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Rearranged Coprime Array to Increase Degrees of Freedom and Reduce
Mutual Coupling

Zhe Fu, Pascal Chargé, Yide Wang

Abstract

Coprime array for direction of arrivals finding has attracted increasing interest since it can provide enhanced
degrees of freedom. However, due to the holes in the difference coarray, the available information is not
fully exploited. In this paper, we propose a rearranged coprime array configuration to fill the holes in
the coprime difference coarray. The proposed new array allows filling the holes and reducing the mutual
coupling effect at the same time. We classify all the holes in a holes-triangle as a design guideline for the
proposed rearranged coprime array. Few redundant sensors of the generalized coprime array are rearranged
at sparse positions, which are determined by the position of holes. By doing so, the consecutive part of the
conventional coprime difference coarray can be significantly increased. Meanwhile, the mutual coupling can
also be dramatically reduced because the redundant sensors are relocated at remote positions. Simulation
results verify the superiority of the proposed array compared with other sparse arrays.

Keywords: Rearranged coprime array, holes filling, degrees of freedom, mutual coupling.

1. INTRODUCTION

Array signal processing plays an important role in many applications, such as radar, sonar, navigation,
wireless communications [1, 2, 3, 4]. Data measured from array sensors allow us to extract signal features,
such as direction-of-arrival (DOA), frequency, and range. Traditionally, the most commonly used array
structure is the uniform linear array (ULA), whose inter-element spacing is no more than half of the wave-
length of incoming signals. Therefore, the array aperture of the traditional ULA relies on the number of
sensors. In addition, due to the closely located sensors, the mutual coupling effect can significantly degrade
the estimation performance.

Several sparse array structures are proposed to achieve higher degrees of freedom (DOFs) [5, 6, 7, 8]
such that more sources than physical sensors can be detected. This is achieved by vectorizing the covariance
matrix of the received signal and selecting the corresponding elements in the covariance matrix to construct
a difference coarray [9, 10]. One of the most well known sparse arrays is the minimum redundancy array
(MRA) [7], which aims to maximize the number of consecutive virtual sensors (holes-free) in the difference
coarray for a given number of physical sensors. However, MRA does not have a closed-form expression
for the array geometry. MRA geometries with less than 20 sensors [11] have been found by combinatorial
search. It would be difficult to design a suitable MRA with a higher number of sensors. Minimum hole
array (MHA) [12] also has this drawback which limits their application in practice.

The recently proposed nested array [8] and coprime array [13] can provide closed-form array geometry
compared to MRA and MHA. But the classical coprime array has holes in its difference coarray [14, 15],
and the mutual coupling effect is not negligible in the nested array [16, 17] because some sensors are densely
distributed with a half wavelength inter-element spacing. The super nested array (SNA) is then designed
to reduce the mutual coupling effect [18, 19] while keeping the main advantages of the nested array, such
as, closed-form of sensor locations and hole free difference coarray. Another array configuration based on
the nested array is the augmented nested array (ANA) [20]. ANA can increase the DOFs and reduce the
mutual coupling in four different ways. However, the mutual coupling could increase when the number of
sensors becomes large [21] for ANAI-1 and ANAI-2 (denoted as ANA1 and ANA2 in the following), while
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the other two ANA arrays have to meet complicated conditions such that no holes occur in the difference
coarray.

Since the classical coprime array [22] has holes in its difference coarray when the coarray MUltiple SIgnal
Classification (MUSIC) [23] method or other subspace based methods are applied to the difference coarray,
the discontinuous part cannot be used. This leads to some loss of DOFs. To enlarge the consecutive part,
one sub-array can be increased from M sensors to 2M sensors [24] such that the consecutive part could be
increased from [−(M + N − 1), (M + N − 1)] to [−(MN + M − 1), (MN + M − 1)]. Similarly, a k times
extended coprime array is proposed to further increase the consecutive part in the difference coarray by
increasing the M -elements sub-array to a (kM)-elements sub-array [25]. Another approach expands the two
sub-arrays of classical coprime array from one period subarray to multi-period subarray [26] to enlarge the
consecutive coarray part. In [27], the inter-element spacing of classical coprime array is designed with two
integers larger than M,N such that the redundancy of coarray elements is minimized and the consecutive
coarray is extended.

Filling the holes in the difference coarray is also a possible means to enlarge the difference coarray. In
[28, 29], by moving the physical array at a certain velocity, the cross correlation between the received signals
before and after the array motions is used to fill the holes in the difference coarray. A multiple frequency
mechanism is proposed in [30] to fill all the holes such that all the DOFs provided by the difference coarray
can be exploited. On the other hand, the holes can be also filled by interpolation based techniques. The
interpolation of virtual array problem can be formulated as a nuclear norm minimization problem [31] or
an atomic norm interpolation problem [32]. Another interpolation technique uses the Toeplitz property of
the covariance matrix to complete the covariance matrix [33, 34]. However, these interpolation techniques
mainly consider the problem from the aspect of the difference coarray. And the mutual coupling effect has
not been considered.

Most recently, the thinned coprime array (TCA) [35] shows that some sensors in a coprime array are found
to be redundant. In other words, the difference coarray structure will not be modified if these redundant
sensors are removed from the coprime array. Same DOFs and less mutual coupling can be achieved with
fewer sensors in TCA compared with the classical coprime array [21]. Though TCA can achieve higher
DOFs compared to the classical coprime array for a given number of sensors, there are still many holes
in the difference coarray. Based on the extended coprime array [25], some additional sensors are added to
construct a complementary coprime array (CCA) and fill the holes in the difference coarray. However, CCA
requires (M − 1) additional sensors to fill the holes and totally 3M + N − 2 sensors are required, which is
not an economical solution when M is large. Also, the introduced sensors in CCA are closely distributed
with inter-element spacing equal to half of the wavelength of incoming signals. The mutual coupling is
unavoidable as the number of sensors increases.

In this paper, we focus on DOA estimation with a new coprime array configuration. This paper has
two principal objectives. 1) Fill as many holes as possible to enlarge the consecutive part of the difference
coarray by properly rearranging few sensors without additional new sensors. 2) Reduce the mutual coupling
simultaneously. In recent research, the position of every hole has been given in [25, 36]. Without loss
of generality, in this paper, we consider the mostly used generalized CA, corresponding to the CACIS
configuration with 2M +N − 1 sensors (compression factor p = 2) [24], which is also a specific case of the
k-times extended coprime array with k = 2 [25]. In the following, we call this generalized coprime array as
classical or conventional coprime array. Inspired by the fact that few sensors in the conventional coprime
array are redundant, we propose a rearranged coprime array for which these redundant sensors are relocated
in order to fill most of the holes (even all the holes).

