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CHAIR OF RISK, SAFETY AND UNCERTAINTY QUANTIFICATION

STEFANO-FRANSCINI-PLATZ 5
CH-8093 ZÜRICH
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Abstract
Hybrid simulation is used to investigate the experimental response of a component or sub-assembly of a

prototype structure using a hybrid model. The latter comprises both physically-tested and numerically-
simulated substructures interacting with each other in a real-time feedback loop. In this study, we
extend our previous work on metamodel-based sensitivity analysis of deterministic hybrid models to the
practically more relevant case of stochastic hybrid models. The aim is to cover a more realistic situation
where the physical substructure response is not deterministic. A generalized lambda surrogate model
recently developed by some of the authors is proposed to surrogate the hybrid model response, and
Sobol’ sensitivity indices are computed for substructure quantity of interest response quantiles. The
effectiveness of the proposed hybrid simulation global sensitivity analysis framework is demonstrated
using an experiment.

Keywords:
Hybrid simulation, stochastic hybrid model, global sensitivity analysis, Sobol’ indices, stochastic surrogate
modeling, generalized lambda model.

1 Introduction

1.1 Background and motivation

Hybrid simulation (HS) is used to investigate the experimental response of a structural component or sub-
assembly subjected to a realistic loading scenario, which includes the interaction with a credible yet virtual
structural system. Coupled physical and numerical substructures (PS and NS) form the so-called hybrid
model. Specifically, the PS is tested using servo-controlled actuators provided with force transducers, while
the NS is instantiated in a structural analysis software. A time-stepping analysis algorithm computes the
hybrid model response on-the-fly. This ensures displacement compatibility and force balance between NS
and PS throughout the entire experiment. When the PS response is rate-independent, it is good practice to
perform HS with an extended time scale from 50−200 times slower than real-time in order to improve the
accuracy of position/force control. HS is used to investigate the inner workings of a structural component
beyond the linear regime without testing an entire structural assembly. As a result, the cost of experimen-
tation is substantially reduced. A report by Schellenberg and co-workers provides a comprehensive review of
HS methods and algorithms (Schellenberg et al., 2009).
In earthquake engineering, HS is the only viable solution for testing large structures such as bridges (e.g., (Bursi
et al., 2017; Abbiati et al., 2019)). Similarly, HS has been recently proposed to test mooring lines of offshore
structures for which hydrodynamic tests with sizeable scale are prohibitive (e.g., (Sauder et al., 2018; Vilsen
et al., 2019)). HS is gaining popularity for component-level testing in fire engineering. The reason is that

1



internal force redistribution occurring at the system level heavily influences the failure modes at the com-
ponent level (e.g., (Whyte et al., 2016; Abbiati et al., 2020)). More recently, HS has been combined with
centrifuge testing for investigating soil-structure interaction problems (Idinyang et al., 2019).
In all the cases reviewed above, NS and related excitation are conceived as deterministic. However, in the
majority of cases encountered in structural engineering, loading is stochastic, while damping and boundary
conditions are highly uncertain. An exhaustive exploration of all possible load cases is clearly not an option
given the experimental cost associated with a single hybrid model evaluation. Accordingly, Abbiati and co-
workers (Abbiati et al., 2021) proposed surrogate modeling to compute the variance-based global sensitivity
analysis (GSA) of the response quantity of interest (QoI) of a given hybrid model with respect to a set of
input parameters that characterize both substructures and loading excitations. In detail, polynomial chaos
expansion (PCE) was used to construct a surrogate model (a.k.a. response surface) of the hybrid model
response. Sobol’ sensitivity indices of the QoIs were obtained as a by-product of polynomial coefficients as
explained in (Sudret, 2008). The goal of such an approach was to reveal what influences what within the
HS: This entails uncovering the inner workings of the PS, the unknown part of the hybrid model in both
epistemic and aleatory sense. In that study, the PS was treated as deterministic, that is, aleatory uncertainty
was neglected by assuming that nominally identical specimens have identical responses (plus some negligible
measurement noise).
This assumption, however, is still far from a realistic scenario in structural testing. Nominally identical
specimens are, in practice, never actually identical. Also, some sources of loading exerted through the PS
are inherently stochastic (e.g., fire or hydrodynamic loading). As a result, uncertainty, both aleatory or
epistemic, always affects the PS structure behavior.

