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Abstract—Most high performance general purpose processors leverage register renaming to implement optimizations such as move
elimination or zero-idiom elimination. Those optimizations can be seen as forms of strength reduction whereby a faster but semantically
equivalent operation is substituted to a slower operation. In this letter, we argue that other reductions can be performed dynamically if
input values of instructions are known in time, i.e., prior to renaming. We study the potential for leveraging Value Prediction to achieve
that goal and show that in SPEC2k17, an average of 3.3% (up to 6.8%) of the dynamic instructions could dynamically be strength
reduced. Our experiments suggest that a state-of-the-art value predictor allows to capture 59.7% of that potential on average (up to
99.6%).

Index Terms—General purpose microprocessors, microarchitecture, speculation
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1 INTRODUCTION

S TRENGTH reduction is a term notably used in compiler de-
sign that consists in picking the least costly operation that is

able to implement the semantics specified by the programmer.
A famous example is to replace a multiplication (resp. division)
by 2n by a left (resp. right) shift of n.

Strength reduction is therefore commonly thought of as
a compile-time optimization, hence we could refer to it as
static strength reduction. However, modern general purpose
processors already employ several forms of dynamic strength
reduction, such as move elimination [1] and zero-idiom elimination
[2]. The former consists in eliding a ”move register to register”
instruction by renaming the architectural destination register
of the instruction to its source physical register. The latter will
rename the destination register of an instruction that statically
produces 0x0 (e.g. xor rax, rax) to a physical register that is
hardwired to 0x0. Generally speaking, any instruction whose
result can be known statically can be eliminated at rename if
the hardware implements a physical register that is hardwired
to that value, as embodied by the recent introduction of one-
idiom elimination in Intel processors [2].

Note that eliminated, in this context, means that instructions
do not need to be sent to the backend for execution, hence, they
do not occupy a slot in the scheduler and they do not require an
execution unit. However, those instructions may still consume
tracking resources to enforce sequential semantics and enable
microarchitectural state to be rolled-back on a pipeline flush.

In this letter, we observe that many instructions not initially
thought to be strength reducible become so during execution.
For instance, and overlooking side effects such as status flag
updates in x86 64 for a moment, if the second source input of
an add rax, rbx instruction is 0x0, then the instruction has the
same side effects on rax as a nop instruction. The equivalent in
ARMv8 would be add x1, x1, x2 where x2 is 0x0. Note that in
ARMv8, the destination may differ from both sources, however,
add x1, x2, x3 would still strength reduce to mov x1, x2 if the
value of x3 were 0x0. This reduced instruction would then be
move eliminated.

1Institute of Engineering Univ. Grenoble Alpes
Manuscript received November 2020; revised November 2020.

0 8 1 10 2 4 3 5 7 9

7ff
f7

ad
3c

cb
0 6 20

55
b5

ac
0d

78
40

55
74

00
3f

32
20

f5
26

6a
7f

72
49

7b
00 a

3c
cf
2b

4f
35

6a
02

00

ffff
ffff

ffff
ffff

12
89

dd
40

92
28

9f
00

0

1

2

3

4

5

D
yn

. 
V

a
lu

e
 D

is
tr

ib
u
tio

n
 (

G
P

R
s)

 (
%

)

Fig. 1: Frequency of the 20 most produced general purpose
register values (gcc/g++/gfortran 8.3.0 -O3 targeting x86 64)
in SPEC2k17 (int/fpspeed, train inputs).

Unfortunately, hardware generally does not know the
source operands values by the time the decision to strength
reduce the instruction has to be made (Decode or Rename).
Consequently, we propose speculative strength reduction (SSR),
in which source operands of instructions are predicted to enable
opportunistic dynamic strength reduction.