To the best of our knowledge, our proposed configuration is the first work to fill the holes from the view
of rearranging few physical sensors in the classical coprime array without introducing additional new sensors.
Only the redundant sensors in the classical coprime array are utilized such that no extra hardware cost is
required. The proposed rearranged coprime array can keep the main advantages of TCA, i.e. closed-form
expression of sensor position, low mutual coupling, easy to choose M,N values. The proposed configuration
consists of four sparse sub-arrays where two sub-arrays form a TCA and the other two sub-arrays are relo-
cated outside the TCA. As illustrated in the following sections, our proposed configuration can detect more
sources than TCA and the conventional coprime array for a given number of sensors. Another distinguished
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benefit of the proposed configuration is the reduction of mutual coupling. The performance of the proposed
configuration under high mutual coupling is shown, by simulations, to be better than the compared sparse
arrays.

The rest of this paper is organized as follows. Section II provides a review of the difference coarray
based signal model and the conventional coprime array structure. The proposed rearranged coprime array
configuration is described in Section III. The properties of the proposed configuration are highlighted in
Section IV. Numerical simulation results are given in Section V and conclusions are drawn in Section VI.

2. PROBLEM FORMULATIONS

2.1. Difference Coarray Signal Model

Assume that K far field uncorrelated narrowband sources impinge on a sparse array with L sensors,
where the sensors are located at nid, 1 ≤ i ≤ L, with n1 < n2 < ... < nL and d is equal to half of the
wavelength of incoming signals. The received signal vector of the sparse array can be written as:

x(t) =

K∑
k=1

a(θk)sk(t) + n(t) = As(t) + n(t) (1)

where s(t) = [s1(t), s2(t), ..., sK(t)]T is the vector of signals received at the origin of the coordinate system,
n(t) is the zero mean additive white Gaussian noise vector with covariance matrix σ2I; A = [a(θ1),a(θ2), ...,a(θK)]
is the array manifold matrix with θk the direction of the k-th source, and a(θk) is the corresponding steering
vector, given by

a(θk)=[ejπn1 sin(θk), ejπn2 sin(θk), ..., ejπnL sin(θk)]T (2)

Then the covariance matrix of x(t) can be written as

Rx = E{x(t)x(t)H} = ARsA
H + σ2I (3)

where Rs = E{s(t)sH(t)} is the source covariance matrix. Rx can be vectorized as [10]

z = vec(Rx) = (A∗ �A)p + σ21vec (4)

where p = [σ2
1 , σ

2
2 , ..., σ

2
K ]T with σ2

k the power of the k-th source and 1vec = vec(I); � is the Khatri-Rao
product operator. The vector z can be equivalently considered as K coherent sources measured by a virtual
array whose sensor positions are determined by the differences between the physical sensor positions. This
virtual array is named as difference coarray, which can be defined as D. The maximum consecutive part
among D is denoted as U. For a sparse array geometry specified by position indices set S = {n1, n2, ..., nL},
its difference coarray can be expressed as

D = {ni − nk|ni, nk ∈ S} (5)

The virtual array signal model of the consecutive part U can be selected from z and rearranged as

z1 = Fz = Avp + σ2F1vec (6)

where F is the selection matrix [10] and Av is the manifold matrix of the virtual array.

2.2. Mutual Coupling

Equation (1) does not take the mutual coupling into account. In practice, the mutual coupling of two
closely located sensors could strongly affect the received signal. Considering the mutual coupling, we can
rewrite (1) as

x(t) = CAs(t) + n(t) (7)
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Figure 1: Conventional coprime array.

where C is the mutual coupling matrix. The entries of C can be very complicated in practice. In this paper,
the considered array has a linear configuration. C can be approximately represented by a B-band symmetric
Toeplitz matrix [18, 37] and the (i, j)-th entry of C is given by

〈C〉i,j =

{
c|ni−nj |, if |ni − nj | ≤ B
0, otherwise,

(8)

where ni, nj ∈ S and the magnitudes of coupling coefficients c0, c1, ..., cB meet the relations |c0| = 1 > |c1| >
... > |cB |. The magnitudes of the coupling coefficients are assumed to be inversely proportional to their
sensor separations, which can be written as

|ck|
|cl|

=
l

k
(9)

where l, k are positive integers indicating the separations distances between two corresponding sensors.
In the coarray, there could be several different sensor pairs that contribute to the same virtual sensor.

For further discussion, the weight function [20] is defined as the number of sensor pairs leading to element
m in the coarray

Wm = {(n1, n2) ∈ S2|n1 − n2 = m} (10)

ω(m) = Card(Wm) (11)

where ω(m) is the weight function and Wm represents the set of physical sensor pairs leading to the m-th
virtual sensor in the coarray, Card(Wm) returns the cardinality of set Wm.

If it is a hole at the m-th position in the coarray, ω(m) = 0. It is well established that the value of the
weight function corresponding to small sensor separation m has high mutual coupling effect. Particularly,
the first three values ω(1), ω(2), ω(3) would be of great interest since they contribute primarily to the mutual
coupling due to their small sensor separation [19, 20]. For simplification, we will exploit the first three values
of the weight function for analytical discussion of the mutual coupling effect in the following part.

2.3. Conventional coprime array and TCA

In this subsection, we introduce some properties of the conventional coprime array and TCA. The
considered array geometry consists of two sub-arrays, where one sub-array has N sensors with Md as
separation distance between two adjacent sensors and another sub-array has 2M sensors with Nd as the
distance between two adjacent sensors. The first sensor is shared by the two sub-arrays. A graphic illustration
of the conventional coprime array is given in Fig. 1, where M,N are two coprime integers. In this paper,
we assume 2 ≤M < N without loss of generality.