1.2 Scope

This paper extends the GSA framework for HS proposed in (Abbiati et al., 2021) to the case of PSs with
non-deterministic behavior. Similarly to the original framework, the idea is to surrogate the hybrid model
response as a function of the input parameters that can be controlled by the experimenter and originate
from substructures and loading (physical and numerical). However, latent variables that do not appear
in the input parameter vector make the hybrid model response stochastic. To account for the latter, the
generalized lambda model recently developed by Zhu and Sudret (Zhu and Sudret, 2020c,a) is used here to
directly surrogate the probability density function (PDF) of the response QoI. This is achieved by means of
the family of generalized lambda distributions, which are suitable to approximate a wide class of distributions
commonly found in engineering contexts (Karian and Dudewicz, 2000). The parameters of the generalized
lambda distributions are cast as functions of the input parameters of the hybrid model and approximated via
PCE (Xiu and Karniadakis, 2002; Blatman and Sudret, 2011). Normally, several repetitions of every single
sample of the inputs parameters would be required to replicate the response of a stochastic hybrid model.
However, acquiring such repetitions would be impossible in a HS. Instead, by using the generalized lambda
model presented in (Zhu and Sudret, 2020a) we can solve this problem, as the generalized lambda model
can be computed in a non-intrusive manner and does not require repeated HSs for a single sample of input
parameters. For these reasons, the generalized lambda model is well-suited to surrogate the response of a
stochastic hybrid model. Variance-based GSA is uniquely defined for deterministic simulators (Saltelli, 2008).
In the context of stochastic simulators, three alternative variants of Sobol’ sensitivity indices are discussed in
(Zhu and Sudret, 2020b), namely classical, quantile-based and trajectory-based Sobol’ indices. In this work,
quantile-based Sobol’ indices are used for the GSA of the HS response QoI.
The effectiveness of the proposed framework is demonstrated for a 3-DoF hybrid model subjected to me-
chanical and thermal loading. Specifically, thermal loading is experimentally exerted on the PS so that
temperature fluctuations (out of control of the experimenter) entail a stochastic response of the hybrid model
.
This paper is organized as follows. Section 2 introduces the generalized lambda model and describes the
GSA framework for stochastic hybrid models. Section 3 presents the 3-DoF hybrid model used to test the
framework. Section 4 discusses the results of the GSA of the stochastic hybrid model response. Finally,
Section 5 presents the overall conclusions of this study.
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2 Global sensitivity analysis framework

Let a random variable vector x = {x1, . . . , xM} ∈ DX ⊂ RM , where DX denotes the range of definition of x,
represent the input parameters to a HS. Due to the random nature of the hybrid model response, for a given
set of parameters x, the corresponding QoI Y (x) is a random variable rather than a deterministic value. This
is because some latent variables z cannot be identified or measured in the process, which makes it impossible
to include all the relevant variables in x. Therefore, a stochastic HS can be expressed as a mapping:

Ms : DX ⊂ R
x 7→ Ms(x,Z).

(1)

The latent variables z are grouped into a random vector Z. Note that with a fixed x and Z varying according
to some probability distribution, the HS output Y (x) remains random.
The input parameters of vector x are treated as random, modeled by known probability distributions and
grouped into a random vector X = {X1, . . . , XM}. X is characterized by its joint distribution with the PDF
denoted by fX . Furthermore, we assume that Xi’s are mutually independent, and thus the joint PDF is the
product of marginal PDFs, i.e. fX(x) =

∏M
i=1 fXi(xi) with fXi being the marginal PDF of the i-th variable.