2 MOTIVATION

Fully featured Value Prediction (VP) [3] is expensive in terms
of silicon, simply due to the fact that the value predictor may
have to store 64-bit worth of prediction for each candidate
instruction. Moreover, the value distribution in programs is
not uniform. Indeed, combined, the values 0x0 and 0x1 are
produced significantly more often than most other values, as
depicted in Figure 1 for 2k17 (int/fpspeed) ran under Intel Pin
[4].1 Nearly 6.0% of the dynamically generated general purpose
register values are either 0x0 or 0x1.

1. We note that seemingly ”random” values are produced more often
than null, which seems counter-intuitive. Those values are actually
produced very often but only in a single workload for each value (by
order of apparition, 1st value in leela, 1st value in xalancbmk, 2nd value
in deepsjeng, 1st value in nab, 1st value in cam4 and 3rd value in roms).



TABLE 1: Examples of possible strength reductions for some
x86 64 instructions. Side effects such as x86 flags updates are
ignored in this Table.

src1 src2
Op 0 1 0 1
imul nop mov src1,src2 mov src1,0x0 nop
add mov src1,src2 – nop –
sub – – nop –
shl nop – nop –
shr nop – nop –
and nop – mov src1,0x0 –
test nop nop if src2=0x1 nop nop if src1=0x1
xor mov src1,src2 – nop –
or mov src1,src2 – nop –

Incidentally, 0x0 and 0x1 are the values that will generally
enable instructions to be dynamically strength reduced. Some –
but not all – possible reductions are shown in Table 1 assuming
the x86 64 ISA. Other values such as −1 (null) may unlock more
potential (notably for bitwise logical instructions), but this letter
focuses on 0x0 and 0x1 as those values can be trivially encoded
in a value predictor and already benefit from special treatment
(either architecturally [5], [6] or microarchitecturally [2]) in the
pipeline. Note that the proposed reductions ignore any side
effects the reduced instructions may have, such as x86 64 status
flags modifications (which are particularly relevant for test). We
address side effects in Section 3.3.

3 BUILDING AN SSR MICROARCHITECTURE

The SSR microarchitecture is built on a limited value prediction
infrastructure that focuses on predicting a few key values.
Therefore, we first need to design a robust VP flow that will
provide and validate predictions as well as train the predictor.

3.1 A Limited Value Prediction Infrastructure
3.1.1 Predicting Values
SSR requires predicted source operands to determine that an
instruction can be speculatively strength reduced in the fron-
tend. Any state-of-the art predictor can be used for that purpose
(e.g., VTAGE ) [7], although we note that since we only consider
0x0 and 0x1 for prediction, its footprint will be much smaller
than in a VP infrastructure where any value can be predicted
[8]. The predictor should attempt to predict the destination of
all register-producing instructions. In this fashion, VP enables
SSR but also permits consumers of the predicted result that
cannot be SSR’d to execute earlier by virtue of breaking Read-
after-Write dependencies.

In this design, the frontend keeps track of which archi-
tectural names are currently predicted to be 0x0 or 0x1, and
is responsible for replacing SSR candidates by their strength
reduced counterpart when relevant. Instructions that are SSR’d
will be eliminated during renaming through the existing
move/zero-idiom elimination machinery.

Since a prediction can only be 0x0 or 0x1, and since there
generally already exists a hardwired zero register, this VP
implementation need not write predictions to the Physical
Register File (PRF) to allow dependents to use predicted values.
Rather, the destination register of predicted instructions is re-
named to the hardwired 0x0 physical register, and a hardwired
physical 0x1 register is implemented. This has significant im-
plications on PRF complexity as additional write ports – which
are needed in some state-of-the-art VP proposals [9], [10] – are
costly in term of PRF area and energy [11].

3.1.2 Validating Predictions
Predicted values need to be validated for correctness. There are
multiple possible designs for general VP, but in SSR, a predic-
tion can only be 0x0 or 0x1. Therefore, it may be reasonable for
predicted instructions to carry the predicted value while they
flow down the pipeline to permit in-place validation directly
at the functional unit. Indeed, the mere fact that the destination
register number is the hardwired 0x0 or 0x1 register can be used
to indicate what value the result of the execution unit should
be compared against.

