
A Continuized View on Nesterov Acceleration
Raphaël Berthier1, Francis Bach1, Nicolas Flammarion2, Pierre Gaillard3 and Adrien Taylor1

1Inria - Département d’informatique de l’ENS
PSL Research University, Paris, France

2School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne

3Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000 Grenoble, France

Abstract. We introduce the “continuized” Nesterov acceleration, a close variant of Nesterov
acceleration whose variables are indexed by a continuous time parameter. The two variables
continuously mix following a linear ordinary differential equation and take gradient steps at
random times. This continuized variant benefits from the best of the continuous and the discrete
frameworks: as a continuous process, one can use differential calculus to analyze convergence and
obtain analytical expressions for the parameters; but a discretization of the continuized process
can be computed exactly with convergence rates similar to those of Nesterov original acceleration.
We show that the discretization has the same structure as Nesterov acceleration, but with random
parameters.

1. Introduction

In the last decades, the emergence of numerous applications in statistics, machine learning and
signal processing has led to a renewed interest in first-order optimization methods (Bottou et al.,
2018). They enjoy a low computational complexity necessary to the analysis of large datasets. The
performance of first-order methods was largely improved thanks to acceleration techniques (see the
review by d’Aspremont et al., 2021, and the many references therein), starting with the seminal
work of Nesterov (1983).

Let f : Rd → R be a convex and differentiable function, minimized at x∗ ∈ Rd. We assume
throughout the paper that f is L-smooth, i.e.,

∀x, y ∈ Rd, f(y) 6 f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2 .

In addition, we sometimes assume that f is µ-strongly convex for some µ > 0, i.e.,

∀x, y ∈ Rd, f(y) > f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖2 .

For the problem of minimizing f , gradient descent is well-known to achieve a rate f(xk)− f(x∗) =
O(k−1) in the smooth case, and a rate f(xk)− f(x∗) = O((1− µ/L)k) in the smooth and strongly
convex case. In both cases, Nesterov introduced an alternative method with essentially the same
running-time complexity, that achieves faster rates; it converges at the rate O(k−2) in the smooth
convex case and at the rate O((1−

√
µ/L)k) in the smooth and strongly convex case (Nesterov,

2003). These rates are then optimal among all methods that access gradients and linearly combine
them (Nesterov, 2003; Nemirovskij and Yudin, 1983).

Nesterov acceleration introduces several sequences of iterates—two or three, depending on the
formulations—and relies on a clever blend of gradient steps and mixing steps between the iterates.
Many works contributed to interpret and motivate the precise structure of the iteration that lead
to the success of the method, see for instance (Bubeck et al., 2015; Flammarion and Bach, 2015;
Arjevani et al., 2016; Kim and Fessler, 2016; Allen-Zhu and Orecchia, 2017). A large number of
these works found useful to study continuous time equivalents of Nesterov acceleration, obtained
by taking the limit when stepsizes vanish, or from a variational framework. The continuous time
index t of the limit allowed to use differential calculus to study the convergence of these equivalents.
For examples of studies that use continuous time, see (Su et al., 2014; Krichene et al., 2015; Wilson
et al., 2016; Wibisono et al., 2016; Betancourt et al., 2018; Diakonikolas and Orecchia, 2019; Shi
et al., 2018, 2019; Attouch et al., 2018, 2019; Zhang et al., 2018; Siegel, 2019; Muehlebach and
Jordan, 2019; Sanz-Serna and Zygalakis, 2020).

In this paper, we propose another way to obtain a continuous time equivalent of Nesterov
acceleration, that we call the continuized version of Nesterov acceleration, that does not have
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vanishing stepsizes. It is built by considering two variables xt, zt ∈ Rd, t ∈ R>0, that continuously
mix following a linear ordinary differential equation (ODE), and that take gradient steps at random
times T1, T2, T3, . . . . Thus, in this modeling, mixing and gradient steps alternate randomly.

Thanks to the continuous index t and some stochastic calculus, one can differentiate averaged
quantities (expectations) with respect to t. In particular, this leads to simple analytical expressions
for the optimal parameters as functions of t, while the optimal parameters of Nesterov accelerations
are defined by recurrence relations that are complicated to solve.

The discretization x̃k = xTk
, z̃k = zTk

, k ∈ N, of the continuized process can be computed directly
and exactly: the result is a recursion of the same form as Nesterov iteration, but with randomized
parameters, that performs similarly to Nesterov original deterministic version both in theory and
in simulations.

