentner, 2017; Trevlopoulos
et al., 2019; Altieri and Patelli, 2020). Moreover, to the best of our knowledge, the �rst study
using also kriging surrogate modeling is (Gidaris et al., 2015) and more recently (Ghosh et al.,
2019). Di�erent from the previous contributions, this paper draws a direct link between ground
motion selection and the calibration of the stochastic hazard model; moreover, it introduces HK
to combine predictions of simulators with di�erent degrees of �delity. In essence, the arti�cial
ground motion model is used to build a large ensemble of time series, which would not be possible
to compose using records of real seismic events. Therefore, this study aims to bridge classical
seismic fragility analysis with the most recent UQ advancements, and not to solve the full seismic
risk analysis (as done in (Gidaris et al., 2015) by fully employing the philosophy of (Rezaeian and
Der Kiureghian, 2010)). In this context, this paper introduces a combination of PCE-based GSA
and HK so that the computational burden associated with the fragility analysis is drastically
reduced.

The framework is applied to a real-world application consisting of a Reinforced Concrete (RC)
bridge case study, which was recently tested within the RETRO project (Paolacci et al., 2014;
Abbiati et al., 2015). LF and HF simulators are introduced, highlighting the crucial role of HS
in enabling experimental validation of the bridge model (Bursi et al., 2017). Since the selected
case study structure is insensitive to broadband ground motions, the arti�cial ground motion
model incorporates a pulse-like component (Dabaghi and Kiureghian, 2017), and it is calibrated
against a set hazard-consistent site-speci�c real records. The framework is applied to compute
the fragility analysis related to the lateral drift of one of the twelve piers of the Rio Torto Bridge.

This paper is organized as follows. Section 2 describes the proposed seismic fragility analysis
framework. Section 3 introduces the Rio Torto Bridge case study. Section 4 describes both HF
and LF structural simulators of the bridge. Section 5 describes the calibration of the arti�cial
ground motion model using hazard-compatible site-speci�c seismic records. Section 6 summarizes
the results of the seismic fragility analysis of the bridge. Section 7 includes limitations, future
perspectives, and conclusions. For the sake of completeness, the entire machinery of surrogate
modeling and, in particular, PCE-based GSA (Blatman and Sudret, 2011; Le Gratiet et al., 2017)
and HK (Abdallah et al., 2019) are reported as appendices providing a self-consistent notation.

2 Seismic fragility analysis framework

2.1 Theoretical background

Let A(t) denote the stochastic process representing the input excitation of the system. The
goal is to represent the process in terms of an aleatory component (i.e., the inherent variability
of the process) and an epistemic component (i.e., the parametric variability of the process).
Accordingly, it is convenient to express A(t) as follows.

A(t) =Ma(t,Za|Xa), (1)

whereMa is a parametric stochastic model (or synthesis formula), Za is a set of random variables
representing the aleatory variability, and Xa a is a set of model parameters. In this setting, the
model parameters are considered as random variables. However, this uncertainty is epistemic
(i.e., can be reduced). Let Y denote the response QoI of a real system (e.g., the maximum
displacement or internal force of a structural component), andMc(A(t),Zc|Xc) a suitable (w.r.t.
the QoI) stochastic structural simulator, where Xc is a set of random model parameters and Zc
is a set of random variables representing the aleatory variability of the structural model (e.g., the
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inherent randomness of random �elds in a stochastic �nite element setting, (Stefanou, 2009)). It
follows that Y , can be written as

Y =Mc (Ma(t,Za|Xa),Zc|Xc) , (2)

=M (Z|X) , (3)

where M := Mc ◦ Ma, Z = [Za;Zc], and X = [Xa;Xc]. Observe that even when Mc is
a deterministic structural simulator�i.e., Zc is not present�M is a stochastic simulator. In
fact, in this case, given a realization of the model parameters, x, Y is still a random variable
with aleatory uncertainty determined by the propagation of Za|x. Using Eq.3, the Cumulative
Distribution Function (CDF) of Y , denoted by FY (y), can be written as

FY (y) = P(M(Z|X) ≤ y) =

∫

x

∫

z
I (M(z|x) ≤ y) dFZ(z)dFX(x), (4)

where I(·) denotes the indicator function, P(·) denotes probability, FZ(z), FX(x) denote the
joint CDFs, and dFZ(z) = fZ(z)dz, dFX(x) = fX(x)dx, with fX(x) and fZ(z) being the
joint probability densities. Observe that Z is statistically independent ofX; moreover, fX(x) =
fXc(xc)fXa(xa) under the (reasonable) assumption that the parameters of the seismic input and
the structural simulator are statistically independent. Next, the conditional CDF of Y given a
realization x is simply

FY |X(y|x) = P(M(Z|X = x) ≤ y) =

∫

z
I (M(z|x) ≤ y) dFZ(z). (5)

Given the distribution function FY |X , the p-quantile function returns the value yp such that
FY |X(yp|x) = p. Assuming FY |X is continuous and strictly monotonically increasing, yp =

F−1Y |X(p|x). However, since X is a random variable, yp is also a random variable and can be
written as

Yp = F−1Y |X(p|X) =Mp(X). (6)

where, for convenience, we de�neMp(·) := F−1Y |X(p|·), and p ∈ [0, 1]. Therefore, Yp can also be
viewed as stochastic process indexed by p. Moreover, Mp is a deterministic model, since the
aleatory variability has been marginalized in Eq.6.

Given this general framework, a few observations need to be done for this speci�c study. First of
all, A(t) is an arti�cial ground motion model, and Xa is a physically meaningful set of ground
motions parameters. Speci�cally, if the arti�cial ground motion model is a Gaussian �ltered
white noise, then Za is a set of standard normal random variables (more details in Section 5).
Second,Mc is a deterministic structural simulator, where Xc is the set of model parameters and
Zc is not present. Finally, observe that despite its simplicity, Eq.6 involves a complex and highly
non-trivial computational endeavor. In the following, this task is tackled using a non-intrusive
UQ approach that assumes thatMc (and thereforeM) is a black-box solver.

2.2 Computational solution

In the context of earthquake engineering, the goal of this study is to determine the distribu-
tion of Yp for di�erent values of p. In general, the analytical solution of Eq.6 is not available;
moreover, a classical Monte-Carlo-based solution is computationally prohibitive. In fact,Mc is
an "expensive" model and, therefore, also Mp. A natural alternative to drastically reduce the
computational cost is to replace the original model with a surrogate model. Let M̂p denotes a
surrogate model ofMp, then

Ŷp = M̂p(X), (7)
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where Ŷp ≈ Yp. The statistics of Ŷp are then directly used for decision making. The surrogate
model should be compatible with the arti�cial ground motion model, an HF validated structural
simulator and the chosen QoI. Speci�cally, the proposed scheme builds on a combination of
PCE-based GSA and HK, and it is here summarized in the following steps.

1. Model de�nition and validation. De�ne the QoI, a stochastic model of the inputMa

(Section 5), and a set of structural simulatorsMc (Section 4). In this study, c ∈ {LF ,HF}
where c = HF corresponds to the expensive-to-evaluate HF simulator whereas c = LF to a
computationally cheaper LF simulator (Section 2.2 provides further detail on this choices).
The de�nition of the models re�ects the following criteria:

(a) The arti�cial ground motion model is de�ned w.r.t. a local seismic catalog based on
an existing suitable ground motion selection (e.g., (Bradley, 2010; Iervolino et al.,
2010; Baker, 2011)). In fact, this framework is designed to work complementary to
any ground motion selection criteria, rather than to express a preference for a speci�c
selection criterion or to propose a new one.

(b) The HF simulator successfully passed a comprehensive validation protocol. Validation
entails a comparison of model predictions with physical experiments that adequately
reproduce the real structural behavior (Trucano et al., 2006). This study uses HF sim-
ulators validated using HS. This minimizes the cost of conducting realistic structural
testing campaigns compared to shake table testing (Schellenberg et al., 2009). To be
robust to generalization error, the HF simulator incorporates an accurate description
of the physics of the real structure, which includes geometric and material properties.
Therefore, it is ranked �rst in terms of computational cost for a single evaluation
amongst all structural simulators Mc. As a result, the HF simulator is expected to
succeed in representing the structural response with predetermined accuracy within a
given validation domain.

(c) The LF simulator is a computationally cheaper proxy of its HF counterpart. For ex-
ample, one could decide using di�erent modeling paradigms for HF and LF simulators
or 2D versus 3D geometrical representations. The main assumption of HK surrogate
modeling is that the bias between LF and HF simulator responses is smoother than
the HF simulator response (Ng and Eldred, 2012). Therefore, LF and HF simula-
tor responses must be highly correlated. Hence, this study proposes to derive the
LF simulator as a reduced-order representation of the HF simulator using dynamic
substructuring (de Klerk et al., 2008). In particular, it is shown how to obtain a
non-linear reduced-order model as an assembly of reduced-order linear components
(Craig and Kurdila, 2006) connected by non-linear springs.