This contrasts with state-of-the-art where validation is per-
formed at commit by reading the actual value from the PRF
and comparing it to the prediction that was stored in a FIFO
structure [7]. This impacts complexity as either additional PRF
read ports are required on the PRF, or read port arbitration is
required between issuing instructions reading their operands
from the PRF and predicted instructions reading the actual
result from the PRF to compare against the predicted value.
The former has implications on PRF area and energy per access
[11], whereas the latter may introduce delay if an arbiter is
not implemented in the baseline (i.e., there are enough read
ports for all issuing instructions in the baseline to simplify
scheduling). Conversely, limited VP does not touch the PRF
at all. Limited VP also does not require the FIFO of predictions
as the predicted value is carried with the instruction.

In addition, validating at commit can significantly increase
the cost of a misprediction. In our limited VP infrastructure,
mispredictions can be discovered at execution. This makes the
cost of a value misprediction comparable to the cost of a branch
misprediction

Note that since SSR’d instructions are always – directly or
indirectly – dependent on a predicted value, validating the
prediction is sufficient to validate the reduction. However, this
requires that a value misprediction trigger a pipeline flush and
not a replay. Indeed, SSR’d instructions cannot be replayed
since they were never sent to the scheduler in the first place.

3.1.3 Training the Predictor
Training in itself can be done at execution or at retirement and
predictor management may be arbitrarily complex, knowing
that we would like to allocate predictor entries only to instruc-
tions that are known to at least occasionally produce 0x0 and
0x1. There have been several proposals to filter the instructions
that are allowed to enter the predictor tables [10], however,
filtering and generally tailoring the value predictor to SSR is
left for future work. In this letter, we consider a large state-of-
the-art predictor to highlight the potential of SSR.

3.2 Potential Interactions with Conditional Branch Predic-
tion
While conditional branches are predicted and therefore do
not stall instruction retrieval, said branches still have to be
executed in the backend to validate the predicted direction.
With SSR, instructions that are directly feeding branches may be
value predicted or even eliminated. In that context, the branch
itself may be executed in the frontend using the generated
status flags (x86, ARM) or register value (RISC-V) of a pre-
dicted/eliminated instruction, because if the value prediction
is ultimately correct, the early branch resolution is also correct.

While this can further increase the number of eliminated
instructions, this possibility also opens the door to mechanisms
that improve the timeliness of branch – or even value – correc-
tions, as was initially suggested by Aragon et al. [12], such as
overriding a branch prediction with a value prediction, or vice
versa.



3.3 Enforcing Program Semantics in an SSR Microarchi-
tecture
In general, an instruction can be eliminated only if it does not
have any side effects, or if those side-effects can be applied
as part of the elimination. For instance, in x86 64, mov reg, reg
instructions can be move eliminated because they have no side
effects, and notably, they do not modify the status flags register
[13]. Similarly, in x86 64, xor rax, rax can be zero-idiom eliminated
because although the xor instruction modifies the status flags,
it does so in a way that is known at elimination time because
the output of the instruction is known to be 0x0 [13].

Conversely, some of the x86 64 examples shown in Table 1
do have side effects that cannot generally be handled at elim-
ination time. For instance, add rax, rbx where rbx is predicted
to be 0x0 cannot be replaced by a nop because the status flags
have to be updated based on the output of the instruction [13].

Those limitations stem from the semantics defined at the
architectural level, and are therefore ISA-dependent. For in-
stance, in ARMv8, dedicated arithmetic and logic instructions
are used to modify the status flags (e.g., adds and subs) [5],
and the instruction add x1, x1, x2 (which is similar to add
rax, rbx in x86 64) can be strength reduced to a nop if r2 is
predicted to be 0x0. As a result, the potential for a performant
SSR implementation is tied to the ISA.

x86 64 is generally disadvantaged due to the fact that most
instructions update the status flags register [13]. This means
that only SSR candidates whose result is known at elimination
time can be fully eliminated (e.g., imul rax, rbx with rax being
0x0), while others (e.g., instructions that reduce to mov reg, reg
in Table 1) can only be partially eliminated.