It is well established that there are some holes in the difference coarray of the classical coprime array.
Since the difference coarray is a symmetric structure, for simple illustration, we only take the non-negative
part of the difference coarray into account in the following part. The position of holes ranges from MN +M
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Figure 2: Position of sensors in the rearranged coprime array. • : physical sensors, : redundant sensors of the conventional
coprime array.

to (2M − 1)N [25, 36], and is given by

H = {h|h = MN +M + b1M + b2N}, (12)

s.t. 0 ≤ b1 ≤ N − 2− bN
M
c, 0 ≤ b2 ≤M − 2,

h ∈ [MN +M, (2M − 1)N)

In the conventional coprime array, it has been proved that some sensors in the 2M -elements sub-array
are redundant [21, 35]. In other words, removing these redundant sensors will not change the difference
coarray geometry. As shown in Fig. 1, by removing the redundant sensors in the rectangle, the conventional
coprime array turns out to be a TCA.

The number of contiguous redundant sensors for a conventional coprime array (except for M = 3) is
given by

Sred = dM
2
e (13)

where these redundant sensors are all in the 2M -elements sub-array and the index of these redundant sensors
starts from bM2 c+1. The symbol dxe returns the smallest integer greater than x and bxc denotes the greatest
integer less than x. The proof for the redundancy of these sensors can be found in [21].

The case of M = 3 is special, for which, there are still dM2 e = 2 redundant sensors in the 2M -elements
sub-array. However, these two redundant sensors are no longer contiguous. Their positions are MNd and
Nd. The redundancy of sensor at position MNd has been proved in [21]. By applying the similar derivation,
we can also prove the redundancy of the sensor positioned at Nd.

3. PROPOSED REARRANGED COPRIME ARRAY

In the previous section, we have reviewed that the holes in the conventional coprime configuration locate
in the range from MN + M to (2M − 1)N . To enlarge the consecutive part in the difference coarray, we
propose a rearranged coprime array without introducing additional sensors in this section. Based on the
expression of holes position, we move the redundant sensors to appropriate positions such that most of the
holes (even all the holes) in [MN + M, (2M − 1)N) can be filled. The proposed rearranged coprime array
has also closed-form expression for the position of sensors. Furthermore, the proposed configuration is more
robust to the mutual coupling effect compared with most of the existing sparse arrays.
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Figure 3: Holes-triangle with M = 8, N = 9.

3.1. Holes representation with holes-triangle

To better explain the design rules of the proposed rearranged coprime array, we first classify all the holes
into a specific order with a 2D-representation. In [25], CCA method classifies the holes into several layers
including M − 1 complete layers, and M − 1 extra sensors are required in the complementary sub-array to
fill all the holes. Though CCA can fill all the holes, the way that these extra sensors are utilized to fill the
holes is not efficient due to the way the holes are classified. In this section, we classify the holes into several
sub-triangles, where we can fill the holes in a more efficient way. Our aim is to fill the holes only with the
dM2 e redundant sensors such that no extra sensor is required. We classify the holes from another point of
view. Based on (12), we define holes-triangle to represent all the hole elements.

Definition 1: A holes-triangle is a triangle-like structure with its elements given by (12)

h ∈ H. (14)

The holes-triangle can be divided into several sub-triangles with each consisting of a left-side and a right-side.
In a sub-triangle, starting with a given hole element h, the left-side is defined as the set

{h+ iM | h+ iM < (2M − 1)N} (15)

with its elements in increasing order, and the right-side is defined as the set

{h+ kN | h+ kN < (2M − 1)N} (16)

also with its elements arranged in increasing order, where i, k are two non-negative integers. The intersection
element h between the left-side and right-side is called the vertex of the corresponding sub-triangle.

An example of holes-triangle with M = 8, N = 9 is given in Fig. 3. The hole elements are represented
with circles and the arrows indicate the increasing direction between two neighbor elements. We emphasize
the biggest sub-triangle with two dotted ovals for illustration, which has the most hole elements among all the
sub-triangles. The value of elements on the left-side increases from MN+M to MN+M+(N−2−bNM c)M
while that of the right-side increases from MN +M to MN +M + (M − 2)N , as clearly indicated by (12).
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3.2. Holes filling with rearranged coprime array

In [25], some additional sensors are introduced at the position corresponding to the biggest value in each
left-side or right-side of some sub-triangles to fill the holes. M − 1 additional sensors are required in the
CCA method and it could be hardware expensive when M is a large value. In this paper, we aim to fill
the holes without introducing extra sensors. This can be achieved by relocating the redundant sensors at
specific sparse positions. By doing so, the length of U can be significantly increased. The position of sensors
after the rearrangement can be given by:

S1={n1M |0 ≤ n1 ≤ N − 1} (17)

S2={n2N |(0 ≤ n2 ≤ b
M

2
c) ∪ (M + 1 ≤ n2 ≤ 2M − 1)} (18)

S3={−(MN +M + i(M +N))|0 ≤ i ≤ dM
2
e − 2} (19)

S4={−(MN +M + (dM
2
e − 1)N)} (20)

The configuration of our proposed rearranged coprime array is shown in Fig. 2. It can be observed that
there are totally (2M + N − 1) physical sensors, exactly the same as the conventional coprime array. The
sub-arrays S1 and S2 form a TCA with (2M + N − 1) − dM2 e sensors. The dM2 e redundant sensors of the
original conventional coprime array are represented by red dot circles. These redundant sensors are selected
and rearranged outside the TCA to construct sub-arrays S3 and S4.

The reason of rearranging the redundant sensors at S3 and S4 is based on the following properties of the
holes-triangle.

Property 1: For any given conventional coprime array, if one additional sensor is positioned at the
symmetric negative position of that of a sub-triangle vertex, namely −h, all the holes elements at the
left-side and right-side of the corresponding sub-array can be filled.

Proof. Assuming a given hole position h ∈ [MN + M, (2M − 1)N) in the holes-triangle, its corresponding
left-side and right-side elements can be given as set {h + iM |h + iM < (2M − 1)N} and {h + kN |h +
kN < (2M − 1)N} respectively. Sensors of the conventional coprime array are located at two sub-arrays
{n1M |0 ≤ n1 ≤ N − 1} and {m1N |0 ≤ m1 ≤ 2M − 1}.

If one additional sensor is introduced at position −h, for any hole element h+ iM at the corresponding
left-side, we can always find a sensor from the N -elements sub-array of the conventional coprime array such
that

h+ iM = iM − (−h) (21)

Then the hole element h + iM can be filled. Relation (21) holds for all the hole elements at the left-
side because 0 ≤ i ≤ N − 2 − bNM c is an element of [0, N − 1]. Similar derivation can be applied to the
corresponding right-side. Then Property 1 is proved.