For a given set of input parameters x, the QoI Y (x) is a random variable characterized by an unknown
conditional probability distribution. Therefore, representing the stochastic behavior of a HS consists in
estimating the response distribution for any parameters x ∈ DX . However, one simulation for x does
not provide the whole probability distribution but rather a single realization of Y (x). Hence, it is usually
necessary to repeatedly conduct experiments for the same x (called replications) to have enough insight into
the resulting hybrid model response probability distribution. This quickly becomes intractable when the
number of x’s to be investigated increases. To alleviate the burden, surrogate models can be constructed
to emulate the stochastic behavior of a HS. Once a surrogate model is constructed, we can perform further
analysis of the hybrid model response at a low cost, namely the GSA.
The simplest surrogate model of a stochastic HS involves additive Gaussian noise:

Y s(x) = h(x) + Z, Z ∼ N (0, σ2). (2)

To build such a surrogate, one needs to estimate the mean function h and the noise variance σ2. In this case,
PCE (Xiu and Karniadakis, 2002; Berveiller et al., 2006) and Gaussian processes (Rasmussen and Williams,
2006) with a regression setup can be directly applied. However, Eq. (2) can be rather restrictive. To cover
a wider group of problems, we choose to use the recently developed statistical model called the generalized
lambda model (Zhu and Sudret, 2020c,a).

2.1 Generalized lambda models

A generalized lambda model (GLAM) assumes that the probability distribution of hybrid model response
QoI Y (x) can be approximated by a generalized lambda distribution (GLD). The latter is a highly flexible
four-parameter distribution family, which is able to approximate many common distributions such as normal,
lognormal, uniform and extreme value distributions (Freimer et al., 1988). A GLD is defined by its quantile
function

Q(u;λ) = λ1 + 1
λ2

(
uλ3 − 1
λ3

− (1− u)λ4 − 1
λ4

)
, (3)

where u ∈ [0, 1] and λ = {λl : l = 1, . . . , 4} are the four distribution parameters. More precisely, λ1 is the
location parameter, λ2 is the scaling parameter, and λ3 and λ4 are the shape parameters. To have valid
quantile functions, λ2 should be positive. From Eq. (3), we can derive the associated PDF:
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fY (y;λ) = λ2
uλ3−1 + (1− u)λ4−11[0,1](u), with u = Q−1(y;λ), (4)

where 1[0,1] is the indicator function. From the above equation, it is clear that evaluating the PDF for a
particular y requires solving numerically the equation u = Q−1(y;λ).
Under this setup, varying x will lead to Y (x) following a GLD with different distribution parameters λ. In
other words, λl’s are functions of x, which allows us to express the QoI as

Y (x) ∼ GLD (λ1(x), λ2(x), λ3(x), λ4(x)) . (5)

Recall that the input parameters x are modelled as independent random variables X with joint PDF
fX(x) =

∏M
i=1 fXi

(xi). Under appropriate assumptions (Ernst et al., 2012), each component of λ(x) admits
a polynomial chaos (PC) representation

λl (x) ≈ λPC
s (x; c) =

∑

α∈Al

cl,αψα(x), l = 1, 3, 4,

λ2 (x) ≈ λPC
2 (x; c) = exp

( ∑

α∈A2

c2,αψα(x)
)
,

(6)

where {ψα : α ∈ NM} is a basis of multivariate polynomials that are mutually orthogonal with respect to
the probability measure of X, α is a multi-index that identifies the polynomial degree in each of the input
variables, Al ⊂ NM is a truncated set defining a finite set of basis functions for λl(x) and c = {c1,α, . . . , cl,α}
denotes the associated coefficients (see (Zhu and Sudret, 2020c) for details). Note that the polynomial chaos
expansion for λ2(x) is built on the logarithmic transform so as to ensure that λPC

2 (x) is always positive.
Combining Eq. (5) with Eq. (6), we define the generalized lambda surrogate model

Y GLAM(x) ∼ GLD
(
λPC

1 (x; c), λPC
2 (x; c), λPC

3 (x; c), λPC
4 (x; c)