2. Global-sensitivity-based dimensionality reduction. Create a larger LF Experimental

Design (ED) {YLF,p,X}, where YLF,p = {y(1)LF,p, . . . , y
(NLF )
LF,p }, X = {x(1), . . . ,x(NLF )}, x(n)

is a generic sample of the input parameters, and y
(n)
LF,p is the corresponding LF estimate of

the p-quantile of the QoI. Train a set of LF surrogates, M̂PCE
LF,p (x), based on {YLF,p,X}

using PCE (Blatman and Sudret, 2011). Perform a PCE-based GSA (Le Gratiet et al.,
2017) w.r.t. the QoI. Select and retain the input random variables that contribute most
to the variability (variance) of the QoI and �x the remaining ones to their expected value.
In practice, de�ne X = [Xα,xβ], where Xα are the "important random variables," and
xβ = E[Xβ] the rest of input parameters. A natural output of GSA are univariate e�ects
of input parameters, which are the expectation of a QoI conditioned on the value of a
single input variable (therefore, they provide information about the shape of the surrogate
models). In this context they are used at step 4 for de�ning monotonic fragility models. A
detailed summary on PCE-based GSA is reported in Appendix A.
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3. Hierarchical Kriging surrogate modeling. Train a second smaller HF ED {YHF,p,Xα},
where YHF,p = {y(1)HF,p, . . . , y

(NHF )
HF,p }, Xα = {x(1)

α , . . . ,x
(NHF )
α }, x(n)

α is a generic sample of

the selected model parameters, and y
(n)
HF,p is the corresponding HF estimate of the p-quantile

of the QoI. Train a set of MF surrogates M̂K
HF,p (xα) based on {YHF,p,Xα} using HK. In

this case, the PCE surrogate of the corresponding LF quantile is used as trend function
(Han and Görtz, 2012; Abdallah et al., 2019). A short summary of HK surrogate modeling
is reported in Appendix B.

4. Probabilistic characterization of the QoI. Compute the statistics of the QoI of interest
(including fragility analysis) via Monte-Carlo-based UQ analysis using the HK surrogate
model. Speci�cally, given an ordered sequence of quantiles P = [p1, ..., pn], steps 2-3 can
be implemented sequentially to obtain n maps (i.e., surrogate models) between YP and X.
Therefore, this n ordered sequence of surrogate models provides the complete discretized
CDF of the QoI w.r.t. the inputX = x, i.e. F (yP |x). Observe that such description is suf-
�cient for a fast inversion of Eq.6. Finally, fragility models of the QoI w.r.t. the important
random variables (Xα) are computed by MCS. Observe that not all the marginal fragility
w.r.t. the single important variables are necessarily monotonous. Therefore, following the
current practice, only the monotonic increasing fragilities are suitable for the PEER-PBEE
framework. The univariate e�ects of QoI quantiles computed at step 2 guides this �nal
selection.

Despite the use of stochastic simulators (Eq.3), the outlined framework has the critical advantage
of providing by construction (Eq.6) a�deterministic�map between the input parameters and a
given quantile of the distribution of the QoI. The nature of the uncertainty associated with this
distribution is aleatory. Speci�cally, it is the aleatory component, Z, of the stochastic model,
M(Z|x). In fact, in the special case of a deterministic simulator any quantile will collapse into the
deterministic solution of M(x). A cornerstone of the proposed framework is model calibration
and validation with experimental data. In fact, the LF simulator can be characterized by an
oversimpli�cation of the real problem, phenomenological (and not validated) assumptions, and
non-physical parameters. As a result, a rigorous global model validation becomes prohibitive,
leading to not negligible model biases. On the other hand, the advantage of LF structural
simulators lies in their reduced computational cost, enabling global studies. Few considerations
need to be made in the context of earthquake engineering. In this case, an EDP of interest
is the QoI; moreover, a vector of IMs is composed by either some of the "important" input
parameters (i.e., IM ∈ Xα) or by a set of instrumental IMs (IM = [PGA,PGV, ...]). In the
latter case, a statistical conversion (Suzuki and Iervolino, 2020) between the ground motion
parameters and the instrumental IMs can be easily derived provided a large set of simulations.
The proposed framework allows the computation of any statistic of interest for the selected EDP ,
including classical fragility functions and surfaces. In the fragility analysis context, a key passage
of this framework is the GSA (step 2), which provides a rigorous selection of the important input
parameters (i.e., IM) w.r.t. to the EDP variability. Observe that this condition is explicitly
dependent on the quantile of (major) interest. Therefore, it potentially eliminates the loss of
correlation between IM and EDP in the tail of fragility functions (Grigoriu, 2011) (if this
probability region is of interest).

3 The Rio Torto Bridge case study

The Rio Torto Bridge is an RC structure built in the '70s and located on the motorway between
Florence and Bologna, Italy. The bridge comprises two independent roadways of 400 m length
and is characterized by a 13-span deck sustained by twelve piers. Three out of thirteen spans
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(a)

(b)

Figure 1: The Rio Torto Bridge case study: a) side view retrieved from (Abbiati et al., 2015);
b) hybrid model retrieved from (Bursi et al., 2017)

accommodate Gerber saddles, which protect the deck from restrained deformation due to pier
settlement. Pier heights vary between a minimum of 13.80 m (Pier # 12) to a maximum of
41.00 m (Pier # 7). Figure 1b reports a schematic of the hybrid model of the Rio Torto Bridge.
Non-linear springs represent the in-plane sti�ness of numerical and physical piers activated by the
lateral displacement of the deck. A schematic view of tested piers is also reported in Figure 1b.
The Rio Torto Bridge was selected as a case study to investigate the seismic performance of
old RC bridges and possible seismic retro�tting schemes within the framework of the RETRO
project (Paolacci et al., 2014). The seismic response of the bridge was evaluated via HS. In
detail, mock-up models of Pier #9 and #11 of 1:2.5 scale were built and tested via HS at ELSA
Laboratory of the Joint Research Centre of Ispra, Italy. Figure 2a provides a picture of the entire
installation at the JRC of Ispra while Figure 2b reports an overview of the �nite-element model
utilized to design the experiments.

The East-West and the North-South components of the Emilia earthquake of May 29, 2012,
recorded from Mirandola station and downloaded from the ITACA database (Pacor et al., 2011)
were considered as serviceability and ultimate limit state accelerograms (SLS and ULS, respec-
tively). The response spectra of both SLS and ULS accelerograms are shown in Section 5 where
the stochastic modeling of the seismic input for the fragility analysis is described. In this study,
the epistemic uncertainty of the deterministic structural simulator parameters is considered neg-
ligible w.r.t. the ground motion parameters, therefore, we set Xc = x̄c

*. Therefore, X ≡ Xa

and Z ≡ Za. For a comprehensive description of the HS campaign, the reader is addressed to
(Abbiati et al., 2015; Bursi et al., 2017).

4 Computational modeling of the bridge

Two structural simulators of a single lane of the Rio Torto Bridge were implemented, namely, a HF
�nite-element and a LF state-space structural simulator. The former was initially implemented in
OpenSees (McKenna et al., 2010) to support the design of the experimental campaign (see Figure

*This corresponds to assign a delta Probability Density Function, i.e., δ(xc − x̄c)
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(a) (b)

Figure 2: Tested piers: a) picture of the setup at JRC Ispra; b) �nite-element model of Pier #11
implemented in OpenSees (McKenna et al., 2010)

2b, in this regard). The LF simulator was obtained, instead, via dynamic substructuring of the
HF simulator. Accordingly, LF and HF structural simulators show almost the same response in
the linear regime.

4.1 High-�delity �nite-element model

The HF simulator was implemented in OpenSees (McKenna et al., 2010). Linear Bernoulli beam
elements were used for the deck, whose response was assumed not to exceed the linear regime.
Cylindrical hinges model Gerber saddles allowing for lateral and vertical rotations between deck
elements while blocking relative torsional rotations. Displacement Degrees-of-Freedom (DoFs)
of both abutments were constrained, but not rotations. A rigid link accounted for the o�set
distance between the cap beam axis and the center of gravity of the deck cross-section. Each
pier was clamped at the base.

