
HAL Id: hal-03138849
https://hal.science/hal-03138849v1

Submitted on 11 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fuzzing on the HTTP protocol implementation in
mobile embedded web server

Matthieu Barreaud, Guillaume Bouffard, Nassima Kamel, Jean-Louis Lanet

To cite this version:
Matthieu Barreaud, Guillaume Bouffard, Nassima Kamel, Jean-Louis Lanet. Fuzzing on the HTTP
protocol implementation in mobile embedded web server. C&ESAR, Nov 2011, Rennes, France. �hal-
03138849�

https://hal.science/hal-03138849v1
https://hal.archives-ouvertes.fr


Fuzzing on the HTTP protocol implementation in
mobile embedded web server.

Matthieu Barreaud, Guillaume Bouffard, Nassima Kamel, and
Jean-Louis Lanet

Smart Secure Devices (SSD) Team – XLIM Labs, Université de Limoges
83 Rue d’Isle, 87000 Limoges, France

{matthieu.barreaud,guillaume.bouffard,nassima.kamel,jean-louis.lanet}@xlim.fr

Abstract. The fuzzing is a technique which allows to generate invalid,
unexpected, or random data to supply them in the various inputs of the
software or the protocol to be tested. That allows to find situations not
expected by the programmers and sometimes to influence the functioning
of the target. Our work aims to check implementations of the HTTP
protocol in smart card embedded web servers. For that, we have used
the fuzzing method to found vulnerabilities and compliance of this sort
of web server. Moreover, working on black box forced us to use PyHAT
to collect a maximum of information of the target features. Thus, we
can reduce the amount of properties to analyze. Our fuzzing program is
based on the Peach framework adapted to our needs. Then, with data
model and state model of the target, Peach will generate the fuzzing
data. We have also defined mutators to represent the mutations types
used. Results generated by logs files are finally automatically analyzed to
understand the behavior of the application and to detect if some fuzzed
data succeed to take up vulnerabilities.

Keywords: smart card web server, fuzzing, embedded HTTP protocol

Acknowledgments

The authors thank Mamadou Balde, Amine Belhocine, Silvère Cainaud, Jérémie
Clement, Romain Severin, Nicolas Tarriol and Lylia Tikobaini for their contri-
bution to this work.

1 Introduction

The recent years, the evolution of embedded systems and their complexity have
increased steadily. Nowadays, it is possible to embed a web server in a smart
card. This technology uses the HTTP protocol and allows the holder to provide
services and custom interfaces. Due to constrained resources systems in which
this technology is running, it should necessary to test it in order to uncover bugs
and other vulnerabilities.



This new technology was announced by Open Mobile Alliance (OMA) which
describes the Smart Card Web Server (SCWS) specification based on the version
1.1 of the HTTP protocol for the smart cards dedicated to mobile phones. It
is defined for smart cards based on Java Card 2.2 platform and for low-cost
devices. In other hand Oracle (formerly Sun Microsystem) proposes the Java
Card 3 platform which also offers an embedded web server and new features
through the enhancement of the framework with new supported Java API and
programming. However, it is dedicated to high-cost devices.

Our work aims are to test the compliance and the robustness of the HTTP
protocol implementation of the embedded web servers. Thus, we have choose the
fuzzing technique for its effectiveness in auditing different types of applications
and systems. Based on a black box model, we have not knowledge of the target
implementation. We are mainly interested to test the HTTP protocol imple-
mentation. In a previous work [12], we have presented the effectiveness of this
technique in the verification of compliance of the BIP protocol (the transport
layer) available on a smart card with the specification defined by ETSI (Euro-
pean Telecommunications Standards Institute) [9].

This paper is split in two parts. The first one is preamble, where we present
a state of art of the smart card web server, the HTTP protocol and the fuzzing.
In the second part, we describe our contribution and explain the main point of
our tool: in particular how to generate testing data and a logging interpretation;
and we finish with our future works and conclusion.

2 State of the art

2.1 Smart Card Web Server

The Smart Card Web Server (SCWS) is a HTTP/1.1 web server (RFC 2616
standard [10]) in the embedded smart cards. It is used to provide services, per-
sonalize mobile interface and to easiness the card administration. The SCWS is
both a server, and a client application. In server mode, it is used by the subscriber
with a WAP browser whereas in client mode, a Card Issuer may administrate
the SCWS from a server [3,7].