)
. (7)

To build a GLAM, we need to determine the the associated coefficients c. To avoid the need for replications,
which may result in a large number of experiments, we use the method developed by Zhu and Sudret (Zhu
and Sudret, 2020a). We first generate a set of realizations of the input random vector X =

{
x(1), . . . ,x(N)},

called the experimental design (ED). For each point of the ED, we conduct a HS and collect the corresponding
QoI into Y =

{
y(1), . . . ,y(N)}. Note that each HS may correspond to a different realization of the latent

variable Z, which does not need to be explicitly known in the analysis. In a second step, we estimate c by
maximizing the conditional likelihood, i.e. minimizing the negative log-likelihood, that is

ĉ = arg min
c

L (c) = arg min
c

N∑

i=1
− log

(
fGLD

(
y(i);λPC

(
x(i); c

)))
, (8)

where fGLD is the PDF of the GLD defined in Eq. (4). To solve the optimization problem, it is necessary
to determine the support of c, which is equivalent to finding the truncation set Al for each λPC

l . To this
end, we plug the hybrid-LAR algorithm (Blatman and Sudret, 2011) into the modified feasible generalized
least-squares framework (Zhu and Sudret, 2020a). The latter fits the mean and the variance function in an
alternative way. The basis functions selected for these two functions are then used to represent λPC

1 (x) and
λPC

2 (x), respectively. As λ3 and λ4 mainly control the PDF shape of a GLD, which is expected not to change
much when x is changed, we can pick polynomials with low degree, namely 0 or 1, for λPC

3 (x) and λPC
4 (x).

After specifying the basis functions, we solve Eq. (4) to build the associated GLAM.
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2.2 Sobol’ sensitivity indices

Variance-based sensitivity analysis has been extensively studied and successfully developed in the context
of deterministic models (Abbiati et al., 2021; Saltelli, 2008). For a random vector X with independent
components, any deterministic mapping Y = Ms(X) with Var [Y ] < +∞ can be decomposed as (Sobol’,
1993)

Ms(X) =M0 +
M∑

i=1
Mi(Xi) +

∑

i<j

Mi,j(Xi, Xj) + . . .+M1,...,p(x1, . . . , xM )

=M0 +
∑

u⊂{1,...,M}
u6=∅

Mu(xu)
(9)

where M0 is a constant, and Mu(xu) is a function of the subset of input variables xu specified by u 6=
∅, u ⊂ {1, . . . , p}. This decomposition is unique, and the elementary functions are defined by conditional
expectations

Mu(xu) def=
∑

v⊂u
(−1)|u|−|v|E [Y |Xv = xv] , (10)

where |u| gives the cardinality of u. Following this definition, M0 = E [Y ] is the expected value of Y .
Moreover, the various terms Mu are orthogonal with each other w.r.t. the inner product induced by the
input PDF. Thus we can decompose the variance of Y as:

Var [Y ] = E
[
(Y −M0)2] =

∑

u⊂{1,...,M}
u6=∅

Var [Mu (Xu)] . (11)

Additionally, the definition in Eq. (10) allows for calculating the variance ofMu (Xu) by

Vu
def= Var [Mu (Xu)] =

∑

v⊂u
(−1)|u|−|v|Var [E [Y |Xv]] (12)

The Sobol’ index Su is defined as the ratio of Vu to the total variance Var [Y ]

Su
def= Vu

Var [Y ] . (13)

For |u| = 1, we obtain the first-order Sobol’ indices {Si : i = 1, . . . , p}, which represent the main effect of each
input variable. Higher-order indices quantify the interactive effect within a given group of input variables.
The total Sobol’ index STi

account for all the effect related to Xi

STi

def=
∑

u3i
Su. (14)