All piers were modeled using non-linear �ber-based elements thus discretizing longitudinal steel
reinforcement of member cross-sections. The zero-tensile-strength Concrete01 OpenSees material
was adopted for concrete assuming a compressive strength fpc = 11.47 MPa and fpc = 17.16 MPa
for piers characterized by solid and hollow cross-section columns, respectively. These values were
calibrated based on the quasi-static response of Pier #9 and #11 obtained via HS. The Steel02
OpenSees material was adopted for steel rebars assuming a tensile strength fy = 360 MPa.
The Pinching4 OpenSees material was used to model the hysteretic shear response of transverse
beam elements. Parameter values were calibrated for a series of cyclic tests conducted on a
1/4 scale mock-up model of Pier #12 documented in (Paolacci and Giannini, 2012). Finally,
a proportional Rayleigh damping model was adopted with mass multiplier αd = 0.27300 and
sti�ness multiplier βd = 0.00787. The vibration periods of the �rst four eigenmodes of the Rio
Torto Bridge computed from the HF simulator are T = {1.62, 1.55, 1.52, 0.88} sec. Figure 3
compares the hysteretic loop of the lateral restoring force of Pier #11 obtained via HS (SLS and
ULS accelerograms, as built con�guration) to corresponding HF simulator predictions. As can
be appreciated, the HF simulator e�ectively reproduces the lateral restoring force response of
Pier #11. A single evaluation of the time history response of the HF simulator subjected to a
15 sec accelerogram sampled at 1 msec takes about 600 sec on a standard laptop equipped with
an Intel 1.80 GHz i7-8565U CPU and 16 GB RAM or similar. For a more detailed description
of the HF simulator, the reader should refer to (Abbiati et al., 2015).
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(a) (b)

Figure 3: Measured and simulated hysteresis loops of the lateral restoring force of Pier #11: a)
SLS; b) ULS.

4.2 Low-�delity state-space model

A linearized version of the HF simulator supported the computation of reduced-order mass and
sti�ness matrices of deck and piers of the LF simulator via component-mode synthesis (Craig
and Kurdila, 2006), which is a speci�c dynamic substructuring method (de Klerk et al., 2008).
In detail, the reduced-order model of the deck was obtained via static condensation retaining
only lateral displacement DoFs of piers and Gerber saddles,

{
u̇ = v

v̇ = m−1 (l · r − c · v − k · u− t · ag(t)) ,
(8)

where u and v are the 18 retained displacement and velocity DoFs, respectively; k, c and m
are reduced-order sti�ness, damping and mass matrices, respectively, whereas t is the seismic
mass vector. The latter multiplies the seismic accelerogram ag(t) to obtain the seismic loading.
The 18 × 12 Boolean matrix l collocates the 12 pier restoring forces stored in r = {r1, . . . , r12}
to the related state-space equation. A non-linear single-DoF system based on a Bouc-Wen
restoring force was calibrated to mimic the response of the corresponding pier in the HS structural
simulator, 




u̇i = vi

v̇i = m−1i [gi(t)− civi − ri − tiag(t)]
ṙi = [Ai + (βi sign (rivi)− γi) |ri|n] vi,

(9)

where ui, vi, and ri are the three state variables, namely, displacement, velocity, and hysteretic
restoring force, whereas gi(t) represent the deck reaction force of the i-th pier. Mass mi and
seismic mass ti were obtained via static condensation as well. For each pier, the top lateral dis-
placement DoF was retained as master DoF, whereas the others were condensed. Consistently
with the HF simulator, viscous damping ci was computed assuming a proportional Rayleigh
damping with mass multiplier αd = 0.27300 and sti�ness multiplier βd = 0.00787. The parame-
ters A, β, γ and n refer to the Bouc-Wen model (Ikhouane and Rodellar, 2007), which describes
the evolution of the hysteretic restoring force ri. As analogously done for damping, mass, and
seismic mass, the parameter A, which represents the initial sti�ness of the non-linear spring,
was obtained via static condensation of the HF pier model. On the other hand, n was assumed
constant and equal to one, whereas β and γ were calibrated to match the static response of the
corresponding OpenSees pier model subjected to ten sinusoidal displacement cycles producing
0.5 % drift. Figure 4 compares the dynamic response of Pier #11 obtained from time history
analyses of LF and HF structural simulators considering the ULS accelerogram of the HS cam-
paign described in Section 3. A single evaluation of the time history response of the LF simulator
subjected to a 15 sec accelerogram sampled at 1 msec takes about 20 sec on a standard laptop
equipped with an Intel 1.80 GHz i7-8565U CPU and 16 GB RAM.
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(a) (b)

Figure 4: LF and HF simulations of the seismic response of Pier #11: a) displacement, b)
restoring force.

5 Stochastic modeling of the seismic input

The lateral motion of the Rio Torto Bridge is characterized by a relatively long period of vibration.
Consequently, its reliability is not strongly a�ected by broadband motions. On the contrary, it
is vulnerable to pulse like motions with frequencies close to the structural ones. Generally, the
presence of a strong pulse component is more likely in near �eld motions. As a consequence,
this study employs the stochastic model proposed by Dabaghi and Der Kiureghian (Dabaghi and
Kiureghian, 2017), which is designed for such type of excitations.

The model is composed by a residual broad-band process (as done in (Rezaeian and Der Ki-
ureghian, 2008)), and a modi�ed version of the Mavroeidis, pulse model with random parameters
(Mavroeidis, 2003),

Vpul (t) =Mpul(t,Xpul)

=

{
1

2
Vp cos

[
2π

(
t− Tmax,p

Tp

)
+ ν

]
− Dr

γTp

}{
1 + cos

[
2π

γ

(
t− Tmax,p

Tp

)]}
,

ti,p < t ≤ tf,p.

(10)

where Xpul = [Vp, Tp, Tmax,p, γ, ν]. Speci�cally, Vp and Tp are pulse amplitude and period,
respectively, γ represents the number of oscillations within the pulse, ν is the phase angle shift
w.r.t. the time modulation function, and Tmax,p is a location parameter for the peak of the
excitation. Dr has been introduced in (Dabaghi and Kiureghian, 2017) to guarantee zero residual
displacement at the end of the excitation, and it is de�ned as

Dr = VpTp
sin (ν + γπ)− sin (ν − γπ)

4π (1− γ2) . (11)

Finally, ti,p = Tmax,p − 0.5γTp, and tf,p = Tmax,p + 0.5γTp represent the start and the end of
the pulse motion. While the pulse is modeled in the velocity domain, the residual is modeled
in the acceleration domain, i.e., ares (t) = a (t)− v̇pul (t)*. Since the residual of the acceleration
is a broadband motion, the model follows the same principles of (Rezaeian and Der Kiureghian,
2008), i.e.,

Ares (t) =Mres(t,Z|Xres) = q (t|Xq)
h(t|Xh) ∗W (t,Z)

σh (t,Z|Xh)
, (12)

where ∗ denotes time convolution; Xres = [Xq,Xh]; q (t|Xq) is a parametric time modulating
function with random parameters Xq; h(t|Xh) is the impulse-response function of a linear �lter

*lower case letters are used to indicate the single excitation; moreover, notice the time derivative on the pulse
component.
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with time varying random parameters, where Xh represents a set of time invariant parameters;
W (t,Z) =

∑Nt
n δ(t − tn)Zn is a band-limited white noise process, where Z = [Z1, ...ZNt ] is a

standard normal vector; and σh (t,Z|Xh) is the variance of the convoluted process (i.e., the
numerator of Eq.12). The modulating function proposed in (Dabaghi and Kiureghian, 2017) for
near-�eld motions is

q (t|Xq) =

{
C
(

t
Tmax,q

)α
, 0 < t ≤ tmax,q

C exp [−β (t− Tmax,q)] , tmax,q < t,
(13)

where Xq = [α, β, C, Tmaxq ] are the parameters of the function. Speci�cally, α and β are shape
parameters controlling the ramping and decreasing phase of the residual, C is a scale factor,
and Tmax,q is a location parameter de�ning the peak of the residual excitation. Moreover, it
can be shown that a one-to-one mapping exists between these parameters and D5−95,Ia,res =
T95,Ia,res − T5,Ia,res , T30,Ia,res , and Ia,res�where Tp,Ia,res is the time corresponding to the p %
of the cumulative Arias intensity of the residual, Ia,res. It follows that Xq can be written as
Xq = [Ia,res, T30,Ia,res , D5−95,Ia,res ]. The �lter is de�ned by

h(t|Xh) =
ωf (t)√
1− ζ2f

exp [−ωf (t) ζf · t] sin
[
ωf (t)

√
1− ζ2f · t

]
. (14)

In Eq.14, the main frequency, ωf (t), is evolving linearly with time. Speci�cally, ωf (t) = ωmid +
ω̇ (t− T30;Ia), where ωmid is the frequency at time T30;Iares (i.e., at 30 % of the cumulative Arias
intensity of the residual) and ω̇ is the rate of change of the frequency with time. The damping of
the �lter, ζf , is considered time invariant. It follows that Xh = [ωmid, ω̇, ζ]. For further details
the reader should refer to (Dabaghi and Kiureghian, 2017). Finally, the arti�cial ground motion
model can be written as

A(t) =Ma(t,Z|Xa) =Mres(t,Z|Xres) + Ṁpul(t,Xpul) = Ares(t) + V̇pul(t), (15)

where Xa = [Xres,Xpul].