There are particular situations where Nesterov acceleration can not be implemented and the
continuized acceleration can. First, a major advantage of the continuized acceleration over Nesterov
acceleration is that the parameters of the algorithm depend only on time t ∈ R>0, and not on
the number of past gradient steps k. This is useful in distributed implementations, where the
total number of gradient steps taken in the network may not be known to a particular node.
Second, the continuized modeling can be relevant when gradient steps arrive at random times, as in
asynchronous parallel computing for instance. Gossip algorithms represent another example where
both features are present: the total number of past communications in the network at a given time
is unknown to all nodes, and communication between nodes occur at random times. This motivated
Even et al. (2020) to consider a similar continuized procedure, for communication steps instead of
gradient steps, in order to accelerate gossip algorithms; their work is the source of inspiration for
the present paper.

Beyond these particular situations, the continuized acceleration should be seen as a close
approximation to Nesterov acceleration, that features both an insightful and convenient expression
as a continuous time process and a direct implementation as a discrete iteration. We thus hope to
contribute to the understanding of Nesterov acceleration. We believe that the continuized framework
can be adapted to various settings and extensions of Nesterov acceleration; as an illustration of this
statement, we study how the continuized acceleration behaves in the presence of additive noise on
the gradients.

Notations. The index k always denotes a non-negative integer, while the indices t, s always denote
non-negative reals.

Structure of the paper. In Section 2, we recall gradient descent and Nesterov acceleration, its
choice of parameters, and its convergence rate as a function of the number of iterations k. In
Section 3, we introduce our continuized variant of Nesterov acceleration, its choice of parameters
and its convergence rate as functions of t. In Section 4, we show that the discretization of the
continuized acceleration leads to an iteration of the same structure as Nesterov acceleration, with
random parameters. We give the expressions for the parameters and the convergence rate in terms
of the number of iterations k. Finally, in Section 5, we study the robustness of the continuized
acceleration to additive noise.

2. Reminders on gradient descent and Nesterov acceleration

For the sake of comparison, let us first recall classical results of convex optimization. Consider
the iterates of gradient descent with stepsize γ,

xk+1 = xk − γ∇f(xk) .

We have the following convergence of the function values f(xk), depending on whether the function f
is (1) convex, or (2) strongly convex.

Theorem 1 (Convergence of gradient descent). Choose the stepsize γ = 1/L.
(1) Then

f(xk)− f(x∗) 6
2L‖x0 − x∗‖2

k + 4
.
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(2) Assume further that f is µ-strongly convex, µ > 0. Then

f(xk)− f(x∗) 6
L

2

(
1− µ

L

)k
‖x0 − x∗‖2 .

These results (or similar bounds) can be found at many places in the literature; for instance the
first bound is in (Nesterov, 2003, Corollary 2.1.2) and the second bound is a simple consequence of
(Nesterov, 2003, Theorem 2.1.15). See also the recent book of Nesterov (2018).

To accelerate these rates of convergence, Nesterov introduced iterations of three sequences,
parametrized by τk, τ ′k, γk, γ

′
k, k > 0, of the form

yk = xk + τk(zk − xk) , (1)
xk+1 = yk − γk∇f(yk) , (2)

zk+1 = zk + τ ′k(yk − zk)− γ′k∇f(yk) . (3)

Depending on whether the function f is known to be (1) simply convex, or (2) strongly convex with
a known strong convexity parameter, Nesterov gave choices of parameters leading to accelerated
convergence rates.

Theorem 2 (Convergence of accelerated gradient descent). (1) Choose the parameters τk =

1− Ak

Ak+1
, τ ′k = 0, γk = 1

L , γ
′
k = Ak+1−Ak

L , k > 0, where the sequence Ak, k > 0, is defined by
the recurrence relation

A0 = 0 , Ak+1 = Ak +
1

2
(1 +

√
4Ak + 1) .

Then

f(xk)− f(x∗) 6
2L‖x0 − x∗‖2

k2
.

(2) Assume further that f is µ-strongly convex, µ > 0. Choose the constant parameters

τk ≡
√
µ/L

1+
√
µ/L

, τ ′k ≡
√

µ
L , γk ≡

1
L , γ

′
k ≡ 1√

µL
, k > 0. Then

f(xk)− f(x∗) 6
(
f(x0)− f(x∗) +

µ

2
‖z0 − x∗‖2

)(
1−

√
µ

L

)k
.