Due to the random nature of stochastic simulators, decomposition similar to Eq. (9) is generally impossible.
Therefore, it is necessary to represent a stochastic model by a deterministic function to obtain the associated
Sobol’ indices. Based on the choice of the deterministic representation, we can have different extensions of
the Sobol’ indices (Zhu and Sudret, 2020b).
The most straightforward way is to include the latent variables within the input variables (Iooss and Ribatet,
2009). This leads to the underlying (yet unknown in practice) deterministic model Ms defined in Eq. (1).
Decomposing this function, we have
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Y =Ms(X,Z) =M0 +
∑

u⊂{1,...,p}
u6=∅

Mu(Xu) +MZ(Z) +MX,Z(X,Z), (15)

As the definition ofMu is the same as Eq. (10), the equation (12) for Vu still holds. This implies that Su can
be determined by the statistical dependence between Y andXu. The definition of the total index STi

requires
including the interactive effect between Xi and the latent variables Z. However, interactions with Z cannot
be determined by the response distribution but rather depend on the precise data generation process (i.e.
how Z is present in the functionMs). Since the latent variables Z are generally impossible to characterize
and control in a real experiment, the total Sobol’ indices cannot be assessed.
Alternatively to Eq. (15), certain summary quantities of the response random variable Y (x) can be employed
as a deterministic representation of Y (x). This is particularly helpful when the selected summary quantity
itself is of interest. Typical quantities are mean m(x) = E [Y (x)], variance v(x) = Var [Y (x)] (Iooss and
Ribatet, 2009), and α-quantiles qα(x) (Browne, 2017). As these functions are well-defined as deterministic
functions of x (since the effect of the latent variables Z has been marginalized), the associated Sobol’ indices
follow directly from Eq. (9).
A generalized lambda surrogate model emulates the response distribution of a stochastic model, which fully
captures the statistical dependence between the input variablesX and the QoI Y . Therefore, such a surrogate
allows for evaluating both types of Sobol’ indices mentioned above. More precisely, we can apply either Monte
Carlo simulations or polynomial chaos expansions to the easy-to-evaluate emulator (see (Zhu and Sudret,
2020b) for more details).

3 Experimental illustration of the proposed GSA framework

3.1 Stochastic hybrid model

The proposed GSA framework is illustrated using a stochastic 3-DoFs hybrid model subjected to both thermal
and mechanical loading, illustrated in Figure 1. As can be appreciated from Figure 1a, the hybrid model
consists of a simply-supported beam provided with rotational elastic restraints. In this regard, u1 and
u2 indicate the two rotational DoFs, while u3 is the axial DoF. Figure 1b describes the substructuring of
the hybrid model into PS and NS. The NS comprises the two elastic rotational restraints, the axial spring
and the linear dashpot whereas the PS coincides with the beam element. Specifically, the axial spring is
characterized by a constant stiffness of K3 = 8100× 103 N/m. Two lumped rotational masses are defined by
J1 = J2 = 10 kgm while the lumped translational mass is defined by M3 = 5000 kg. The linear dash-pot is
characterized by C3 = 1129× 103 Ns/m. The PS consists of an aluminium plate of 0.2× 0.002 m rectangular
cross-section and length L = 0.47 m. Accordingly, the cross-section of the plate is characterized by an area
A = 4 × 10−4 m2 and a moment of inertia I = 66.67 × 10−12 m4. The Young’s modulus, density and
thermal expansion coefficient of aluminum are E = 69.5 GPa, ρ = 2700 kg/m3, and α = 23 × 10−6 ◦C-1,
respectively. Since HS are conducted in pseudodynamic mode using a testing time scale equal to 50, the PS
mass (rotational and translational) does not contribute to the hybrid model inertia. For the sake of clarity,
all equations and plots in the following refer to simulation time, which is virtual and 50 times slower than
the wall-clock time.
Mechanical loading is supplied as a bending moment history F (t) applied to the right rotational DoF u2
while thermal loading, applied by a heating lamp, is defined by a ramp & hold temperature history θ(t). The
expressions of both read:

F (t) =
{
Fmax sin(π(t−t0)

T ) , t0 ≤ t ≤ t0 + T/2
0 , elsewhere

(16)
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Figure 1. Prototype structure (a) and its hybrid model (b).