Since we pick out the redundant sensors and relocate them outside the TCA, Property 1 can be modified
as follows

Lemma 1: For a rearranged coprime array, if one redundant sensor is relocated at the symmetric negative
position of a sub-triangle vertex, all the holes elements on the left-side and the first bM2 c + 1 holes at the
right-side can be filled.

Proof. Similar to the proof of Property 1, the elements at the left-side can be filled. After picking out the
redundant sensors, the indexes of the first bM2 c+1 remaining sensors in the (2M −dM2 e) elements sub-array

are distributed in [0, bM2 c]. For a given hole position h, the following bM2 c+ 1 holes at the right-side, which
are denoted as h+ kN , can be filled by calculating the difference

h+ kN = kN − (−h) s.t. 0 ≤ k ≤ bM
2
c (22)

Then Lemma 1 is proved.
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Figure 4: Holes filling with the redundant sensors. M = 7, N = 13 ◦ : unfilled holes; • : filled holes; N: rearranged sensor
position.

Our goal is to fill as many holes as possible (even all holes) with the dM2 e redundant sensors. For each
redundant sensor, a good solution is to position it at the symmetric negative position of that of the vertex
of the sub-triangle containing as much hole elements as possible. We have the following property for any
two sub-triangles.

Property 2: For any two sub-triangles with vertex elements h1 < h2, the number of elements at the
right-side corresponding to h2 can not be greater than that corresponding to h1.

Proof. This can be proved by contradiction. We assume that the elements at the right-side of h2 are in
the form h2 + i2N . Similarly, the elements at the right-side of h1 are h1 + i1N . Here, i1 ∈ [0, i1,max], i2 ∈
[0, i2,max]. Here, we consider that h1, h2 are also element of their right-side. The number of right-side
elements associated to h2 greater than the number of right-side elements associated to h1 if and only if
i1,max < i2,max. On the other hand, we should have h2 + i2,maxN < (2M − 1)N . Since h1 < h2, we can
easily obtain h1 + i2,maxN < (2M − 1)N , which means that the right-side of h1 has at least i2,max + 1
elements (i1,max ≥ i2,max). This contradicts with i1,max < i2,max and Property 2 is proved.

From Property 1, we can know that the left-sides can be easily filled. This can be achieved by rearranging
dM2 e − 1 redundant sensors at position set S3. Since we have only dM2 e redundant sensors to fill the holes,
we particularly focus on the right-side with the largest number of elements. This will naturally lead to the
solution of position S4. Fig. 4 is an example of the holes filling process with M = 7, N = 13. The highlighted
red triangles indicate the position of the rearranged redundant sensors at the symmetric negative position.
The hollow circles represent the unfilled holes and the solid circles are the filled holes after rearranging the
redundant sensors. There are totally dM2 e = 4 redundant sensors in this case so we divide the holes filling
process into 4 steps as shown in Fig. 4.

It can be observed from Fig. 4 that three redundant sensors are rearranged at −[MN +M + i(M +N)]
in the first three steps, where 0 ≤ i ≤ dM2 e − 2 = 2. At the first step, according to Lemma 1, only the first

bM2 c + 1 = 4 elements at the right-side can be filled with one sensor at position −(MN + M). After the

third step, the remaining unfilled elements, including MN +M + (dM2 e − 1)(M +N), can be considered as

a new sub-triangle, whose vertex is MN + M + (dM2 e − 1)N . Therefore, we rearrange the last redundant

sensor at position −(MN +M + (dM2 e − 1)N) to fill these holes.
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4. Properties of the proposed rearranged coprime array

4.1. Length of contiguous difference coarray

For a given number of sensors, the cardinality of U will be increased if most holes are filled. Especially,
we are more interested in the case where all holes in the range [MN + M, (2M − 1)N) can be filled. We
consider the holes filling problem in two scenarios: 1) odd value of M ; 2) even value of M .

Lemma 2: The rearranged coprime array has a contiguous difference coarray ranging in [0, (2M − 1)N ]
if 

N can be any integer coprime with M, if M = 2, 3

3 < M ≤ 7, M < N < M + 4 + 12
M−3 , if M is odd

2 < M ≤ 8, M < N < M + 2 + 4
M−2 , if M is even.

(23)

The proof is provided in Appendix. The possible values of M,N satisfying Lemma 2 are listed in Table 1

Table 1: Possible values of M and N satisfying Lemma 2.

Possible value of M Possible value of N
2 Odd integers greater than 2
3 Integers greater than 3 which is coprime with 3
4 5,7
5 6,7,8,9,11,12,13,14
6 7
7 8,9,10,11,12,13
8 9

It should be mentioned that even if condition (23) is not met with other values of M and N , the
rearranged coprime array can still fill most of the holes in [MN +M, (2M − 1)N). The consecutive part of
the difference coarray can still be significantly enlarged. In this case, the consecutive part ranges from 0 to
h0 − 1, where h0 is the first hole in the coarray of the rearranged coprime array. Then we can derive the
following Lemma.

Lemma 3: For M,N values that do not satisfy Lemma 2, the first hole occurs at
h0 =

{
a1, if N < M(M−3)

2

a2, if N > M(M−3)
2

, M is odd

h0 =

{
a1, if N < M(M−4)

4

a2, if N > M(M−4)
4

, M is even

(24)

where a1 = MN + 2(M +N) + bM2 cN and a2 = MN + dM2 e(M +N).
The proof is provided in Appendix

4.2. Weight function

Apart from a larger consecutive part in the difference coarray, another benefit of the proposed rearranged
coprime array is its less mutual coupling effect. It is well known that the mutual coupling is strongly
dependent on the separation distance between sensors [38, 39]. Especially, sensors with a small separation
distance could experience strong mutual coupling. Since ω(m) indicates the number of physical sensor
pairs contributing to separation m, we approximately quantify the mutual coupling with the help of the
weight function. For simplification, we particularly focus on the first three weight function values, i.e.
ω(1), ω(2), ω(3).