In order to �nd parameter ranges consistent with the seismic hazard characteristic of the site, the
arti�cial ground motion model was calibrated against real seismic records following the procedure
explained in (Dabaghi and Kiureghian, 2017). In detail, the seismic records of real events were
selected based on the disaggregation analysis of the PGA with probability of exceedance of 2 %
in 50 years (Bazzurro and Allin Cornell, 1999) reported in a previous work of the last author
(Alessandri et al., 2013)*. Then, it was found that only pulse-like ground motions were likely
to cause damage to the structure. Consequently, only pulse-like motions were retained and used
for the calibration of the arti�cial ground motion model. It follows that the analysis of this case
study focuses on pulse-like excitations. Table 1 reports the list of the 16 selected records, whose
corresponding accelerograms were downloaded from the ITACA database (Pacor et al., 2011).
All records belong to the Emilia earthquake occurred on May 29, 2012 (Italy). Each of the 16
records listed in Table 1 comprise N-S and E-W acceleration records, which were decomposed
into principal components as explained in (Baker, 2007). Velocity pulses were found on 12 over
16× 2 components only, which were retained for the calibration. Figure 5 reports displacement,
velocity and acceleration response spectra of the 12 retained components as well as the response
spectra of the SLS and ULS accelerograms used for the RETRO experimental campaign. The
response spectra of the selected records, which correspond to the gray lines, fall within the range
established by the response spectra of SLS and ULS accelerograms adopted during experiments
and, therefore, utilized to calibrate the HF simulator of the Rio Torto Bridge. The arti�cial

*In principle, peak ground velocity is a more suited intensity measure for structures characterized by long
vibration periods such as the Rio Torto Bridge. However, the fragility analysis reported in (Alessandri et al.,
2013) shows that PGA well correlates with pier drift for this speci�c case.
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Table 1: Selected records associated with the Emilia earthquake of May 29, 2012 (Italy).

Event ID Time [h:m:s] MW D [km] Station code Latitude [deg] Longitude [deg]

IT-2012-0011 07:00:02 6 4.1 MRN 44.878231 11.061743

IT-2012-0011 07:00:02 6 4.1 MIRE 44.878212 11.061747

IT-2012-0011 07:00:02 6 9.3 T0814 44.793300 10.969200

IT-2012-0011 07:00:02 6 4.5 MIRH 44.882400 11.063100

IT-2012-0011 07:00:02 6 5.1 MIR02 44.886948 11.073198

IT-2012-0011 07:00:02 6 0.5 MIR01 44.844042 11.071316

IT-2012-0011 07:00:02 6 11.2 MIR03 44.938400 11.104500

IT-2012-0011 07:00:02 6 13 MIR04 44.927433 11.178312

IT-2012-0010 10:55:56 5.5 6.8 T0819 44.887300 10.898700

IT-2012-0011 07:00:02 6 11.3 T0813 44.877800 11.199200

IT-2012-0011 07:00:02 6 14.4 T0800 44.848600 11.247900

IT-2012-0011 07:00:02 6 6.1 SAN0 44.838000 11.143000

IT-2012-0011 07:00:02 6 8.6 MIR08 44.916900 11.089500

IT-2012-0011 07:00:02 6 9.9 T0802 44.875000 11.181600

IT-2012-0011 07:00:02 6 10.7 T0818 44.934800 11.030400

IT-2012-0011 07:00:02 6 14.3 T0811 44.783800 11.226500

(a) (b) (c)

Figure 5: Selected records with pulse-like components: a) acceleration; b) velocity; c) displace-
ment response spectra. Grey lines refer to single retained records with pulse-like component
whereas black dashed lines indicate the corresponding 95 % con�dence interval. Blue and red
lines indicate SLS and ULS records used for the HS campaign, respectively. The periods of the
�rst four eigenmodes of the Rio Torto Bridge estimated with the HF simulator are also reported.
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Table 2: Parameters of Dabaghi and Der Kiureghian's model identi�ed on the pulse-like motions.
Average values µ, standard deviations σ, and coe�cients of variations CoV and min and max
bounds are computed over the 12 selected records.

Record Vp Tp γ ν tmax,p Ia,res T30,Ia,res D5−95,Ia,res ωmid ω̇ ζ

1 0.282 2.094 2.906 1.272 2.739 1.029 2.040 7.095 29.327 0.823 0.338

2 0.282 2.197 2.348 3.262 2.133 0.777 2.260 7.490 33.884 0.950 0.444

3 0.292 2.072 2.893 1.302 2.546 0.932 1.975 7.020 25.006 0.493 0.304

4 0.276 2.139 2.434 3.327 1.947 0.619 2.105 7.115 23.464 1.264 0.405

5 0.303 2.334 2.831 1.409 2.615 0.515 2.070 7.040 20.953 0.472 0.423

6 0.249 2.394 2.491 2.985 1.834 0.297 2.055 7.465 19.566 1.368 0.579

7 0.363 2.602 2.449 3.507 2.580 0.897 2.270 7.265 39.586 0.135 0.585

8 0.196 2.425 2.917 1.687 3.251 0.716 2.385 7.890 43.533 -0.344 0.462

9 0.392 2.282 2.350 4.530 2.862 0.881 2.305 7.185 32.215 0.212 0.306

10 0.292 1.949 2.339 2.616 1.472 0.408 1.530 4.195 23.015 1.948 0.408

11 0.218 1.762 2.418 3.069 1.748 0.335 1.390 3.115 33.868 0.949 0.378

12 0.205 2.688 2.212 1.924 3.352 0.298 2.025 6.720 30.052 -0.875 0.349

min 0.196 1.762 2.212 1.272 1.472 0.297 1.390 3.115 19.566 -0.875 0.304

max 0.392 2.688 2.917 4.530 3.352 1.029 2.385 7.890 43.533 1.948 0.585

µ 0.279 2.245 2.549 2.574 2.423 0.642 2.034 6.633 29.539 0.616 0.415

σ 0.056 0.254 0.249 1.001 0.573 0.255 0.286 1.378 7.159 0.742 0.089

CoV 0.201 0.113 0.098 0.389 0.236 0.398 0.141 0.208 0.242 1.203 0.214

ground motion model with pulse-like motion was calibrated for each of the 12 retained records
following the procedure described in (Dabaghi and Kiureghian, 2017). The parameter estimates
are reported in Table 2. Noteworthy, correlation between each pair of ground motion model
parameters was small and therefore neglected in the following. However, if relevant, parameter
correlation can be recovered when sampling fragility models (e.g., using copulas (Torre et al.,
2019b)). Figure 6 compares 50 realizations of arti�cial records to the reference real record (with
parameters listed in the second entry of Table 2).

6 Seismic fragility analysis of the bridge

The most critical nonlinearity characterizing the structural response of the bridge is associated
with shear failure of transverse beams of piers. Such structural elements are characterized by
poor shear reinforcement and thus prone to brittle failure. This damage mechanism is activated
by in-plane lateral de�ection of the pier and, therefore, highly correlated with drift (Alessandri
et al., 2013). Accordingly, lateral drift peak of piers was selected as QoI/EDP for fragility models.
Consistently with the notation introduced in the previous sections, input variables and QoIs of
for the fragility analysis read,

Y = {u1, . . . , u12} , X ≡Xa = {Vp, Tp, γ, ν, Tmax,p, Ia,res, T30,Ia,res , D5−95,Ia,res , ωmid, ζ} (16)

where ui represents the lateral drift peak of pier i-th. However, due to space limitation, only
the results related to the lateral drift peak of Pier #11, which is referred to as response QoI
hereinafter, are reported and discussed.