In server mode, the card communicates via a Bearer Independent Protocol
(BIP) channel, which is not the Card Issuer communication channel, allowing
the SCWS to be run independently from the Card Issuer network. To communi-
cate with the mobile, the card uses BIP commands [6,9]. These commands are
composed of one or many TLV (Tag, Length and Value). They belong to the
Subscriber Identity Module (SIM) Application Toolkit (SAT) technology defined
by the ETSI [9]. The SAT consists of a set of commands programmed into the
SIM which defines how the SIM should interact with the outside. Moreover,
SAT initiates commands independently of the handset and the network (proac-
tive commands). In addition to the SCWS application, the whole environment
is composed of 1:



– An handset, in which are implemented:
• A BIP Gateway to ensure the translation of the data format between

the SCWS and the WAP browser,
• The HTTP application or WAP browser which sends request to the

SCWS via the BIP Gateway, at the subscriber requirement.
– The Over The Air (OTA) server which stores the Card Issuer data are needed

to remotely administrate the SCWS.

Fig. 1. Communication between the mobile and the SCWS

2.2 HTTP Protocol

The HTTP protocol is encapsulated into the BIP transport protocol. A HTTP
message has the following components [10]:

– An URI used to identify the resource requested. The URI must be written
as defined in the RFC 2616 format:

http_URL = "http:" "//" host [":" port] [abs_path ["?" query]]

– A header which contains information as:

Message header = field-name ":" [field-value]

– A body which contains the HTTP methods:
• The GET method is used to retrieve the resource (in the form of an entity)

identified by the Request-URI.
• The HEAD method is identical to GET except that the server does not

return a body message in the response.



• The POST method is used to request the origin server accept the resource
enclosed in the request as a new subordinate of the resource identified
by the Request-URI in the Request-Line.

• The PUT method requests enclosed static resource be stored under the
supplied Request-URI. This method is used only static resources.

• The DELETE method allows to delete the resource identified by the
Request-URI field.

• The OPTIONS method represents a request to obtain information about
the communication options available on the request/response chain iden-
tified by the Request-URI.

The TRACE and CONNECT methods are supported by the server applets only:
• The TRACE method is used to invoke a remote, application-layer loop-

back of the request message.
• The CONNECT method is used with a proxy that can dynamically switch

to being a tunnel.

The first line of the response is always the Status-Line, which consists in
the protocol version followed by a numeric status code and its associated textual
meaning:

– The status code is a 3-digit number, indicating if the request is successfully
executed or not:
• Informational 1xx indicates a provisional response;
• Successful 2xx indicates that the client’s request is successfully received,

understood and accepted;
• Redirection 3xx is not supported;
• Client error 4xx is returned for cases in which the client seems to be

erred;
• Server error 5xx is returned when the SCWS server has erred or is inca-

pable of performing the request.
– The reason gives a short textual description of the status code
– A text message indicating the error type (same as standard reason-phrase)
– An error style sheet (XML output)

2.3 The Fuzzing

Fuzzing is a technique which aims to find errors in software implementations by
injecting invalid data [5], [15]. The main goal of fuzzers is to crash the machine,
application, protocol, etc. It is the inherent limit of this technique. The main
advantage is to search vulnerabilities with a low-cost material. Fuzzing data can
be generated in three different ways [13]:

– Random data generation which has the inconvenient to be blind and, in most
cases, these data are filtered and rejected by the target.

– The fuzzer generates invalid data from a data model created by the user.
Then it sends them to the application or protocol to test. This method is
time consuming because it needs to know the protocol integrally but it is
the best effective method.



– The mutation fuzzer takes a well known and valid session like a file or a
network capture to mute it and send it to the application or protocol to
fuzz. This method does not need target knowledge but is limited because it
treats only the test file cases.

Most existent fuzzers are designed to test network protocols such as Xiao et
al [16] which provides a tool to test at TCP/IP layer, but their use is not limited
to this unique area. There are many fuzzing frameworks based on APIs that can
be used to implement tools for auditing at different levels (files, API, arguments
for a command line, standard input, etc.) as Spike [2], Peach [8], Sulley [14] and
Fusil [11].