In the rearranged coprime array, sub-arrays S1, S2 form a TCA. For given values of M and N , the
corresponding first three weight function values of TCA, denoted as ω

′
(1), ω

′
(2), ω

′
(3), have been provided

in [21]. Considering the contribution of sub-arrays S3, S4, we have the following property.
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Property 3: For the proposed rearranged coprime array, the interaction between S3 and S4 contributes
at most one additional value to either one of ω

′
(1), ω

′
(2), ω

′
(3), which can be formulated as:

ω(1) + ω(2) + ω(3) ≤ ω
′
(1) + ω

′
(2) + ω

′
(3) + 1 (25)

Proof. The interaction between S1 and S2 leads to ω
′
(1), ω

′
(2), ω

′
(3). The minimum spacing between any

element in S3, S4 and any element in S1, S2 is M +N ≥ 5. This means that the cross interaction between
S3, S4 and S1, S2 has zero contribution to ω(1), ω(2) and ω(3). Therefore, we only need to consider the
interaction between S3 and S4. The minimum spacing between the elements in S3 equals to M + N such
that the self-interaction of S3 has zero contribution to ω(1), ω(2), ω(3). On the other hand, S4 has only one
sensor. The cross interaction between S3 and S4 can be divided into two scenarios:

(1) (dM2 e − 2)(M +N) < (dM2 e − 1)N ;

(2) (dM2 e − 2)(M +N) > (dM2 e − 1)N .

In the first scenario, the only possible cross-interaction contributing to ω(1), ω(2), ω(3) is d1 = (dM2 e −
1)N − (dM2 e − 2)(M + N). This is obvious because for other cross-interactions, they hold the form d1 +
k(M +N), which is greater than 5.

In the second scenario, there are two closest sensors in S3 (with spacing M +N) located at the left and
right sides of S4. Assuming the distances of S4 to the nearest two sensors in S3 which located at the left
and right side of S4 are d

′

1 and M +N − d′

1, respectively. It is obvious that d
′

1 and M +N − d′

1 are the only
two possible contributions to ω(1), ω(2), ω(3). Due to the coprime property of M , N , the minimum value
of M + N is 5 for M = 2, N = 3. With M = 2, N = 3, there is only one redundant sensor located at S3
and it brings no contribution to ω(1), ω(2), ω(3). For other values of M,N , M + N ≥ 7 and the following
conditions can not hold simultaneously.

d
′

1 ≤ 3 (26)

M +N − d
′

1 ≤ 3 (27)

This means that d
′

1 and M +N − d′

1 contribute at most one value to either one of ω(1), ω(2), ω(3). Property
3 is then proved.

For information purpose, let’s derive the special case when ω(1) = 2.
Since ω(1) contributes the most to the mutual coupling, we especially investigate ω(1) for different values

of M . It has been proved that ω′(1) = 2 only when M = 2 for TCA. From the above discussion, it is obvious
that our method will not increase ω(1) when M = 2. This is because there is only one redundant sensor and
the rearrangement of this redundant sensor will not change ω(1), which means ω(1) = ω′(1) = 2 for M = 2.

When M > 2, we assume the case that the interaction between S3 and S4 contributes one value to ω(1),
which can be formulated as

−(MN +M + i(M +N)) = −(MN +M + (dM
2
e − 1)N)± 1 (28)

where 0 ≤ i ≤ dM2 e − 2. Then we can obtain

N =
iM ± 1

dM2 e − 1− i
(29)

Only when the value of N meets condition (29), the relation ω(1) = ω′(1) + 1 = 2 is satisfied. Notice that
N > M and M > 2 as assumed above, only a few values of N will have contribution to ω(1) for a given
value of M . For example, with M = 6, only N = 7 meets condition (29). For other cases, our method holds
a low value of ω(1) = 1, which allows us to attenuate the mutual coupling.

Compared with other sparse array configurations, it has been proved that though second order super
nested array has small values of ω(1), ω(3), the value of ω(2) could increase with the array size. Similar phe-
nomenon could also happen to ANA1, ANA2 and MRA [21]. TCA can obtain low values for ω(1), ω(2), ω(3).
The proposed rearranged coprime array has similar ω(1), ω(2), ω(3) property with TCA. Making the pro-
posed rearranged coprime array structure a promising strategy to decrease the mutual coupling effect.
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4.3. Holes filling ratio

Furthermore, since the number of redundant sensors is limited to dM2 e, it is important to fill the holes
in an efficient way. We define the holes filling ratio to evaluate the holes filling efficiency.

Definition 2: For a given number of sensors that are relocated to fill the holes, the holes filling ratio is
defined as the number of holes that can be filled by these sensors

r =
Card(H)− Card(H′

)

Sr
(30)

where, Card(H) and Card(H′
) are the cardinalities of hole elements between [MN +M, (2M − 1)N) before

holes filling and after holes filling respectively. Sr is the number of rearranged sensors, i.e. Sr = dM2 e for
the proposed rearranged coprime array and Sr = M − 1 for CCA since it requires M − 1 additional sensors
to fill the holes. We consider our proposed method and CCA here because they both aims to fill holes with
a given number of sensors. A higher value of r indicates that the rearranged sensors can fill more holes.

It can be derived that for given values of M and N , if the CCA mechanism and rearranged coprime array
can fill the same number of the holes, the proposed rearranged coprime array could achieve higher value of
r because dM2 e ≤ M − 1. With bigger value of M , the difference between dM2 e and M − 1 becomes larger
and the proposed array can achieve a higher r. Even in the case that the rearranged coprime array cannot
fill all the holes but fill most holes, it could still achieve a high value of r.

4.4. DOFs comparison with other coprime based configurations

To fairly compare our proposed method with the other coprime based methods, we consider the optimum
values of coprime integers M,N for different methods for a given number of sensors. In the following, we
denote M,N for the conventional coprime array and our proposed method, Mc, Nc for CCA and Mt, Nt for
TCA. It is obvious that our proposed method can achieve larger consecutive coarray than the conventional
coprime array because it fills the holes in the coarray constructed from the conventional coprime array.

For comparison with TCA and CCA, we consider the case where our method can not fill all the holes.
In this case, we denote the consecutive coarray length by min(a1, a2), with a1 = MN + 2(M +N) + bM2 cN
and a2 = MN + dM2 e(M +N).