Parameter Description Lower Bound Upper Bound Units
K1 Rotational stiffness left spring 110.58 1105.80 Nm/rad
K2 Rotational stiffness right spring 110.58 1105.80 Nm/rad
Fmax Bending moment pulse peak 40.00 50.00 Nm
T Bending moment pulse period 0.50 2.00 sec

θmax Temperature plateau 100.00 130.00 ◦C

Table 1. Input parameters of the hybrid model.

θ(t) =
{
θ̇t , θ(t) < θmax

θmax , elsewhere
(17)

where Fmax and T are peak value and period of the half-side bending moment pulse applied to DoF u2 with
a time shift t0 = 0.1 s; θ̇ and θmax are temperature rate and plateau characterizing the temperature history
imposed to the PS. For the sake of this example, Figure 2a depicts the bending moment history computed for
Fmax = 45 Nm, T = 1 s. Similarly, Figure 2b depicts the temperature history computed for θ̇ = 21.5 ◦C/s
and θmax = 120 ◦C.
Consistent with the motivations underlying the development of the GSA framework, the stiffness of the
two elastic rotational springs, which play the role of boundary conditions to the PS, as well as the loading
parameters, are selected as input parameters for the surrogate modelling phase. In line with the procedure
described in Section 2, the input parameters are described by independent uniform distributions, whose
bounds are summarized in Table 1.
It is important to remark that, in order to reduce the experimental effort required to validate the proposed
framework, the hybrid model and loading excitation were designed such that the PS always remained in the
linear response regime. As a result, HS were conducted using a single aluminum plate.
The response QoI selected for the GSA corresponds to the maximum absolute out-of-plane deflection of the
tested aluminum plate, which is denoted as uL,max.
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Figure 2. Bending moment history for Fmax = 45 Nm, T = 1 s (a); Temperature time history for
θ̇ = 21.5 ◦C/s and θmax = 120 ◦C (b).

3.2 Hybrid simulation setup

The 3-DoFs HS test rig used to conduct HS is a stiff loading frame equipped with four electro-mechanical
actuators and an infrared (IR) lamp module interfaced to an INDEL real-time computer (Abbiati et al., 2018).
The 3-DoFs HS test rig is designed to test plate specimens with an approximate footprint of 200 × 500mm
and thickness varying between 1 and 3mm. Figure 3 illustrates the architecture of the HS setup, including a
close-up view of the plate specimen accommodation. Two axonometric views of the 3-DoF test rig, consisting
of the main hardware components are shown in Figure 4.
The moving parts of the test rig are colored in yellow, the plate specimen in brown and the fixed parts in gray.
The latter are fixed to a reaction frame. In order to impose the u1 and u2 rotations, two rack-pinion systems
(10) are installed along the vertical actuator y1 and y2 (1). The rack-pinion systems aim at transforming
the commanded displacements from the actuators to rotational DoFs, applied to the short edges of the plate
specimen (6) through aluminium clamps (3). The two horizontal actuators x1 and x2 control the position
of the moving frame mounted on profiled rail guides (4) and corresponding to the axial DoF u3 of the plate
specimen (6). A linear variable differential transformer (LVDT) measures the out-of-plane deflection at the
mid-span of the plate specimen (labeled uL in Figure 3). A Type K thermocouple installed at the center of
the plate provides the feedback signal for the control of the IR lamp, which imposes the temperature history
θ(t).
The GINLink bus connects actuator servo-drivers INDEL SAC4, IR lamp and all DAQ modules to the
real-time computer INDEL SAM4, which executes the HS software. The latter is developed in MAT-
LAB/SIMULINK, compiled, and downloaded to the INDEL SAM4 from the Host-PC. At each simulation
time step, the HS software imposes displacements u1, u2 and u3 to the plate specimen, the PS, reads the
corresponding restoring forces r1, r2 and r3 measured using force transducers, and solves the coupled equation
of motion of the hybrid model. Also, the HS software generates the temperature command for the IR lamp.
A comprehensive description of the time integration scheme used for HS is reported in (Abbiati et al., 2019).
Forces were manually set to zero before starting HS. An electric fan cools down the PS at the end of each
test. Room temperature was quite stable and equal to 30 ◦C for the entire testing campaign.
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INDEL SAM4
Real-time computer

Execute the HS software
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PS
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Data acquisition modules 
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INDEL COP
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Figure 3. Architecture of the 3-DoFs HS test rig.