In our research we have chose Peach thanks to its flexibility and because it
uses both data and state models, and mutation to generate fuzzing data. This
choice allows us to parallelize the fuzzing which reduces time of test. It is very
important, in particular while using smart cards.

3 Our fuzzing tool

3.1 Aims

Our fuzzing tool works in the black box model – ie we do not have any knowledge
on the protocol implementation in the card. We must verify the correctness of the
HTTP protocol implementation and analyze the behavior of the smart card. We
want to determine when the smart card crashes or has an unexpected behavior.
For that, we must analyze the status word and response returned. The status
word corresponds to the card state after having executed the request.

Moreover, we want to have a generic data model which represents the HTTP
protocol usable on smart card or not. Indeed, our fuzzing tool can fuzz a web
server defined by an IP address and a port or an embedded web server in a smart
card. Finally, we choose the mutation type by defining an array of string values.

3.2 Representation

Before the fuzzing step we use our application PyHat which searches the im-
plemented features on the card. That permits to reduce the number of cases to
treat. This tool creates a XML file used by the fuzzer Peach [8]. Then, we have
an interface which makes the link between:

– PyHat, the fuzzer Peach and the targets
– the fuzzer Peach, the targets and the logs

Finally, we have an analyzer tool which permits to identify the vulnerabilities
found in the logs.



Fig. 2. Schema

3.3 HTTP smart card features

If we fuzz each method and their associated header, we have a huge amount of
tests. These tests may spend a huge amount of time with a low bandwidth like
with a smart card. In order to decrease this amount of tests, we have developed
a tool which search the implemented HTTP features in the server. This tool,
PyHAT, for Python HTTP Assessment Tool, may:

– Detect implemented HTTP methods: the HTTP protocol is consists in meth-
ods which provide an interaction between the client and the server. The main
feature of PyHAT is to find them.

– Detect case sensitive requests: the HTTP protocol specification describes
that the sent requests to the server must be case sensitive. Our analysis tool
checks if server is compliant them.

– Detect the supported HTTP versions.
– Detect supported encoding data methods: to save bandwidth, the HTTP pro-

tocol allows to encode the resource within an encoding method chosen by the
client. The RFC defines gzip, compress and deflate algorithms. Another
way to get a resource is without encoding. It is the identity method.

– Detect server analysis request fields: previously, we explained how a HTTP
request is formed. In addition of the first HTTP request line, other fields
may be used but they may not be parsed by the HTTP server.

– Find the resources contained in the web-server.
– Output the result in a XML file which may be parsed by our fuzzer.



In order to find the implemented features by the HTTP server, we defined
an analysis strategy based on the HTTP protocol specification. In this RFC,
the card should, or must, implement deterministic responses for each client re-
quest. Our analysis tool checks these responses. Moreover, to list the resources
contained by the HTTP server, we recursively check, starting by the index web-
pages, the URI which references the target.

3.4 Test generation

Peach Peach is a fuzzer written in Python-language which intends to generate
invalid data on some protocols. For that, Peach uses XML file containing:

– the data models representing the structure of the protocol,
– the state models recreating the basic state logic needed to test the protocol,
– the publisher describing where the data are sent,
– the mutator representing the mutation types used.

We have modified Peach to realize our needs. For example, we have created
a publisher by using the library Pyscard [1] because Peach does not permit
to communicate with smart cards. This publisher permits to encapsulate the
HTTP request in the BIP protocol automatically. It logs all the APDUs sent
and received by the smart card. Moreover, we have implemented basic functions
in order to fuzz the HTTP protocol like choice, minOccurs, maxOccurs.

Peach permits to parallelize the fuzzing using the -p argument. This argu-
ment specifies the total number of card and the card to use. We need to have for
each card a XML files where we indicate in the publisher the card to use. The
parallelization is the solution of the time consuming problem of fuzzing.

Fuzzing strategy We automate the generation of data and state models cor-
responding to methods and headers of the XML file created by PyHAT. This
tool creates several files, one for each method, for each header and for each card
to fuzz. Then, we use the Peach fuzzer with our own modifications to generate
random data corresponding to the data models generated by PyHAT. To create
invalid data we use string mutations. We have a static array of string containing
several special characters. Moreover, we mutate the default string to create an
unexpected result.