A GSA of the QoI was performed to retain only the relevant parameters of the arti�cial ground
motion model. Since GSA is used to uncover the inner workings of the LF simulator, in this
stage, it is legitimate to assume that all input variables are independently distributed. For
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(a) (b)

(c)

Figure 6: Response spectra of 50 realizations of the arti�cial ground motion model calibrated
against the second record of Table 2: a) acceleration; b) velocity; c) displacement response
spectra. Red lines refer to the reference record, grey lines represent the 50 realizations of the
arti�cial ground motion model, and black dashed lines indicate the corresponding 95 % con�dence
interval.

a given sample X = x, 100 realizations of Z were found to be su�cient to provide stable
estimates of the QoI quantiles. Noteworthy, the same number of realizations was adopted in the
work of Gidaris et al. (Gidaris et al., 2015) to estimate mean and variance of the QoIs prior
to surrogate modeling. According to step 2 of the proposed framework, a large LF ED was
evaluated for 200 samples of X considering the quantiles P = {0.05 : 0.05 : 0.95}. Given that
the computational cost of the LF simulator was 20 sec/run, the computational cost of the LF ED
was 20× 200× 100 = 400, 000 sec (about 4.6 days). The corresponding PCE-based total Sobol'
indices are reported in Table 3 for the response QoI quantiles P = {0.1 : 0.1 : 0.9} only. In this
regard, the leave-one-out errors εloo highlight fairly accurate PCEs (similar errors were obtained
up to 0.99 quantiles for all piers). For all quantiles, the contribution of Vp, Tp, Ia,res, ωmid and
ζ to the variability of the QoI is dominant. The same result was observed for all the other piers.
Accordingly, constant average values reported in Table 2 were set for all other parameters in
the following MF surrogate modeling stage. Among retained parameters, univariate e�ects spot
monotonic increasing relationships with the response QoI for Vp, Ia,res and ζ. In this regard,
Figure 7 reports the univariate e�ects of these parameters obtained from the LF surrogate model.
Accordingly, Vp and Ia,res were employed as IMs for computing the fragility models.

Following step 3 of the framework, a small HF ED of 10 samples was evaluated using the HF
simulator of the bridge considering,

Xα = {Vp, Tp, Ia,res, ωmid, ζ}, (17)

xβ = E
[
{γ, ν, Tmax,p, T30,Ia,res , D5−95,Ia,res , ωmid}

]
. (18)

For each sample of the HF ED, estimates of response QoI quantiles were computed considering 100
realizations of the ground motion model. Given that the computational cost of the HF simulator
was about 600 sec/run, the computational cost of the HF ED was about 600 × 10 × 100 =
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Table 3: PCE-based total Sobol' indices of the response QoI (drift peak of Pier #11).

P εloo Vp Tp γ ν tmax,p Ia,res T30,Ia,res D5−95,Ia,res ωmid ζ

0.100 0.035 0.548 0.463 0.026 0.002 0.001 0.012 0.003 0.001 0.008 0.008

0.200 0.023 0.553 0.428 0.032 0.004 0.002 0.013 0.001 0.006 0.010 0.005

0.300 0.020 0.554 0.415 0.030 0.003 0.002 0.020 0.001 0.005 0.011 0.005

0.400 0.018 0.551 0.404 0.024 0.008 0.000 0.025 0.006 0.004 0.020 0.010

0.500 0.019 0.545 0.390 0.028 0.004 0.002 0.036 0.002 0.003 0.021 0.012

0.600 0.022 0.562 0.356 0.025 0.001 0.002 0.051 0.001 0.002 0.025 0.016

0.700 0.017 0.560 0.325 0.025 0.001 0.003 0.065 0.002 0.005 0.036 0.021

0.800 0.029 0.547 0.284 0.022 0.001 0.003 0.092 0.002 0.008 0.047 0.031

0.900 0.040 0.522 0.222 0.025 0.004 0.006 0.132 0.004 0.015 0.064 0.047

(a) (b) (c)

Figure 7: Univariate e�ects for the response QoI (drift peak of Pier #11) for the quantiles
P = {0.1 : 0.1 : 0.9}. Lighter curves refer to quantile p = 0.1 while darker curves refer to
quantile p = 0.9.

600, 000 sec (about 7 days).

The main assumption of HK surrogate modeling is that the bias between LF and HF simulator
responses is smoother than the HF simulator response (Ng and Eldred, 2012). Therefore, instead
of absolute accuracy, the only requirement for the LF simulator response is to be highly correlated
with the HF simulator response. The correlation plots of Figure 8 demonstrates that LF and HF
simulators satisfy such requirement.

Figure 8: Correlation between LF and HF response quantiles (drift peak of Pier #11) on the HF
ED samples Xα.

Following step 3 of the framework, a MF surrogate model of the QoI was computed using HK.
The LF surrogate model computed at step 2 was used as trend function. Accordingly, MF-
n indicates the MF surrogate model (and the corresponding fragility model) computed with
n samples of the HF ED. In all cases, a Matérn 5/2 correlation function R (X −X ′|θ) was
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adopted. Since PCE is a powerful denoiser (see Torre et al. (Torre et al., 2019a)), the LF
surrogate can be trained on noisy estimates of the QoI quantiles based on a smaller number
of samples of Z resulting in a substantial reduction of computational cost for the LF ED. To
support this statement, an additional set of MF surrogate models (and the corresponding fragility
model) was computed considering LF surrogates trained on noisy QoI estimates obtained with
20 ground motion realizations.

Following step 4 of the framework, the fragility models reported in Figure 9 were computed
via Monte-Carlo-based UQ forward analysis of MF surrogate models using Vp and Ia,res as IMs.
These IMs are associated with the two largest total Sobol' indices (Table 3) and provided with an
average monotonic relationship with the QoI/EDP (Figure 7). Speci�cally, Figures 9a-b-c refer to
the fragility model based on a LF surrogate model trained with QoI quantile estimates obtained
with 100 ground motion realizations. Similarly, Figures 9d-e-f refer to the fragility model based
on a LF surrogate model trained with QoI quantile estimates obtained with 20 ground motion
realizations. Both fragility models consider a threshold value ȳ = 0.01 for the QoI/EDP (Pier
#11 drift peak), which is associated with onset of concrete cover spalling and crack opening
in transverse beams (Alessandri et al., 2013). As can be appreciated from Figure 9, the two
fragility models show a quite good agreement, demonstrating that noisy LF quantile estimates
computed with 20 ground motion realizations are su�ciently accurate to support the following
MF surrogate modeling stage.

In order to demonstrate the accuracy of the proposed methodology, both fragility models are
compared to crude Monte Carlo estimates of the failure probability of the HF simulator. In
detail, nine validation points were obtained as Cartesian product between Vp = {0.2, 0.3, 0.4}
and Ia,res = {0.4, 0.6, 1.0}. In this regard, the red diamonds of Figure 9 indicate mean value and
95 % con�dence interval of each failure probability estimate obtained with 100 samples of the
HF simulator response ��i.e., circa 600, 000 sec (about 7 days) per point of computational time.
For the sake of clarity, for each fragility model, two orthogonal sections intersecting the mid
validation point (Vp = 0.3 and Ia,res = 0.6) are also included in Figure 9. The 95 % con�dence
interval of the MF-10 fragility model is also reported as red-shaded area. Besides the sections of
the MF-10 fragility model and its 95 % con�dence interval, three additional fragility models are
compared, namely LF, MF-8 and MF-9. As can be observed, fragility models computed from
the LF surrogate are highly biased whereas fragility models computed from MF-8 and MF-9
surrogates are almost indistinguishable from MF-10.

For both fragility models the cost for the HF ED was about 600,000 sec of computation (about
7 days). However, the cost for the LF ED considerably dropped from 400,000 to 80,000 sec of
computation (from about 4.6 to 0.9 days) by reducing the number of ground motion realizations
utilized for quantile estimation from 100 to 20. As a matter of comparison, the total cost for
the nine validation points obtained via MCS of the HF simulator was about 5, 400, 000 sec of
computation (circa 63 days).

Although both LF and MF surrogate models were computed assuming independent uniformly
distributed ground motion parameters, fragility models can be easily re-sampled considering
a joint PDF calibrated for the speci�c seismic hazard. Also, provided with such simulation
framework, ground motion parameters can be mapped to instrumental IMs as illustrated in
(Suzuki and Iervolino, 2020).

�Notice that with 100 simulations the mean estimate is stable, while the con�dence bounds should be considered
as indicative.
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(a) (b) (c)

(d) (e) (f)

Figure 9: Fragility models and related mid sections along Vp and Ia,res computed for a lateral
drift threshold of 1 %. Underlying LF surrogates trained with response quantiles obtained from
100 (a-b-c) and 20 (d-e-f) ground motion realizations.

7 Conclusions

This study introduced a computational framework for e�cient and accurate seismic fragility
analysis based on a combination of arti�cial ground motions and surrogate modeling of multiple
stochastic simulators characterized by di�erent levels of �delity. The e�ectiveness of the proposed
framework is demonstrated throughout a benchmark case study, which consists of a reinforced
concrete bridge vulnerable to ground motions with pulse-like components. Speci�cally, surrogate
modeling is applied at the level of quantiles of a scalar response quantity of interest, which is
evaluated either with an expensive-to-evaluate high-�delity or a cheaper low-�delity stochastic
simulator.