By referring to the selection strategy of CCA [25], Mc, Nc rely on the maximum number of DOFs and
can not be directly compared with our proposed method. We compare our method and CCA from another
point of view. Given L = 2M + N − 1 sensors, without loss of generality, we assume that a1 < a2 for our
method such that the consecutive coarray length is a1. Then we calculate Mc, Nc for CCA by assuming
that its maximum number of DOFs is a1. From [25] it comes that CCA requires 3Mc + Nc − 2 sensors. If
3Mc + Nc − 2 > L, then CCA requires more than L sensors to achieve the maximum number of DOFs of
a1. In the Appendix part ”DOFs comparison with CCA”, we have proved that 3Mc +Nc − 2−L > 0 for a
given value of L, which indicates the superiority of the proposed method compared to CCA.

To compare with TCA, we notice that there are dMt

2 e sensors which can be removed. If Mt = M,Nt = N ,
TCA has less sensors than the conventional coprime array. In other words, for a given total number of sensors
L = 2M + N − 1, Mt, Nt should be selected as two values bigger than M,N to construct a TCA with L
sensors. Without loss of generality, we assume that Mt = M + y1, Nt = N + y2 with y1, y2 ≥ 0 and the
total number of sensors in TCA is L = 2M +N − 1. It is obvious that 2y1 + y2 = dMt

2 e and the consecutive
coarray length of TCA is MtNt +Mt.

For the choice of parameters Mt, Nt, the values of Mt, Nt can be determined similarly to M,N of the
conventional coprime array since TCA is developed from conventional coprime array. The optimum values
of M,N meet the condition N = 2M − 1 = L

2 when L is an even value [24]. Similarly, we assume that
2Mt + Nt − 1 is also an even value (greater than L) and the optimum values of Mt, Nt are determined by
condition Nt = 2Mt− 1. Then we can derive that the proposed method has larger DOFs compared to TCA
for a given value of L. The proof is given in the Appendix part ”DOFs comparison with TCA”.

A graphic comparison of DOFs with different geometries is provided in Figure 5. In Figure 5, we consider
the cases where our proposed method satisfies condition (23) and does not satisfy condition (23) (in region
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L > 20). It can be observed that the proposed method performs better than the compared methods. Based
on the above discussion, our method can achieve larger consecutive coarray part than the existing coprime
based configurations.
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Figure 5: DOFs comparison with different coprime based configurations.

5. NUMERICAL EXAMPLES

In this section, we evaluate the holes filling ratio and the weight function for several sparse arrays. The
DOA performance is assessed by applying the spatial smoothing based (SS) MUSIC algorithm. Several
sparse arrays are considered for comparison, including the nested array, second order SNA (Q=2), third
order SNA (Q=3), MRA, ANA1, ANA2, CCA, TCA. Since the conventional coprime array has the same
difference coarray as TCA for the same values of M and N , we only take TCA for comparison.

5.1. Holes filling ratio

We first examine the holes filling ratio. The method we used for comparison is CCA. It should be
mentioned that the CCA method utilizes additional sensors to fill the holes while our rearranged coprime
array uses only the redundant sensors from the original conventional coprime array. From this point of
view, our method is more hardware economic compared to CCA. To assure that M and N are coprime, we
set N = M + 1. It can be seen from Fig. 6 that when M is small, the holes filling ratio of CCA and the
proposed rearranged coprime array is very close. As M becomes larger, the proposed rearranged coprime
array surpasses CCA and the difference between the two methods becomes larger, which indicates that each
rearranged sensor of our proposed method can fill more holes than that of CCA.

5.2. Weight function

Then we compare the weight function of the nested array, ANA2, MRA, SNA (Q=2), TCA, CCA with the
proposed configuration. 14 sensors are considered in this part. For the proposed array, we set M = 4, N = 7.
The sensor positions of MRA are given in the set {0, 1, 2, 8, 15, 16, 26, 36, 46, 56, 59, 63, 65, 68} [20]. For CCA,
we set M = 3, N = 7. It can be observed from Fig. 7 that the nested array and CCA have high values of
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Figure 6: Holes filling ratio curves for the proposed method and CCA, N = M + 1.
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Figure 7: Weight function of seven different arrays.

ω(1), ω(2), ω(3), which are ω(1) = 7, ω(2) = 6, ω(3) = 5 for the nested array and ω(1) = 4, ω(2) = 3, ω(3) = 7
for CCA. The ANA2 and SNA (Q=2) have small values of ω(1), ω(3) but still hold a high value of ω(2),
which are ω(2) = 5 and ω(2) = 6 respectively. The MRA achieves ω(1) = 3 and ω(2) = ω(3) = 2 while
TCA has smaller value of ω(1) = 1, ω(2) = 2 and ω(3) = 1. Though CCA can fill all the holes, the
length of the difference coarray is limited to 35, which is only slightly larger than the consecutive part of
TCA (31 as shown in Fig. 7). This is due to the small value of M . The proposed method achieves the
same ω(1), ω(2), ω(3) as TCA. It can also be noticed that TCA has some holes which are denoted as set
{32, 36, 39, 40, 43, 44, 46, 47, 48}, while the proposed array can fill all these elements.

An interesting fact is that the proposed strategy can also lead to some additional DOFs beyond (2M −
1)N , which are the elements greater than 49 in Fig. 7. These additional DOFs can be used if the compressive
sensing based DOA estimation methods are applied [40, 41]. By doing so, the proposed method can detect
even more sources. In this paper, our main concern is to fill the holes and enlarge the consecutive part. We
only consider the SS-MUSIC afterward.
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Figure 8: RMSE versus input SNR with 18 sensors, 12 sources, 1000 snapshots, |c1| = 0.3.

5.3. RMSE

Next, we take the mutual coupling effect into account and evaluate the root mean square error (RMSE)
of these sparse arrays. The commonly adopted SS-MUSIC is used for DOA estimation and the number of
impinging signals is assumed to be known. As illustrated above, though CCA can fill the holes, the length
of its difference coarray is dramatically limited and it also has a high value of ω(1), ω(2), ω(3). For a fair
comparison, we will not compare CCA in this part. The RMSE of DOA estimation is calculated by

RMSE =

√√√√ 1

500K

500∑
i=1

K∑
k=1

(θ̂ki − θk)2 (31)

where θ̂ki is the estimate of θk in the i-th estimation trial.
The number of sensors is set to 18 and M = 5, N = 9 are considered for the proposed rearranged coprime

array. Notice that TCA only requires 15 sensors in this case and 3 redundant sensors are not used. For a
fair comparison, we set M = 7, N = 9 for TCA such that a totally of 18 sensors can be utilized. By setting
a larger M value, the consecutive part of TCA is increased and the respective inter-element spacing is also in-
creased. The sensor positions of MRA are given by the set {0, 1, 8, 18, 28, 38, 48, 58, 68, 78, 88, 90, 92, 94, 97, 99, 101, 103}
[11].