This result, in this exact form, is proven by d’Aspremont et al. (2021, Sections 4.4.1 and 4.5.3).
From a high-level perspective, Nesterov acceleration iterates over several variables, alternating

between gradient steps (always with respect to the gradient at yk) and mixing steps, where the
running value of a variable is replaced by a linear combination of the other variables. However,
the precise way gradient and mixing steps are coupled is rather mysterious, and the success of the
proof of Theorem 2 relies heavily on the detailed structure of the iterations. In the next section, we
try to gain perspective on this structure by developing a continuized version of the acceleration.

3. Continuized version of Nesterov acceleration

In this section and the following ones, we use several mathematical notions related to random
processes. It should be possible to understand the paper with only a heuristic understanding of
these notions. The rigorous definitions are provided in Appendix A.

We argue that the accelerated iteration becomes more natural if we consider two variables xt, zt
indexed by a continuous time t > 0, that are continuously mixing and that take gradient steps at
random times. More precisely, let T1, T2, T3, . . . > 0 be random times such that T1, T2 − T1, T3 −
T2, . . . are independent identically distributed (i.i.d.), of law exponential with rate 1 (any constant
rate would do, but we choose 1 to make the comparison with discrete time k straightforward).
By convention, we choose that our stochastic processes t 7→ xt, t 7→ zt are càdlàg almost surely,
i.e., right continuous with well-defined left-limits xt−, zt− (see Definition 5 in Appendix A). Our
dynamics are parametrized by functions γt, γ′t, τt, τ ′t , t > 0. At the random times T1, T2, . . . , our
sequences take gradient steps

xTk
= xTk− − γTk

∇f(xTk−) , (4)

zTk
= zTk− − γ′Tk

∇f(xTk−) . (5)
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Because of the memoryless property of the exponential distribution, in a infinitesimal time interval
[t, t+ dt], the variables take gradients steps with probability dt, independently of the past.

Between these random times, the variables mix through a linear ordinary differential equation
(ODE)

dxt = ηt(zt − xt)dt , (6)

dzt = η′t(xt − zt)dt . (7)

Following the notation of stochastic calculus, we can write the process more compactly in terms of
the Poisson point measure dN(t) =

∑
k>0 δTk

(dt), which has intensity the Lebesgue measure dt,

dxt = ηt(zt − xt)dt− γt∇f(xt)dN(t) , (8)

dzt = η′t(xt − zt)dt− γ′t∇f(xt)dN(t) . (9)

Before giving convergence guarantees for such processes, let us digress quickly on why we can
expect an iteration of this form to be mathematically appealing.

First, from a Markov chain indexed by a discrete time index k, one can associate the so-called
continuized Markov chain, indexed by a continuous time t, that makes transition with the same
Markov kernel, but at random times, with independent exponential time intervals (Aldous and
Fill, 2002). Following this terminology, we refer to our acceleration (8)-(9) as the continuized
acceleration. The continuized Markov chain is appreciated for its continuous time parameter t,
while keeping many properties of the original Markov chain; similarly the continuized acceleration
is arguably simpler to analyze, while performing similarly to Nesterov acceleration.

Second, it is also interesting to compare with coordinate gradient descent methods, that are
easier to analyze when coordinates are selected randomly rather than in an ordered way (Wright,
2015). Similarly, the continuized acceleration is simpler to analyze because the gradient steps (4)-(5)
and the mixing steps (6)-(7) alternate randomly, due to the randomness of T1, T2, . . .

In analogy with Theorem 2, we give choices of parameters that lead to accelerated convergence
rates, in the convex case (1) and in the strongly convex case (2). Convergence is analyzed as a
function of t. As dN(t) is a Poisson point process with rate 1, t is the expected number of gradient
steps done by the algorithm. Thus t is analoguous to k in Theorem 2.

Theorem 3 (Convergence of continuized Nesterov acceleration). (1) Choose the parameters
ηt = 2

t , η
′
t = 0, γt = 1

L , γ
′
t = t

2L . Then

Ef(xt)− f(x∗) 6
2L‖z0 − x∗‖2

t2
.

(2) Assume further that f is µ-strongly convex, µ > 0. Choose the constant parameters
ηt = η′t ≡

√
µ
L , γt ≡

1
L , γ

′
t ≡ 1√

µL
. Then

Ef(xt)− f(x∗) 6
(
f(x0)− f(x∗) +

µ

2
‖z0 − x∗‖2

)
exp

(
−
√
µ

L
t

)
.