Finally, in order to find some not expected behavior, we store each sent and
response requests in ordered log files. We have a log for each fuzzed method
and for each header. That allows us to find the way to an unexpected behavior.
Moreover, for each request, we store:

– the HTTP sent and response requests (of course!)
– the BIP commands (if we have an overflow inter-layer)

However, during the fuzzing step, Peach inserts some tags to flag a detected
unexpected behavior. Unfortunately, it exists some behavior detected as ex-
pected but actually is not compliance with the HTTP specification. So, these
false positives are found by our analysis tool.



4 Conclusion

The fuzzing method allows us to discover vulnerabilities or implementation errors
in the HTTP protocol. Moreover, with a low bandwidth, smart cards may be
fuzz with a preanalysis and, we it possible, a parallelize that. After we verify
the HTTP protocol implementation and we have already found some bugs and
vulnerabilities. These experimental results will be treated in the extended paper
version.

we are also interested on application audit dedicated to smart card embed-
ded web server, in particular the web applications based on servlet. Our goal is
to found implementation flaws and web vulnerabilities such as XSS (Cross site
Scripting). Our approach is to design a fuzzing tool in white box, using data
model and state model generated from a static analysis of the targeted applica-
tion. There are many static analysis tools such as the FindBugs framework [4].
Currently, we are investigating with this framework to verify its compatibility
with Java Card applications. We are also interested in the control and data flow
management in our analysis. This part will be detailed in the final version of
this paper.

References
1. Pyscard - python for smart cards, http://pyscard.sourceforge.net/
2. Aitel, D.: An introduction to spike, the fuzzer creation kit. immunity inc. white

paper (2004)
3. Alliance, O.M.: Smartcard-web-server. Tech. rep., OMA (2008)
4. Almaliotis, V., Loizidis, A., Katsaros, P., Louridas, P., Spinellis, D.: Static program

analysis for java card applets. Smart Card Research and Advanced Applications
pp. 17–31 (2008)

5. Campana, G.: Fuzzing : injectez des données et trouvez les failles cachées. MISC
pp. 28–37 (SEPT/OCT 2008)

6. Devrient, G..: Bearer independent protocol (bip). Tech. rep., G&D (2006)
7. Devrient, G..: Smart card web server - merging the sim and the world wide web.

Tech. rep., G&D (2007)
8. Eddington, M.: Peach fuzzing platform, http://peachfuzzer.com/FrontPage
9. ETSI: ETSI TS 102 223 - Smart Cards : Card Application Toolkit (CAT) (2010)
10. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-

Lee, T.: Rfc 2616: Hypertext transfer protocol–http/1.1, june 1999. Status: Stan-
dards Track (1999)

11. I.Maceno, M.: The Fusil Project, http://www.labri.fr/perso/fleury/courses/
SS08/download/memoirs/adjej-gunes-maceno-memoire.pdf

12. M.Barreaud, J-L.Lanet, J.I.C.: Analyse de vulnérabilités sur cartes à puce à serveur
web embarqué. SAR-SSI (2011)

13. Miller, C., Peterson, Z.: Analysis of Mutation and Generation-Based Fuzzing (2007)
14. P.Amini, A.: Sulley: Fuzzing framework (2007), http://www.fuzzing.org/

wp-content/SulleyManual.pdf
15. Takanen, A., DeMott, J., Miller, C.: Fuzzing for software security testing and

quality assurance. Artech House Publishers (2008)
16. Xiao, S., Deng, L., Li, S., Wang, X.: Integrated tcp/ip protocol software testing

for vulnerability detection (2003)

http://pyscard.sourceforge.net/
http://peachfuzzer.com/FrontPage
http://www.labri.fr/perso/fleury/courses/SS08/download/memoirs/adjej-gunes-maceno-memoire.pdf 
http://www.labri.fr/perso/fleury/courses/SS08/download/memoirs/adjej-gunes-maceno-memoire.pdf 
http://www.fuzzing.org/wp-content/SulleyManual.pdf
http://www.fuzzing.org/wp-content/SulleyManual.pdf

	Fuzzing on the HTTP protocol implementation in mobile embedded web server.