Fig. 8 and Fig. 9 examine the performance versus SNR. The number of snapshots is set to 1000 and
the mutual coupling parameters are set to c1 = |c1|ejπ/3 with |c1| = 0.3, cl = c1e

−j(l−1)π/8/l and B = 100.
When 12 sources uniformly located between −40◦ and 40◦ impinge on the sparse arrays, the nested array
exhibits the worst performance due to its closely distributed sensors. Our proposed method achieves the
best performance compared to other methods as shown in Fig. 8. In the case with more sources than sensors
(25 sources in Fig. 9), ANA1 and ANA2 have worse performance than SNA since they still have higher
value of ω(1), ω(3) as shown in Table 2. The proposed method can show very similar performance as MRA,
which is slightly better than the first few orders of SNA (Q=2, Q=3).
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Figure 9: RMSE versus input SNR with 18 sensors, 25 sources, 1000 snapshots, |c1| = 0.3.

Table 2: Weight function and maximum detectable sources with 18 sensors.

ω(1) ω(2) ω(3) max sources
Nested array 9 8 7 89

ANA2 2 7 2 96
MRA 1 6 1 103

SNA(Q=2) 1 8 1 89
TCA 1 1 1 69

Proposed array 1 1 1 86

For a clear comparison, we also give the weight function and the maximum number of detectable sources
(max sources) with 18 sensors for SS-MUSIC in Table 2. The proposed method and TCA show the lowest
value of ω(1), ω(2), ω(3). An interesting phenomenon can also be observed that the proposed method can
detect up to 86 sources in this case, which is greater than (2M − 1)N = 81 and very close to that of
SNA. This means that when the proposed strategy rearranges the redundant sensors to fill the holes within
[MN+M, (2M−1)N), they may also further enlarge the consecutive part to a value greater than (2M−1)N
simultaneously. This phenomenon happens for several different values of M,N . On the other hand, the
TCA can only detect 69 sources even though higher values of M = 7, N = 9 are used in this case.

Fig. 10 and Fig. 11 compare the performance in terms of different number of snapshots. SNR is set to
0dB and |c1| = 0.3 is used. As the increase of the number of snapshots, the performance tends to different
stable values for all methods. The length of TCA consecutive part limits its performance, while the proposed
method can expand the consecutive part and achieve similar performance as the other arrays.

Finally, we investigate the performance under different magnitudes of mutual coupling coefficient |c1|.
1000 snapshots are used and SNR is equal to 0dB. We examine the cases with fewer sources to test the high
mutual coupling scenarios, 10 sources in Fig. 12 and 20 sources in Fig. 13 respectively. The performance
decreases for all methods when the coupling coefficient becomes stronger. It can be observed from Fig.
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Figure 10: RMSE versus snapshots with 18 sensors, 12 sources, SNR=0dB, |c1| = 0.3.
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Figure 11: RMSE versus snapshots with 18 sensors, 25 sources, SNR=0dB, |c1| = 0.3.
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12 that the proposed array shows superiority to the other methods under high mutual coupling. Though
the TCA method has small value of ω(1), ω(2), ω(3), its performance is affected by the short consecutive
coarray. For the case of more sources than sensors, the proposed array does not exhibit significant superiority
compared to other arrays in low mutual coupling region. As the coupling coefficient increases to values
greater than 0.4, the proposed method starts to achieve better performance than others.

0.1 0.2 0.3 0.4 0.5 0.6
10

−2

10
−1

10
0

10
1

10
2

|c
1
|

R
M

S
E

(d
eg

re
e)

RMSE versus |c
1
|

 

 Nested array
ANA

1

ANA
2

Super nested array(Q=2)
Super nested array(Q=3)
MRA
TCA
Proposed method

Figure 12: RMSE versus |c1| with 18 sensors, 10 sources, SNR=0dB, 1000 snapshots.
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Figure 13: RMSE versus |c1| with 18 sensors, 20 sources, SNR=0dB, 1000 snapshots.
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6. Conclusion

In this paper, a rearranged coprime array is proposed to fill the holes in the difference coarray of a
generalized coprime array. For a given number of sensors, the proposed array can achieve larger consecutive
difference coarray compared with the existing coprime based configurations, i.e. conventional coprime array,
TCA, CCA. Closed-form expression of sensor positions can be calculated for the proposed method. More-
over, compared to other sparse arrays, the proposed method exhibits good performance under high mutual
coupling circumstance while it can also attain comparable length of consecutive difference coarray without
any additional sensor.
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7. Appendix

7.1. Proof of Lemma 2

From the definition of holes-triangle and Lemma 1, we can easily derive that the elements on the sub-
triangle with vertexMN+M can all be filled by arranging two sensors at positions−(MN+M) and−(MN+
M + (dM2 e − 1)N). Notice that we also have other rearranged sensors in S3, the left-sides corresponding
to the elements of S3 can be filled. Assuming that there are some holes remaining unfilled, we specifically
focus on the first unfilled hole with the smallest value, which is smaller than (2M − 1)N . The position of
the first unfilled hole can be divided into two scenarios.

1) If the first unfilled hole is at the sub-triangles corresponding to S3, this first unfilled hole will be at
the right-side of the sub-triangle with vertex MN +M +M +N . This can be derived according to Lemma
1 and property 2. Since the first bM2 c+ 1 elements on the right-side of vertex MN +M +M +N are filled,

the position of the first unfilled hole satisfies MN +M +M +N + (bM2 c+ 1)N < (2M − 1)N . Equivalently,
to assure that all holes are filled, we can formulate that

MN +M +M +N + (bM
2
c+ 1)N > (2M − 1)N (32)

2) If the first unfilled hole is not at the sub-triangles corresponding to S3, we represent the unfilled holes
with hollow circles in Figure 14. If we ignore the filled holes related to S3 for simplification, the remaining
smallest element on the holes-triangle will be MN +M + (dM2 e−1)(M +N) (highlighted in Figure 14). For

the sub-triangle with vertex MN + M + (dM2 e − 1)(M + N), its left-side elements (red triangle in Figure

14) are filled by the rearranged sensor at S4, which is −(MN +M + (dM2 e − 1)N). However, the elements

at the right-side of sub-triangle with vertex MN +M + (dM2 e− 1)(M +N) remain unfilled. In other words,

the unfilled first hole will be at the right-side of the sub-triangle with vertex MN +M + (dM2 e−1)(M +N).