Sketch. A complete and rigorous proof is given in Appendix B.1. Here, we only provide the heuristic
of the main lines of the proof.

The proof is similar to the one of Nesterov acceleration: we prove that for some choices of
parameters ηt, η′t, γt, γ′t, t > 0, and for some functions At, Bt, t > 0,

φt = At (f(xt)− f(x∗)) +Bt‖zt − x∗‖2

is a supermartingale. In particular, this implies that Eφt is a Lyapunov function, i.e., a non-increasing
function of t.

To prove that φt is a supermartingale, it is sufficient to prove that for all infinitesimal time
intervals [t, t+ dt], Etφt+dt 6 φt, where Et denotes the conditional expectation knowing all the past
of the Poisson process up to time t. Thus we would like to compute the first order variation of
Etφt+dt. This implies computing the first order variation of Etf(xt+dt).

From (8), we see that f(xt) evolves for two reasons between t and t+ dt:
• xt follows the linear ODE (6), which results in the infinitesimal variation f(xt)→ f(xt) +
ηt〈∇f(xt), zt − xt〉dt, and
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• with probability dt, xt takes a gradient step, which results in a macroscopic variation
f(xt)→ f (xt − γt∇f(xt)).

Combining both variations, we obtain that

Etf(xt+dt) ≈ f(xt) + ηt〈∇f(xt), zt − xt〉dt+ dt (f (xt − γt∇f(xt))− f(xt)) ,

where the dt in the second term corresponds to the probability that a gradient step happens; note
that the latter event is independent of the past up to time t.

A similar computation can be done for Et‖zt − x∗‖2. Putting things together, we obtain

Etφt+dt − φt ≈ dt

(
dAt
dt

(f(xt)− f(x∗)) +Atηt〈∇f(xt), zt − xt〉

−At (f(xt − γt∇f(xt))− f(xt)) +
dBt
dt
‖zt − x∗‖2

+ 2Btη
′
t〈zt − x∗, xt − zt〉+Bt

(
‖zt − γ′t∇f(xt)− x∗‖2 − ‖zt − x∗‖2

))
.

Using convexity and strong convexity inequalities, and a few computations, we obtain the following
upper bound:

Etφt+dt − φt . dt

((
dAt
dt
−Atηt

)
〈∇f(xt), xt − x∗〉+

(
dBt
dt
−Btη′t

)
‖zt − x∗‖2

+ (Atηt − 2Btγ
′
t)〈∇f(xt), zt − x∗〉+

(
Btη

′
t −

dAt
dt

µ

2

)
‖xt − x∗‖2

+

(
Btγ

′2
t −Atγt

(
1− Lγt

2

))
‖∇f(xt)‖2

)
.

We want this infinitesimal variation to be non-positive. Here, we choose the parameters so that
γt = 1/L, and all prefactors in the above expression are zero. This gives some constraints on the
choices of parameters. We show that only one degree of freedom is left: the choice of the function
At, that must satisfy the ODE

d2

dt2

(√
At

)
=

µ

4L

√
At ,

but whose initialization remains free. Once the initialization of the function At is chosen, this
determines the full function At and, through the constraints, all parameters of the algorithm. As
φt is a supermartingale (by design), a bound on the performance of the algorithm is given by

Ef(xt)− f(x∗) 6
Eφt
At
6
φ0

At
.

The results presented in Theorem 3 correspond to one special choice of initialization for the
function At.

In this sketch of proof, our derivation of the infinitesimal variation is intuitive and elementary;
however it can be made more rigorous and concise—albeit more technical—using classical results
from stochastic calculus, namely Proposition 2. This is our approach in Appendix B.1. �

Many authors have proposed continuous-time equivalents in order to understand better Nesterov
acceleration using differential calculus, see the numerous references in the introduction. For instance,
in the seminal work of Su et al. (2014), the equivalence is obtained from Nesterov acceleration
by taking the joint asymptotic where the stepsizes vanish and the number of iterates is rescaled.
The resulting limit is an ODE that must be discretized to be implemented; choosing the right
discretization is not straightforward as it introduces stability and approximation errors that must
be controlled, see (Zhang et al., 2018; Shi et al., 2019; Sanz-Serna and Zygalakis, 2020).