Partial elimination will not eliminate the instruction from
the pipeline, meaning that the instruction will consume a sched-
uler entry and be given a new physical destination flag register.
However, the destination result register of the instruction will
behave as if the instruction had been eliminated, meaning that
consumers of the result register may still execute earlier thanks
to the speculative strength reduction.

ARMv8, which is mainly used in embedded and mobile
devices but is poised to take over some desktop and datacenter
offerings, is generally advantaged due to the fact that most
examples shown in Table 1 do not have side effects. Indeed,
dedicated arithmetic and logical instructions must be used to
modify the status flags [5].

RISC-V has recently been getting traction and is also gener-
ally advantaged in the context of SSR since there are no status
flags to be updated as side effects of arithmetic and logical
instructions [6]. In particular, conditional branches will directly
read register values and perform the compare operation as part
of the branch instruction.

4 SUMMARY OF SSR POTENTIAL BENEFITS

Assuming SSR’d instructions are fully eliminated most of the
time (i.e., ARMv8 or RISC-V case), SSR will help reduce the
backend energy spent executing those instructions. SSR also
has potential to reduce execution time if the SSR’d instructions
are on the critical path.

Moreover, SSR has potential to reduce stalls caused by
oversubscribed resources. First, at the PRF level as SSR’d in-
structions will neither read/write nor be allocated a regular
physical register, reducing PRF activity and pressure. Second,
at the scheduler level as SSR’d instructions do not occupy an
entry, which can allow younger instructions to be dispatched to
the scheduler and improve ILP/MLP. Lastly, at the functional
unit (FU) level as SSR’d instructions do not use one, which has
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SSR-able insts with 13KB VTAGE value predictor [14]
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DSR Instructions (Table I rules + Branches)

Fig. 2: Percentage of dynamic instructions that can be DSR’d
(blue) and how many of those can be SSR’d assuming a state-
of-the-art 13KB VTAGE value predictor (orange),2 or DSR’d
through tracking immediates (black).
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mul -> nop

mul -> mov reg

mul -> mov #0

add -> nop

add -> mov reg

sub -> nop

shr -> nop

shl -> nop

or -> nop

or -> mov reg

and -> nop

and -> mov #0

xor -> nop

xor -> mov reg

test -> nop

cond br -> nop

Fig. 3: Distribution of reduction types in SPEC2k17
(int/fpspeed, train inputs), normalized to total DSR candidates.

potential to let a younger instruction use the FU earlier than it
would have if a particular FU type is oversubscribed.

5 EXPERIMENTAL RESULTS

Figure 2 reports the percentage of dynamic instructions that
can be strength reduced according to Table 1. The Figure
also categorizes conditional branches whose inputs become
available as part of value prediction or strength reduction as
strength reducible, but ignores zero- and one-idioms (e.g., xor
rax, rax) as well as regular mov instructions as those can already
be eliminated in the baseline. The Figure also depicts the ratio
of candidates that can be captured by using a state-of-the-
art 13KB VTAGE predictor2 as well as candidates that can be
non-speculatively strength reduced by tracking 0x0 and 0x1
immediates through mov reg, imm and move reg, reg instructions.
The numbers are reported for SPEC2k17 (int/fpspeed, train
inputs) runs using Intel Pin [4].

2. We refer the reader to [14] for details on the predictor used in the
experiments. Average MPKI of the predictor is 0.002 with a maximum
of 0.010 in 631.deepsjeng. The average coverage (correct predictions that
would be used by the pipeline (confident) over dynamic instructions
that actually produce 0x0 or 0x1) is 71.4% (98.4% in 644.nab).