And the position of the unfilled first hole is equal to MN + M + (dM2 e − 1)(M + N) + N . Similarly, to
assure that all holes are filled, we should have

MN +M + (dM
2
e − 1)(M +N) +N > (2M − 1)N (33)

Relations (32), (33) and condition N > M should both hold such that all the elements on the holes-
triangle can be filled. Considering the case with M an odd integer, we can reformulate (32) as

MN +M +M +N + (
M − 1

2
+ 1)N > (2M − 1)N (34)
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Figure 14: Position of unfilled holes with M = 6, N = 13. ◦ : unfilled holes; N: filled holes corresponding to S4 • : filled holes
corresponding to S3.

After simplification, we can obtain
N(M − 5) < 4M (35)

Similarly, reformulating and simplifying (33), we can have

N < M + 4 +
12

M − 3
(36)

Notice that if M ≥ 9, possible values of N satisfying (35) and (36) will contradict with condition
N > M . In the case of 3 < M ≤ 7, possible values of N meeting M < N < M + 4 + 12

M−3 can also
satisfy (35). Following the same spirit, we can derive the expression for even value of M case, which is
M < N < M + 2 + 4

M−2 for 2 < M ≤ 8.
For the special case with M = 3, the two redundant sensors are not contiguous, which are located at MN

and N . According to the definition of the holes-triangle, there are at most two elements at the right-side of
each sub-triangle because b2 ≤ M − 2 = 1. Therefore, all the holes will be filled by rearranging these two
redundant sensors at −(MN +M) and −(MN +M +N). As for the case with M = 2, the holes-triangle
only has one left-side and they can be easily filled with one rearranged redundant sensor.

Then Lemma 2 is proved.

7.2. Proof of Lemma 3

If the condition in Lemma 2 is not met, there will be some unfilled holes in range (0, (2M − 1)N).
Following the discussion in the proof of Lemma 2, considering multiple unfilled holes, the position of the
first hole can be divided into two scenarios as elaborated in the proof of Lemma 2. For simplification, we
reformulate the left part of the inequality in (32) and (33) as a1, a2 respectively, which are

a1 < (2M − 1)N (37)

a2 < (2M − 1)N. (38)
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Either (37) or (38) holds if there are holes unfilled. If M is an odd value, without loss of generality, it can
be assumed that the unfilled first hole occurs at position a1, which means

a1 < a2. (39)

Then it comes that N < M(M−3)
2 for (39). Similarly, if we assume a1 > a2, the result will be N > M(M−3)

2 .
In the case where M is an even value, we can follow a similar derivation. Notice that a1, a2 differ from

the case of odd value M because a1 includes floor operator and a2 includes ceil operator. Then if we assume

a1 < a2, the result will be N < M(M−4)
4 . Lemma 3 is then proved.

7.3. DOFs comparison of proposed method and CCA

We first consider L as an even value. In this case, the choice of optimal values of M,N has been proved
in [24]. We follow the same principal in [24] to set the two coprime integers of our method, which are
M = L+2

4 , N = L
2 . Substituting these M,N values to a1 and simplifying, we obtain

a1 > a′1 =
3L2 + 22L+ 16

16
(40)

Then we assume that a′1 is the maximum number of DOFs of CCA, the values of Mc, Nc can be given as
[25]

Mc =

√
a′1
6

+
1

2
(41)

Nc =

√
3a′1
2

(42)

Therefore

3Mc +Nc − 2− L =
√

6a′1 − (
1

2
+ L)

=

√
9L2 + 66L+ 48

8
−

√
8L2 + 8L+ 2

8
(43)

Given that L > 0, it is obvious that the difference in (43) is greater than 0, meaning that more sensors are
required by CCA to obtain a given number of DOFs compared with our method. Similarly, when we assume
a2 < a1, we can obtain the same conclusion by similar derivation.

For an odd value of L, the two coprime integers of our method are M = L+1
4 , N = L+1

2 . Similarly,
substituting M,N to a1, we can still have the inequality a1 > a′1 and implement the same derivation as the
even value case. Then we can get the conclusion that our method can achieve larger consecutive coarray
part than CCA with a given number of sensors.

7.4. DOFs comparison of proposed method and TCA

The optimum values of Nt,Mt meet the condition Nt = 2Mt− 1, similarly, we have N = 2M − 1. Notice
that Mt = M + y1, Nt = N + y2, we can derive that

y2 = 2y1 (44)

Also notice that 2y1 + y2 = dMt

2 e, which leads to

y1 =
1

4
dMt

2
e (45)
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Then it can be derived that

Mt = M + y1 = M +
1

4
dMt

2
e

< M +
1

4
(
Mt

2
+ 1) (46)

Reformulating (46), the following inequality can be obtained

−(MtNt +Mt) = −2M2
t > −

8

49
(4M + 1)2 (47)

Therefore

a1 − (MtNt +Mt) = a1 − 2M2
t

> 3M2 +
5M

2
− 1− 2M2

t (48)

Substituting (47), it can be easily shown that a1−(MtNt+Mt) > 0. Similarly, we can also get a2−(MtNt+
Mt) > 0, which indicates that our method can achieve a larger consecutive coarray part than TCA.

If L is an odd value, the optimum values of M = L+1
4 , N = L+1

2 satisfy N = 2M . We can also assume
that 2Mt +Nt − 1 is an odd value such that the optimum Nt = 2Mt. Similarly, y2 = 2y1 also holds for this
case and (47) can be written as

−(MtNt +Mt) = −(2M2
t +Mt) > −

8

49
(4M + 1)2 − 2

7
(4M + 1) (49)

We can derive that a1 − (MtNt + Mt) > 0 also holds for this case. Furthermore, the same conclusion
can be achieved if 2Mt +Nt− 1 is an even value. Our proposed method is shown to have larger consecutive
DOFs than TCA.
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