On the contrary, our continuous time equivalent (8)-(9) does not correspond to a limit where the
stepsizes vanish. However, in Appendix D, we check that the continuized acceleration has the same
ODE scaling limit as Nesterov acceleration. This sanity check emphasizes that the continuized
acceleration is fundamentally different from previous continuous-time equivalents.
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Figure 1. Comparison between gradient descent, Nesterov acceleration, and
the continuized version of Nesterov acceleration, on a convex function (left) and
a strongly convex function (right). For the continuized acceleration, which is
randomized, the results shown corresponds to a single run. (Results were stable
across runs.)

4. Discrete implementation of the continuized implementation with
random parameters

In this section, we show that the continuized acceleration can be implemented exactly as a
discrete algorithm. Denote

x̃k = xTk
, ỹk = xTk+1− , z̃k = zTk

.

The three sequences x̃k, ỹk, z̃k, k > 0, satisfy a recurrence relation of the same structure as Nesterov
acceleration, but with random weights.

Theorem 4 (Discrete version of continuized acceleration). For any stochastic process of the form
(8)-(9), we have

ỹk = x̃k + τk(z̃k − x̃k) , (10)
x̃k+1 = ỹk − γ̃k∇f(ỹk) , (11)

z̃k+1 = z̃k + τ ′k(ỹk − z̃k)− γ̃′k∇f(ỹk) , (12)

for some random parameters τk, τ ′k, γ̃k, γ̃
′
k (that are functions of Tk, Tk+1, ηt, η

′
t, γt, γ

′
t).

(1) For the parameters of Theorem 3.1, τk = 1−
(

Tk

Tk+1

)2

, τ ′k = 0, γ̃k = 1
L , and γ̃

′
k = Tk

2L .

(2) For the parameters of Theorem 3.2, τk = 1
2

(
1− exp

(
−2
√

µ
L (Tk+1 − Tk)

))
,

τ ′k = tanh
(√

µ
L (Tk+1 − Tk)

)
, γ̃k = 1

L , and γ̃
′
k = 1√

µL
.

This theorem is proved in Appendix C.
In Figure 1, we compare this continuized Nesterov acceleration (10)-(12) with the classical

Nesterov acceleration (1)-(3) and gradient descent. In the strongly convex case (right), we run the
algorithms with the parameters of Theorem 2.2 and 4.2 on the function

f(x1, x2, x3) =
µ

2
(x1 − 1)2 +

3µ

2
(x2 − 1)2 +

L

2
(x3 − 1)2 ,

with µ = 10−2 and L = 1. In the convex case, we run the algorithms with the parameters of
Theorem 2.1 and 4.1 on the function

f(x1, . . . , x100) =
1

2

100∑
i=1

1

i2

(
xi −

1

i

)2

,

which has negligible strong convexity parameter. All iterations were initialized from x0 = z0 = 0.
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In order to have a straightforward theoretical comparison with Nesterov acceleration, we describe
the performance f(x̃k) − f(x∗) = f(xTk

) − f(x∗) of the continuized acceleration in terms of the
number k of gradient operations.

Theorem 5 (Convergence of the discretized version). The discrete implementation (10)-(12), with
random weights, of the continuized acceleration, satisfies:

(1) For the parameters of Theorem 4.1,

E
[
T 2
k (f(x̃k)− f(x∗))

]
6 2L‖z0 − x∗‖2 .

(2) Assume further that f is µ-strongly convex, µ > 0. For the parameters of Theorem 4.2,

E
[
exp

(√
µ

L
Tk

)
(f(x̃k)− f(x∗))

]
6 f(x0)− f(x∗) +

µ

2
‖z0 − x∗‖2 .

This theorem is proved in Appendix B.1. The law of Tk is well known: it is the sum of
k i.i.d. random variables of law exponential with rate 1; this is called an Erlang or Gamma
distribution with shape parameter k and rate 1. One can use well-known properties of this law,
such as its concentration around its expectation ETk = k, to derive corollaries of Theorem 5.

5. Robustness of the continuized Nesterov acceleration to additive
noise

We now investigate how the continuized version of Nesterov acceleration performs under stochastic
noise. We should emphasize that a similar study has been done on Nesterov acceleration directly
(Lan, 2012; Hu et al., 2009; Xiao, 2010; Devolder, 2011; Cohen et al., 2018; Aybat et al., 2020).
However, in the continuized framework, the randomness of the stochastic gradient and its time mix
in a particularly convenient way.