Figure 4. Axonometric views of the 3-DoFs HS test rig with main components: (1) vertical actuators, (2)
horizontal actuators, (3) installation clamps, (4) moving frame, (5) profiled rail guides, (6) plate specimen,
(7) hinges, (8) vertical actuator load cells, (9) horizontal actuator load cells and (10) rack-pinion systems.
The moving parts are colored in yellow, the plate specimen is brown, while those parts fixed to the reaction
frame are gray. The latter is omitted in this figure.
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4 Results and discussion

The response of the hybrid model described in Section 3.1 was evaluated using the HS setup described in
Section 3.2 on 200 samples of the input parameter vector generated using latin hypercube sampling (Mckay
et al., 2000). The resulting ED X,Y was used for computing surrogate models. In this regard, Figure 5
reports out-of-plane and axial displacement histories obtained via HS for a single sample of input parameters,
where uL,max, u3,max, uL,0 and u3,0 scalar quantities are highlighted. Specifically, uL,max corresponds to
the QoI (see Eq.(18)) and u3,max to the absolute maximum axial displacement while uL,0 and u3,0 indicate
the initial position of the out-of-plane displacement and axial axes respectively, relative to the value mea-
sured during the first HS. Figure 6 describes the evolution of uL,0 and u3,0 scalar quantities over the entire
experimental campaign.

4.1 Drift observed in measurement data

From Figure 6 it is clear that both uL,0 and u3,0 quantities have a constant drift, which results in a total
accumulated out-of-plane and axial displacements of 3.0 mm and 0.3 mm, respectively. Such a drift can be
reasonably ascribed to cumulative slippage of plate fixtures produced by heating/cooling cycles. This drift
occurs regardless of the type of analysis that the HS setup was used for, and hence it should be removed from
the acquired raw data before any further post-processing. Accordingly, prior to the calculation of surrogate
models, the effect of drift on uL,max was eliminated via linear detrending with respect to uL,0. The detrended
QoI is referred to as ûL,max and compared to original values in Figure 7. Notably, uL,0 is independent from
the parameters of the hybrid model since the initial position of the PS was set by zeroing actuator forces.
Consistent with the notation introduced in Section 2, surrogate modeling was performed considering the
following input parameter vector and response QoI,

X = {K1,K2, Fmax, T, θmax}
Y = {ûL,max} (18)
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Figure 5. Time history response of the hybrid model with K1 = 224.454 Nm/rad, K2 = 118.235 Nm/rad,
Fmax = 48 Nm, T = 0.618 sec and θmax = 116.73 ◦C: (a) out-of-plane displacement; (b) axial displacement.

4.2 Global sensitivity analysis framework results

A GLAM of the hybrid model response QoI was computed as explained in Section 2. In this study, we
set the candidate degrees up to 5 for λPC

1 and 3 for λPC
2 . In order to validate the GLAM, 10 repeated
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Figure 6. Drift in the hybrid model response: (a) uL ; (b) u3
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Figure 7. Effect of detrending on the QoI: (a) original values (uL,max); (b) values after detrending (ûL,max).
Dashed lines indicate a linear trend of data.