As a result, two fragility models associated with a medium damage state are computed for the
lateral drift of one of the bridge pier. Accuracy of failure probability estimates is demonstrated
by comparison with Monte Carlo simulations of the high-�delity simulator. The main �ndings of
the benchmark study, which can be reasonably generalized to seismic fragility analysis of bridges,
are that:

� Dynamic substructuring and hierarchical kriging provide a mathematically sound frame-
work for balancing computational cost and accuracy of fragility models.

� Polynomial-chaos-based global sensitivity analysis facilitates the selection of the important
parameters of the arti�cial ground motion model to be used as intensity measures for the
fragility analysis.

� 200 low-�delity samples plus 10 high-�delity samples of response quantiles provide fairly
stable fragility models if only the important input parameters are retained.

� 100 realizations of the ground motion model are su�cient to attain fairly stable quantile
estimates in the range 0.05 − 0.95 for a given sample of the parameters of the simulator
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(both low- and high-�delity) when displacement-based engineering demand parameters are
considered.

� Since polynomial-chaos expansion acts as a denoiser, low-�delity surrogate models can be
computed on noisy quantile estimates obtained with 20 realizations of the ground motion
model achieving a considerable reduction of computational cost.

� Any stopping criteria for the adaptive construction of both LF and HF EDs should rely on
the convergence of the fragility model instead of the surrogate models.

This study was designed to overcome several limitations present in the current computational
fragility practice. Since the proposed methodological approach is in its infancy, room for impor-
tant advancements is identi�ed in the areas of i) surrogate modeling for stochastic simulators ii)
dimensionality reduction for stochastic ground motions models iii) optimal experimental design
for the validation of high-�delity models.

Appendix A. PCE-based Sobol' sensitivity indices

Assume that the vector of input variables X has support DX and follows an independent joint
PDF fX (X) =

∏M
m fXm (xm) where fXm is the marginal PDF of the m-th input variable. Any

square-integrable mapping Y =M (X) w.r.t. the probability measure associated with fX , can
be written as a sum of functions of increasing dimension as (Sobol, 1993):

M (X) =M0 +

M∑

m=1

Mm (Xm) +
∑

1≤m≤l≤M
Mm,l (Xm, Xl) + . . .+M1,2,...,M (X) , (A.1)

or equivalently:

M (X) =M0 +
∑

u 6=∅
Mu (Xu) , (A.2)

where M0 is the mean value of Y , u = {m1, . . . ,ms} ⊂ {1, . . . ,M} are index sets, and Xu

denotes a subvector of X containing only the components indexed by u. The number of sum-
mands in the above equation is 2M − 1. The uniqueness and orthogonality of Sobol'-Hoe�ding
decomposition allow for the following decomposition of the variance D of Y :

D = Var [M (X)] =
∑

u 6=∅
Du (A.3)

where Du denotes the partial variance:

Du = Var [Mu (Xu)] = E
[
M2

u (Xu)
]
. (A.4)

The Sobol' index Su can be de�ned as the fraction of the total variance Du that corresponds to
the set of input variables indexed by u:

Su =
Du
D
. (A.5)

By construction,
∑
u 6=∅ Su = 1. First-order indices S

(1)
m describe the in�uence of each param-

eters Xm considered separately. Second-order indices S
(2)
ml describe the in�uence from pairs of

parameters {Xm, Xl} not already accounted for by Xm or Xl separately. High-order indices

combine in�uences from larger sets of parameters. The total sensitivity indices S
(tot)
m represent
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the total e�ect of an input variable Xm accounting for its main e�ect and all interactions with

other input variables. It follows that S
(tot)
m = 1 − S∼m, where S∼m is the sum of all Su with

u not including m. Sobol' indices can be evaluated by Monte Carlo simulation (Saltelli et al.,
2007), which requires O(103) model evaluations for each index Su. Sobol' indices can be obtained
analytically at no additional cost than computing the PCE. A concise description of PCE-based
Sobol' sensitivity indices estimation is given herein; for further details, the reader is referred to
(Sudret, 2008; Gratiet et al., 2015).

PCE relies on the decomposition of Y =M (X), as a linear superposition of non-linear functions
as follows:

Ŷ =MPCE (X) =
∑

α∈A
yαΨα (X) , (A.6)

where {Ψα,α ∈ A} is a set of multivariate polynomials that are orthogonal w.r.t. the input
vector with independent components X ∼ fX(X) =

∏M
m=1 fXm(Xm), α = (α1, . . . αM ) is a

multi-index that identi�es the polynomial degree in each of the input variables, and yα denotes
the corresponding polynomial coe�cient (coordinate). Following the orthonormality condition,
E
[
MPCE (X)

]
= y0. For practical purposes, the in�nite sum in Eq.A.6 needs to be truncated

to a �nite series. This is commonly achieved by maximum-degree or hyperbolic norm truncation
(for more details, see (Blatman and Sudret, 2011)). In order to compute the PCE, �rst, a so-
called ED, consisting of a set of realization of the input vector X = {x(1), . . . ,x(N)} and the
corresponding model evaluations Y = {y(1), . . . , y(N)}, is generated. Then, the set of coe�cients
yα is estimated by minimizing the expected mean-square approximation error on the ED by
solving:

ŷα = arg min
yα

E
[(
Y − Ŷ

)2]
(A.7)

In the present application, the ED was formed by sampling the input variable space with a Sobol'
low-discrepancy sequence. The minimization in Eq.A.7 was solved using the hybrid least angle
regression method originally proposed in (Blatman and Sudret, 2011). It is straightforward to
obtain the Sobol' decomposition of Y in an analytical form by observing that the summands
MPCE

u (Xu) in Eq.A.2 can be written as:

MPCE
u (Xu) =

∑

α∈Au
yαΨα (Xu) , (A.8)

where Au = {α ∈ A : αk 6= 0 if and only if k ∈ u} denotes the set of multi-indices such that
∪Au = A. Consequently, due to the uniqueness of Sobol'-Hoe�ding decomposition, there is
an analytical expression of MPCE

u of Eq.A.8, which serves as a proxy of Mu. The analytical
expression of the total variance of a PCE is given by (Xiu and Karniadakis, 2002):

D = Var
[
MPCE (X)

]
=
∑

α∈A
y2α. (A.9)

Similarly, the partial variance Du reads:

Du = Var
[
MPCE

u (Xu)
]

=
∑

α∈Au
y2α. (A.10)

Accordingly, the Sobol' indices of any order can be approximated by a simple combination of
the squares of the PCE coe�cients by substituting Eqs.A.10 and A.9 in Eq.A.5. For instance,
the �rst-order Sobol' indices, which describe the in�uence of each input variable Xm considered
separately, read:

S(1)
m =

∑
α∈Am

y2α
∑
α∈A

y2α
, Am = {α ∈ A : αm > 0 , αm 6=l = 0} (A.11)
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whereas the total Sobol' indices, which represent the total e�ect of an input variable Xm ac-
counting for its main e�ect and all interaction with other input variables, are given by:

S(tot)
m =

∑
α∈Atot

m

y2α

∑
α∈A

y2α
, Atot

m = {α ∈ A : αm > 0}. (A.12)

Sobol' indices provide quantitative insight on the importance of an input variable. However,
they do not include information about the direction in which an input variable a�ects the model
response Y . So-called univariate e�ects can answer this question (Deman et al., 2016; Harenberg
et al., 2019). A univariate e�ect is the expectation of Y conditioned on the value of a single
input variable. Univariate e�ects have a closed analytical form for PCE models, closely related
to the �rst-order Sobol' decomposition,

M(1)
m (Xm) =

∑

α∈Am

yαΨα (Xm) , Am = {α ∈ A : αm > 0, αm6=l = 0} (A.13)

In this study, computations of both PCE and Sobol' indices were performed using UQLab,
which is a MATLAB toolbox for UQ developed by the Chair of Risk, Safety and Uncertainty
Quanti�cation of ETH Zurich (Marelli and Sudret, 2014, 2019; Marelli et al., 2019).