We assume that we do not have direct access to the gradient ∇f(x) but to a random estimate
∇f(x, ξ), where ξ ∈ Ξ is random of law P. We assume that our estimate is unbiased, i.e.,

∀x ∈ Rd , Eξ∇f(x, ξ) = ∇f(x) , (13)

and has a uniformly bounded variance, i.e., there exists σ2 > 0 such that

∀x ∈ Rd , Eξ ‖∇f(x, ξ)−∇f(x)‖2 6 σ2 . (14)

These assumptions typically hold in the additive noise model, where ∇f(x, ξ) = ∇f(x) + ξ, where
ξ ∈ Rd is satisfies Eξ = 0, E‖ξ‖2 6 σ2. By an abuse of terminology, we say that our stochastic
gradients have “additive noise” when (13) and (14) hold.

We keep the same algorithms, replacing gradients by stochastic gradients. Let ξ1, ξ2, . . . be
i.i.d. random variables of law P . We take stochastic gradient steps at the random times T1, T2, . . . ,

xTk
= xTk− − γTk

∇f(xTk−, ξk) ,

zTk
= zTk− − γ′Tk

∇f(xTk−, ξk) .

Between these random times, the variables mix through the same ODE

dxt = ηt(zt − xt)dt ,
dzt = η′t(xt − zt)dt .

This can be written more compactly in terms of the Poisson point measure dN(t, ξ) =
∑
k>0 δ(Tk,ξk)(dt, dξ)

on R>0 × Ξ, which has intensity dt⊗ P,

dxt = ηt(zt − xt)dt− γt
∫

Ξ

∇f(xt, ξ)dN(t, ξ) , (15)

dzt = η′t(xt − zt)dt− γ′t
∫

Ξ

∇f(xt, ξ)dN(t, ξ) . (16)

Theorem 6 (Continuized acceleration with noise). Assume that the stochastic gradients are
unbiased (13) and have a variance uniformly bounded by σ2 (14). Then the continuized acceleration
(15)-(16) satisfies the following.
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Figure 2. Effect of additive noise on gradient descent, Nesterov acceleration, and
the continuized version of Nesterov acceleration, on a convex function (left) and a
strongly convex function (right). The results shown corresponds to a single run.
(Results were stable across runs.)

(1) For the parameters of Theorem 3.1,

Ef(xt)− f(x∗) 6
2L‖z0 − x∗‖2

t2
+ σ2 t

3L
.

(2) Assume further that f is µ-strongly convex, µ > 0. For the parameters of Theorem 3.2,

Ef(xt)− f(x∗) 6
(
f(x0)− f(x∗) +

µ

2
‖z0 − x∗‖2

)
exp

(
−
√
µ

L
t

)
+ σ2 1√

µL
.

This theorem is proved in Appendix B.2.
In the above bounds, L is a parameter of the algorithm, that can be taken greater than the best

known smoothness constant of the function f . Increasing L reduces the stepsizes of the algorithm
and performs some variance reduction. If the bound σ2 on the variance is known, one can choose L
optimizing the above bounds in order to obtain algorithms that adapt to additive noise.

In Figure 2, we run the same simulations as in Figure 1, with two differences: (1) we add isotropic
Gaussian noise on the gradients, with covariance 10−4 Id, and (2) we initialized algorithms at the
optimum, i.e., x0 = z0 = x∗. Initializing at the optimum enables to isolate the effect of the additive
noise only. These simulations confirm Theorem 6: the noise term is (sub-)linearly increasing in the
convex case and constant in the strongly convex case.

Note that similarly to Theorem 5, one could obtain convergence bounds for the discrete imple-
mentation under the presence of additive noise.

6. Conclusion

In this work, we introduced a continuized version of Nesterov’s accelerated gradients. In a
nutshell, the method has two sequences of iterates from which gradient steps are taken at random
times. In between gradient steps, the two sequences mix following a simple ordinary differential
equation, whose parameters are picked for ensuring good convergence properties of the method.

As compared to other continuous time models of Nesterov acceleration, a key feature of this
approach is that the method can be implemented without any approximation step, as the differential
equation governing the mixing procedure has a simple analytical solution. When discretized, the
continuized method corresponds to an accelerated gradient method with random parameters.

Continuization strategies were introduced in the context of Markov chains (Aldous and Fill,
2002). Here, they allow using acceleration mechanisms in asynchronous distributed optimization,
where agents are usually not aware of total the number of iterations taken so far, as showcased
in the context of asynchronous gossip algorithms by Even et al. (2020). Possible future research
directions include extending to constrained and non-Euclidean settings.
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Appendix A. Stochastic calculus toolbox

In this appendix, we give a short introduction to the mathematical tools that we use in this paper.
For more details, the reader can consult the more rigorous monographs of Jacod and Shiryaev
(2013); Ikeda and Watanabe (2014); Le Gall (2016).