Figure 3 further depicts how reductions types are dis-
tributed within the overall instructions that are found to be
strength reducible at runtime. Clearly, the ability to value
predict one or both inputs of test instructions is quite beneficial
as it allows to eliminate branches relying on the outcome as
well as the test instructions themselves. Nonetheless, several
workloads show specific modes, e.g. bwaves in which add in-
structions with the second input being 0x0 make up for 60% of
the DSR candidates, and imagick where sub instructions with the
second input being 0x0 represent almost all the DSR candidates
(and interestingly, 49.9% of the dynamic sub instructions).

Overall, the number of instructions that can be SSR’d ac-
cording to the rules of Table 1 is modest, but not negligible :
3.3% on average, with a maximum of 6.8% in 625.x264. Those
numbers are however upper bounds, since only a fraction of
those cases will be sufficiently predictable, as shown in Figure
2. Indeed, on average, the VTAGE value predictor we consider
(13KB storage) allows 59.7% of the DSR potential to be cap-
tured, which amounts to 1.9% of the dynamic instructions. We
also found that a simple 8KB-entry gshare-like value predictor
(6KB storage) captures 38.6% of the DSR potential (1.1% of
the dynamic instructions) on average, although average value
MPKI was higher (0.02 instead of 0.002 for VTAGE). We do not
plot results for this predictor due to space constraints, but the
results suggest that even a simple value predictor can achieve
a significant fraction of the DSR potential although tuning may
be required to minimize value mispredictions.

6 RELATED WORK

Move elimination was initially proposed [1] to execute move
instructions at rename. This technique is especially beneficial in
the x86 ISA because for most instructions, one of the sources
is the destination, therefore values have to be saved in other
registers more often than in other ISAs.

Speculative memory bypassing leverages renaming to trans-
form a def-store-load-use chain into a def-use chain by renam-
ing the destination register of the load to the source register
of the store [15]. Validating speculation implies checking that
addresses match but also that the load value is consistent with
what the memory model allows.

REName Optimizer (RENO) [16] and Continuous Optimiza-
tion [17] suggest to monitor instruction sequences to remove
redundant computations through the renamer. For instance,
two loads from the same address but to different registers, in
which case the second load can map its destination register to
the destination register of the first load. Different optimizations
may be performed including constant propagation (CP), redun-
dant load elimination (RLE), and store forwarding. Some of
those optimizations require additional hardware in the backend
(CP) and/or actual execution of the ”eliminated” instruction
(RLE).

SSR is orthogonal to those techniques as it is inherently dy-
namic, that is, inspecting instruction data only is not sufficient
to perform SSR. However, SSR does build on the availability of
move elimination and zero/one-idiom elimination.

Lastly, EOLE [9] leverages value prediction to early execute
some instructions in the frontend, using dedicated execution
units. Those instructions are not sent to the scheduler thereby
achieving a similar effect as SSR. However SSR does not require
execution units and is able to perform eliminations even when a
single input is predicted, whereas EOLE can only early execute
an instruction if all inputs are available. Moreover, SSR does not
suffer from the usual shortcomings of value prediction infras-
tructures (notably PRF requirements for using and validating
predictions).

7 CONCLUSION

Using simple rules and ignoring ISA-specific aspects, this letter
shows that a non negligible percentage (3.3% on average) of
instructions can be dynamically strength reduced in SPEC2k17,
as long as inputs are available in time for reduction to take
place. We further suggest that a large state-of-the-art value
predictor allows to speculatively strength reduce 59.7% of
the dynamically strength reducible instructions with negligible
MPKI. SSR only requires a limited value prediction framework
that has much lower storage and complexity overhead than a
fully featured VP infrastructures.

Overall, this letter proposes a technique with the poten-
tial to further increase single-thread performance, although
performance improvement and specifically the validity of the
power/performance tradeoff remain to be demonstrated and
are left for future work.
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