Appendix B. HK surrogate modeling

Let {Mc, c = 1, . . . C} being a series of simulators sorted by increasing level of �delity, and
yc the associated output, yc = Mc(x). In addition, let M̂K

c de�ne the Kriging surrogate
model of the simulator Mc(x). A Kriging surrogate model is de�ned as an in�nite collection
of jointly Gaussian random variables (i.e., a Gaussian stochastic process). Any �nite sample
of the process is a Gaussian random vector, which is completely de�ned by the multivari-
ate Gaussian distribution (Rasmussen and Williams, 2006). In this context, the input X is
sampled at Nc distinct locations within the support DX , and the corresponding scalar output

are
{
y
(n)
c =Mc

(
x
(n)
c

)
, n = 1, . . . , Nc

}
. The Nc distinct input samples are collected in the set

X c =
{
X(1), . . . ,X(Nc)

}T
and the output in the set Yc =

{
y
(1)
c , . . . , y

(Nc)
c

}T
. Here, the set Yc

is considered as realization of a Gaussian random vector, Yc =
[
Y (1), . . . , Y (Nc)

]T
, with mean

µc(X), and covariance matrix Σc(X). Therefore, the kriging surrogate model of the c simulator
can be de�ned as (Cressie, 1992; Santner et al., 2003; Rasmussen and Williams, 2006)

Mc (X) ≈ M̂K
c (X) = µc (X) + σ2cZ(X),

= fc(X)Tβc + σ2cZ (X) ,
(B.1)

where βc is a vector of regression coe�cients, fc (X) is a vector collecting a series of basis
functions, σ2c is the variance of the process, and Z (X) is a zero-mean, unit-variance sta-
tionary Gaussian process. Therefore, Z (X) is fully determined by the correlation function
R (X,X ′|θ) = R (X −X ′|θ) between two distinct points (X,X ′) in the input space, where θ
is a set of hyper-parameters. Given the input ED X c and the output set Yc, βc, θc, and σc
are generally determined by generalized least squares as follow (Santner et al., 2003; Dubourg,
2011):

θ̂c = arg minADθ

[
1

2
log (det (R)) +

n

2
log
(
2πσ2c

)
+
n

2

]
, (B.2)

β̂(θ̂c) =
(
F T
c R

−1Fc
)−1

F T
c R

−1Yc, (B.3)

σ̂2c (θ̂c) =
(Yc − Fcβ̂c)TR−1(Yc − Fcβ̂c)

Nc
, (B.4)
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where Rn,m = R(Xn,Xm) is the correlation matrix between the Nc samples, and
Fc = [fc(X

(1)), ...,fc(X
(Nc))]T is the information matrix. Next, given a desired test point x∗,

the random variable of the unobserved output Y ∗c |X c,Yc = MK
c (x∗|X c,Yc) has conditional

Gaussian distribution (Santner et al., 2003) with parameters

µy∗c = E
[
Y ∗c | X c,Yc

]
,

= fc (x∗)T β̂c + rT (x∗)R−1
(
Yc − Fcβ̂c

)
, (B.5)

σ2y∗c = Var
[
Y ∗c | X c,Yc

]
,

= σ̂2c

[
1− rT (x∗)R−1r (x∗) +

(
F T
c R

−1r (x∗)− fc(x∗)
)T (

F T
c R

−1Fc
)−1 (

F T
c R

−1r (x∗)− fc(x∗)
)]
,

(B.6)

where r(x∗) = θ̂c) = [R(x∗ − x(1)|θ̂c), ..., R(x∗ − x(Nc)|θ̂c)]T is the cross-correlation vector
between the point x∗ and each of the points of X c. In this study, we use a nested combination of
surrogate models to de�ne a HK surrogate (Abdallah et al., 2019). Speci�cally, a PCE surrogate
of the LF simulator is used as a trend for the kriging surrogate of the HF simulator. For the two
levels c ∈ [LF ,HF ], the HK predictor at an unobserved point x∗ can be written as (Han and
Görtz, 2012):

µy∗HF
= M̂PCE

LF (x∗)β̂HF + r(x∗)TR−1(YHF − FLF β̂HF ), (B.7)

where M̂PCE
LF (x∗) is PCE surrogate of the LF simulator, YHF is the vector of output from the

HF simulator, FLF = [MLF (x1), ...,MLF (xNc)], and β̂HF is a constant. The variance of the
HK predictor is similar to Eq.B.6, i.e.

σ2y∗HF
= σ̂2HF

[
1− r(x∗)TR−1r(x∗)+

(
F T
LFR

−1r(x∗)− M̂PCE
LF (x∗)

)T (
F T
LFR

−1FLF
)−1 (

F T
LFR

−1r(x∗)− M̂PCE
LF (x∗)

)]
.

(B.8)

In this study, computations of kriging surrogates were performed using UQLab, which is a
MATLAB toolbox for UQ developed by the Chair of Risk, Safety and Uncertainty Quanti�cation
of ETH Zurich (Marelli and Sudret, 2014; Lataniotis et al., 2019).

Acknowledgments

The authors wish to acknowledge the Chair of Structural Dynamics and Earthquake Engineering
(Prof. Dr. Boºidar Stojadinovi¢), the Chair of Risk, Safety and UQ (Prof. Dr. Bruno Sudret)
and the Chair of Structural Mechanics (Prof. Dr. Eleni Chatzi) of ETH Zurich, Switzerland,
for having supported this research. The second author was supported by the Italian Ministry
of Education, University and Research (MIUR) in the frame of the �Departments of Excellence�
(grant L. 232/2016).

References

Abbiati, G., O. S. Bursi, P. Caperan, L. Di Sarno, F. J. Molina, F. Paolacci, and P. Pegon
(2015). Hybrid simulation of a multi-span RC viaduct with plain bars and sliding bearings:
Hybrid Simulations of a Multi-Span RC Viaduct. Earthquake Engineering & Structural Dy-

namics 44 (13), 2221�2240.

21



Abdallah, I., C. Lataniotis, and B. Sudret (2019). Parametric hierarchical kriging for multi-
�delity aero-servo-elastic simulators � Application to extreme loads on wind turbines. Prob-
abilistic Engineering Mechanics 55, 67�77.

Alessandri, S., R. Giannini, and F. Paolacci (2013). Aftershock risk assessment and the decision
to open tra�c on bridges. Earthquake Engineering & Structural Dynamics 42 (15), 2255�2275.

Altieri, D. and E. Patelli (2020). An e�cient approach for computing analytical non-parametric
fragility curves. Structural Safety 85, 101956.

Baker, J. W. (2007). Quantitative classi�cation of near-fault ground motions using wavelet
analysis. Bulletin of the Seismological Society of America 97 (5), 1486�1501.

Baker, J. W. (2011). Conditional Mean Spectrum: Tool for Ground-Motion Selection. Journal
of Structural Engineering 137 (3), 322�331.

Baker, J. W. (2015). E�cient analytical fragility function �tting using dynamic structural anal-
ysis. Earthquake Spectra 31 (1), 579�599.

Bazzurro, P. and C. Allin Cornell (1999). Disaggregation of seismic hazard. Bulletin of the

Seismological Society of America 89 (2), 501�520.

Blatman, G. and B. Sudret (2011). Adaptive sparse polynomial chaos expansion based on least
angle regression. Journal of Computational Physics 230 (6), 2345�2367.

Bradley, B. A. (2010). A generalized conditional intensity measure approach and holistic ground-
motion selection. Earthquake Engineering & Structural Dynamics, n/a�n/a.

Bradley, B. A. (2013). A critical examination of seismic response uncertainty analysis in earth-
quake engineering. Earthquake Engineering & Structural Dynamics 42 (11), 1717�1729.

Bursi, O. S., G. Abbiati, E. Cazzador, P. Pegon, and F. J. Molina (2017). Nonlinear hetero-
geneous dynamic substructuring and partitioned FETI time integration for the development
of low-discrepancy simulation models. International Journal for Numerical Methods in Engi-

neering 112 (9), 1253�1291.

Craig, R. R. and A. J. Kurdila (2006). Fundamentals of structural dynamics. John Wiley &
Sons.

Cressie, N. (1992). Statistics for spatial data, Volume 4. Wiley Online Library.

Dabaghi, M. and A. D. Kiureghian (2017). Stochastic model for simulation of near-fault ground
motions. Earthquake Engineering & Structural Dynamics 46 (6), 963�984.

de Klerk, D., D. J. Rixen, and S. N. Voormeeren (2008). General Framework for Dynamic
Substructuring: History, Review and Classi�cation of Techniques. AIAA Journal 46 (5), 1169�
1181.

Deman, G., K. Konakli, B. Sudret, J. Kerrou, P. Perrochet, and H. Benabderrahmane (2016).
Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater
lifetime expectancy in a multi-layered hydrogeological model. Reliability Engineering & System

Safety 147, 156�169.

Dubourg, V. (2011). Adaptive surrogate models for reliability analysis and reliability-based design
optimization. Ph. D. thesis, Universite' Blaise Pascal, Clermont-Ferrand II.

22



Ghosh, S., A. Roy, and S. Chakraborty (2019). Kriging Metamodeling-Based Monte Carlo
Simulation for Improved Seismic Fragility Analysis of Structures. Journal of Earthquake En-

gineering , 1�21.