A.1. Poisson point measures. We fix P a probability law on some space Ξ.

Definition 1. A (homogenous) Poisson point measure on R>0 × Ξ, with intensity ν(dt,dξ) =
dt⊗ dP(ξ), is a random measure N on R>0 × Ξ such that

• For any disjoint measurable subsets A and B of R>0×Ξ, N(A) and N(B) are independent.
• For any measurable subset A of R>0×Ξ, N(A) is a Poisson random variable with parameter
ν(A). (If ν(A) =∞, N(A) is equal to ∞ almost surely.)

Proposition 1. Let N be a Poisson point measure on R>0 × Ξ with intensity dt⊗ dP(ξ).
There exists a decomposition dN(t, ξ) =

∑
k>0 δ(Tk,ξk)(dt, dξ) on R>0 × Ξ where 0 < T1 < T2 <

T3 < . . . and ξ1, ξ2, ξ3, · · · ∈ Ξ satisfy:
• T1, T2 − T1, T3 − T2, . . . are i.i.d. of law exponential with rate 1,
• ξ1, ξ2, ξ3, . . . are i.i.d. of law P and independent of the T1, T2, T3, . . . .

Definition 2. Let N be a Poisson point measure on R>0 × Ξ with intensity dt ⊗ dP(ξ). The
filtration Ft, t > 0, generated by N is defined by the formula

Ft = σ (N([0, s]×A) , s 6 t, A ⊂ Ξ measurable) .

A.2. Martingales and supermartingales. Let (Ω,F ,P) be a probability space and Ft, t > 0,
a filtration on this probability space.

Definition 3. A random process xt ∈ Rd, t > 0, is adapted if for all t > 0, xt is Ft-measurable.
An adapted process xt ∈ R, t > 0 is a martingale (resp. supermartingale) if for all 0 6 s 6 t,
E[xt| Fs] = xs (resp. E[xt| Fs] 6 xs).

Definition 4. A random variable T ∈ [0,∞] is a stopping time if for all t > 0, {T 6 t} ∈ Ft.

Definition 5. A function xt, t > 0, is said to be càdlàg if it is right continuous and for every
t > 0, the limit xt− := lims→t,s<t xs exists and is finite.

Theorem 7 (Martingale stopping theorem). Let xt, t > 0, be a martingale (resp. supermartingale)
with càdlàg trajectories and uniformly integrable. Let T be a stopping time. Then EXT = X0

(resp. EXT 6 X0).

A.3. Stochastic ordinary differential equation with Poisson jumps. We fix P a probability
law on some space Ξ, N a Poisson point measure on R>0×Ξ with intensity dt⊗ dP(ξ), and denote
Ft, t > 0, the filtration generated by N .

Definition 6. Let b : Rd → Rd and G : Rd×Ξ→ Rd be two functions. An random process xt ∈ Rd,
t > 0, is said to be a solution of the equation

dxt = b(xt)dt+

∫
Ξ

G(xt, ξ)dN(t, ξ)

if it is adapted, càdlàg, and for all t > 0,

xt = x0 +

∫ t

0

b(xs)ds+

∫
[0,t]×Ξ

G(xs−, ξ)dN(s, ξ) .

If we consider the decomposition dN(t, ξ) =
∑
k>0 δ(Tk,ξk)(dt, dξ) given by Proposition 1, then∫

[0,t]×Ξ

G(xs−, ξ)dN(s, ξ) =
∑
k>0

1{Tk6t}G(xTk−, ξk) .

Proposition 2. Let xt ∈ Rd be a solution of

dxt = b(xt)dt+

∫
Ξ

G(xt, ξ)dN(t, ξ)
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and ϕ : Rd → R be a smooth function. Then

ϕ(xt) = ϕ(x0) +

∫ t

0

〈∇ϕ(xs), b(xs)〉ds+

∫
[0,t]×Ξ

(ϕ(xs− +G(xs−, ξ))− ϕ(xs−)) dN(s, ξ) .