HS were performed for two validation ED points, namely 58 and 157, associated with different regions of
the input parameter space and characterized by appreciably different QoI values. For each validation ED
point, Figure 8 compares the GLAM prediction to the empirical distribution of the 10 related repetitions.
It is observed that the GLAM correctly captures the empirical distribution of the QoI for both points. It
is interesting to note that the computed GLAM model converged to zero-order polynomials for λPC

2 , and
that the two PDFs of Figure 8 are similar in shape, thus suggesting an homoscedastic stochasticity of the
hybrid model, which was further verified using a PCE surrogate model. Specifically, a residual analysis was
performed on the difference between the measured QoI and its PCE.
As highlighted by Torre and co-workers (Torre et al., 2019), in presence of noisy data, PCE is a powerful
denoiser, which naturally provides a surrogate of the average model response EZ [Y |x]. In this regard, the
Tukey-Anscombe plot (Anscombe and Tukey, 1963) of Figure 9a compares the PCE output to the corre-
sponding residual for each sample of the ED. The Q-Q plot of Figure 9b compares the empirical quantiles of
the residuals normalized to unit standard deviation to the theoretical values of a standard normal distribution
N (0, 1). The zero-average uniform scattering of residuals highlighted by the Tukey-Anscombe plot and the
fairly good agreement between empirical and theoretical quantiles highlighted by the Q-Q plot confirms that
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the hybrid model response was affected by a Gaussian homoscedastic additive noise.
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Figure 8. PDF of ûL,max predicted by the GLAM versus empirical distributions for ED points: (a) 58, and
(b) 157. Cross markers denote the 10 related repetitions for each point.
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Figure 9. Analysis of QoI residuals with respect to PCE: (a) Tukey-Anscombe plot; (b) Q-Q plot.

As reported in Section 2.2, only first- and higher-order Sobol’ indices but not total Sobol’ indices can be
obtained from the GLAM of the QoI. Instead, first and total Sobol’ indices can be computed for the QoI
quantiles. Accordingly, Figure 10 provides first and total Sobol’ indices of the 5, 50 and 95 % quantiles of
ûL,max. The results of the GSA indicate that the temperature plateau value θmax is the most sensitive input
parameter for the selected QoI. Additionally, the equal Sobol’ indices values for each quantile unveils the
homoscedastic response of the stochastic surrogate.
The development and implementation of the surrogate modelling, as well as the GSA, was performed using
the UQLab software framework developed by the Chair of Risk, Safety and Uncertainty Quantification in
ETH Zurich (Marelli and Sudret, 2014).
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(a) (b)

Figure 10. Sobol’ indices of 5, 50 and 95 % quantiles of ûL,max: (a) First order and (b) Total.

5 Conclusions

This paper described a framework for global sensitivity analysis of stochastic hybrid models. A generalized
lambda surrogate modeling technique recently developed by some of the authors is used to compute Sobol’
sensitivity indices for the quantiles of a response quantity of interest. The idea of using surrogate modeling
to enable global sensitivity studies with few expensive-to-evaluate hybrid simulations was already presented
in a previous work of the authors. The novelty of this work lies in the extension of global sensitivity analysis
to the case of stochastic hybrid models, to cover the more realistic situation where the hybrid model response
for two nominally identical physical substructures is not repeatable.
The effectiveness of the proposed framework is demonstrated in an experimental application consisting of a
hybrid model with five parameters and subjected to mechanical and thermal loading. A great advantage of
the proposed framework is that the generalized lambda surrogate model does not require repeated evaluations
of the same sample. The results of the demonstration study highlight that the stochasticity of the particular
hybrid model under consideration is homoscedastic with respect to the hybrid model parameters. Accordingly,
both first-order and total Sobol’ sensitivity indices of 5, 50, and 95 % quantiles are almost identical. Moreover,
the temperature plateau value of the thermal loading is the most sensitive parameter for the selected response
quantity of interest. The outcome of the experiment demonstrates the effectiveness of the proposed GSA
framework in revealing the inner workings of the hybrid model.
Future research will address the issue of adaptive sampling of the parameter space of the hybrid model
to minimize the experimental cost necessary to compute an accurate surrogate model for global sensitivity
analysis.

6 Data Availability Statement

All data and code that support the findings of this study are available from the corresponding author upon
reasonable request.
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