Gidaris, I., A. A. Ta�anidis, and G. P. Mavroeidis (2015). Kriging metamodeling in seismic
risk assessment based on stochastic ground motion models: Seismic Risk Assessment Through
Kriging Metamodeling. Earthquake Engineering & Structural Dynamics 44 (14), 2377�2399.

Gratiet, L. L., S. Marelli, and B. Sudret (2015). Metamodel-Based Sensitivity Analysis: Polyno-
mial Chaos Expansions and Gaussian Processes. In R. Ghanem, D. Higdon, and H. Owhadi
(Eds.), Handbook of Uncertainty Quanti�cation, pp. 1�37. Cham: Springer International Pub-
lishing.

Grigoriu, M. (2011). To Scale or Not to Scale Seismic Ground-Acceleration Records. Journal of
Engineering Mechanics 137 (4), 284�293.

Han, Z.-H. and S. Görtz (2012). Hierarchical Kriging Model for Variable-Fidelity Surrogate
Modeling. AIAA Journal 50 (9), 1885�1896.

Harenberg, D., S. Marelli, B. Sudret, and V. Winschel (2019). Uncertainty quanti�cation and
global sensitivity analysis for economic models. Quantitative Economics 10 (1), 1�41.

Iervolino, I., C. Galasso, and E. Cosenza (2010). REXEL: computer aided record selection for
code-based seismic structural analysis. Bulletin of Earthquake Engineering 8 (2), 339�362.

Ikhouane, F. and J. Rodellar (2007). Systems with hysteresis: analysis, identi�cation and control

using the Bouc-Wen model. Chichester, England ; Hoboken, NJ: John Wiley.

Lataniotis, C., D. Wicaksono, S. Marelli, and B. Sudret (2019). UQLab user manual � Krig-
ing (Gaussian process modeling). Technical report, Chair of Risk, Safety and Uncertainty
Quanti�cation, ETH Zurich, Switzerland.

Le Gratiet, L., S. Marelli, and B. Sudret (2017). Metamodel-Based Sensitivity Analysis: Polyno-

mial Chaos Expansions and Gaussian Processes, pp. 1289�1325. Cham: Springer International
Publishing.

Mai, C., K. Konakli, and B. Sudret (2017). Seismic fragility curves for structures using non-
parametric representations. Frontiers of Structural and Civil Engineering 11 (2), 169�186.

Marelli, S., C. Lamas, K. Konakli, C. Mylonas, P. Wiederkehr, and B. Sudret (2019). UQLab
user manual � Sensitivity analysis. Technical report, Chair of Risk, Safety and Uncertainty
Quanti�cation, ETH Zurich, Switzerland.

Marelli, S. and B. Sudret (2014). UQLab: A Framework for Uncertainty Quanti�cation in
Matlab. In Vulnerability, Uncertainty, and Risk, Liverpool, UK, pp. 2554�2563. American
Society of Civil Engineers.

Marelli, S. and B. Sudret (2019). UQLab user manual � Polynomial chaos expansions. Technical
report, Chair of Risk, Safety and Uncertainty Quanti�cation, ETH Zurich, Switzerland.

Mavroeidis, G. P. (2003). A Mathematical Representation of Near-Fault Ground Motions. Bul-
letin of the Seismological Society of America 93 (3), 1099�1131.

McKenna, F., M. H. Scott, and G. L. Fenves (2010). Nonlinear Finite-Element Analysis Software
Architecture Using Object Composition. Journal of Computing in Civil Engineering 24 (1),
13.

23



Ng, L. W.-T. and M. Eldred (2012). Multi�delity Uncertainty Quanti�cation Using Non-Intrusive

Polynomial Chaos and Stochastic Collocation.

Noh, H. Y., D. Lallemant, and A. S. Kiremidjian (2015). Development of empirical and analytical
fragility functions using kernel smoothing methods. Earthquake Engineering & Structural

Dynamics 44 (8), 1163�1180.

Pacor, F., R. Paolucci, L. Luzi, F. Sabetta, A. Spinelli, A. Gorini, M. Nicoletti, S. Marcucci,
L. Filippi, and M. Dolce (2011). Overview of the Italian strong motion database ITACA 1.0.
Bulletin of Earthquake Engineering 9 (6), 1723�1739.

Paolacci, F. and R. Giannini (2012). An experimental and numerical investigation on the cyclic
response of a portal frame pier belonging to an old reinforced concrete viaduct. Earthquake

Engineering & Structural Dynamics 41 (6), 1109�1127.

Paolacci, F., F. J. Molina, R. Giannini, L. Di Sarno, G. Abbiati, A. Mohamad, O. Bursi,
F. Taucer, R. Ceravolo, P. Pegon, M. Poljansek, L. Zanotti Fragonara, M. Sartori, S. Alessan-
dri, R. De Risi, and C. Yenidogan (2014). Assessment of the seismic vulnerability of an old RC
viaduct with frame piers and study of the e�ectiveness of base isolation through PsD testing
(RETRO). Technical report, Publications O�ce, Luxembourg.

Porter, K., R. Kennedy, and R. Bachman (2007). Creating fragility functions for performance-
based earthquake engineering. Earthquake Spectra 23.

Rasmussen, C. E. and C. K. I. Williams (2006). Gaussian processes in machine learning. Cam-
bridge, Massachusetts: MIT Press.

Rezaeian, S. and A. Der Kiureghian (2008). A stochastic ground motion model with separa-
ble temporal and spectral nonstationarities. Earthquake Engineering & Structural Dynam-

ics 37 (13), 1565�1584.

Rezaeian, S. and A. Der Kiureghian (2010). Simulation of synthetic ground motions for speci�ed
earthquake and site characteristics. Earthquake Engineering & Structural Dynamics, n/a�n/a.

Saltelli, A., M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and
S. Tarantola (2007). Global Sensitivity Analysis. The Primer. Chichester, UK: John Wiley &
Sons, Ltd.

Santner, T., B. Williams, and W. Notz (2003). The design and analysis of computer experiments.
New York, NY: Springer.

Schellenberg, A. H., S. A. Mahin, and G. L. Fenves (2009). Advanced Implementation of Hy-
brid Simulation. Technical Report PERR 2009/104, Paci�c Earthquake Engineering Research
(PEER) Center, University of California, Berkeley.

Silva, V., S. Akkar, J. Baker, P. Bazzurro, J. M. Castro, H. Crowley, M. Dolsek, C. Galasso,
S. Lagomarsino, R. Monteiro, D. Perrone, K. Pitilakis, and D. Vamvatsikos (2019). Current
Challenges and Future Trends in Analytical Fragility and Vulnerability Modeling. Earthquake
Spectra 35 (4), 1927�1952.

Sobol, I. M. (1993). Sensitivity estimates for nonlinear mathematical models. Mathematical

modelling and computational experiments 1 (4), 407�414.

Stefanou, G. (2009, February). The stochastic �nite element method: Past, present and future.
Computer Methods in Applied Mechanics and Engineering 198 (9-12), 1031�1051.

24



Sudret, B. (2008). Global sensitivity analysis using polynomial chaos expansions. Reliability

Engineering & System Safety 93 (7), 964�979.

Suzuki, A. and I. Iervolino (2020). Intensity measure conversion of fragility curves. Earthquake
Engineering & Structural Dynamics 49 (6), 607�629.

Torre, E., S. Marelli, P. Embrechts, and B. Sudret (2019a, July). Data-driven polynomial chaos
expansion for machine learning regression. Journal of Computational Physics 388, 601�623.
ZSCC: 0000023.

Torre, E., S. Marelli, P. Embrechts, and B. Sudret (2019b). A general framework for data-driven
uncertainty quanti�cation under complex input dependencies using vine copulas. Probabilistic
Engineering Mechanics 55, 1�16.

Trevlopoulos, K., C. Feau, and I. Zentner (2019). Parametric models averaging for optimized non-
parametric fragility curve estimation based on intensity measure data clustering. Structural

Safety 81, 101865.

Trucano, T., L. Swiler, T. Igusa, W. Oberkampf, and M. Pilch (2006). Calibration, validation,
and sensitivity analysis: What's what. Reliability Engineering & System Safety 91 (10-11),
1331�1357.

Vamvatsikos, D. and C. Cornell (2002). Incremental dynamic analysis. Earthquake Engineering
& Structural Dynamics 31, 491 � 514.

Xiu, D. and G. E. Karniadakis (2002). The Wiener�Askey polynomial chaos for stochastic
di�erential equations. SIAM journal on scienti�c computing 24 (2), 26.

Zentner, I. (2017). A general framework for the estimation of analytical fragility functions based
on multivariate probability distributions. Structural Safety 64, 54�61.

25