Moreover, we have the decomposition∫
[0,t]×Ξ

(ϕ(xs− +G(xs−, ξ))− ϕ(xs−)) dN(s, ξ)

=

∫ t

0

∫
Ξ

(ϕ(xs +G(xs, ξ))− ϕ(xs)) dtdP(ξ) +Mt ,

where Mt =
∫

[0,t]×Ξ
(ϕ(xs− +G(xs−, ξ))− ϕ(xs−)) (dN(s, ξ)− dtdP(ξ)) is a martingale.

This proposition is an elementary calculus of variations formula: to compute the value of the
observable ϕ(xt), one must sum the effects of the continuous part and of the Poisson jumps.
Moreover, the integral with respect to the Poisson measure N becomes a martingale if the same
integral with respect to its intensity measure dt⊗ dP(ξ) is removed.

Appendix B. Analysis of the continuized Nesterov acceleration

To encompass the proofs in the convex and in the strongly convex cases in a unified way, we
assume f is µ-strongly convex, µ > 0. If µ > 0, this corresponds to assuming the µ-strong convexity
in the usual sense; if µ = 0, it means that we only assume the function to be convex. In other
words, the proofs in the convex case can be obtained by taking µ = 0 below.

In this section, Ft, t > 0, is the filtration associated to the Poisson point measure N .

B.1. Noiseless case: proofs of Theorems 3 and 5. In this section, we analyze the convergence
of the continuized iteration (8)-(9), that we recall for the reader’s convenience:

dxt = ηt(zt − xt)dt− γt∇f(xt)dN(t) ,

dzt = η′t(xt − zt)dt− γ′t∇f(xt)dN(t) .

The choices of parameters ηt, η′t, γt, γ′t, t > 0, and the corresponding convergence bounds follow
naturally from the analysis. We seek sufficient conditions under which the function

φt = At (f(xt)− f∗) +Bt‖zt − x∗‖2

is a supermartingale.
The process x̄t = (t, xt, zt) satisfies the equation

dx̄t = b(x̄t)dt+G(x̄t)dN(t) , b(x̄t) =

 1
ηt(zt − xt)
η′t(xt − zt)

 , G(x̄t) =

 0
−γt∇f(xt)
−γ′t∇f(xt)

 .

We thus apply Proposition 2 to φt = ϕ(x̄t) = ϕ(t, xt, zt) where

ϕ(t, x, z) = At (f(x)− f(x∗)) +Bt‖z − x∗‖2 ,
we obtain:

φt = φ0 +

∫ t

0

〈∇ϕ(x̄s), b(x̄s)〉ds+

∫ t

0

(ϕ(x̄s +G(x̄s))− ϕ(x̄s)) ds+Mt ,

where Mt is a martingale. Thus, to show that ϕt is a supermartingale, it is sufficient to show that
the map t 7→

∫ t
0
〈∇ϕ(x̄s), b(x̄s)〉ds+

∫ t
0

(ϕ(x̄s +G(x̄s))− ϕ(x̄s))) ds is non-increasing almost surely,
i.e.,

It := 〈∇ϕ(x̄t), b(x̄t)〉+ ϕ(x̄t +G(x̄t))− ϕ(x̄t) 6 0 .

We now compute

〈∇ϕ(x̄t), b(x̄t)〉 = ∂tϕ(x̄t) + 〈∂xϕ(x̄t), ηt(zt − xt)〉+ 〈∂zϕ(x̄t), η
′
t(xt − zt)〉

=
dAt
dt

(f(xt)− f(x∗)) +
dBt
dt
‖zt − x∗‖2 +Atηt〈∇f(xt), zt − xt〉

+ 2Btη
′
t〈zt − x∗, xt − zt〉 .
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Here, we use that as f is µ-strongly convex,

f(xt)− f(x∗) 6 〈∇f(xt), xt − x∗〉 −
µ

2
‖xt − x∗‖2 ,

and the simple bound

〈zt − x∗, xt − zt〉 = 〈zt − x∗, xt − x∗〉 − ‖zt − x∗‖2 6 ‖zt − x∗‖‖xt − x∗‖ − ‖zt − x∗‖2

6
1

2

(
‖zt − x∗‖2 + ‖xt − x∗‖2

)
− ‖zt − x∗‖2 =

1

2

(
‖xt − x∗‖2 − ‖zt − x∗‖2

)
.

This gives

〈∇ϕ(x̄t), b(x̄t)〉 6
(

dAt
dt
−Atηt

)
〈∇f(xt), xt − x∗〉+

(
Btη

′
t −

dAt
dt

µ

2

)
‖xt − x∗‖2 (17)

+

(
dBt
dt
−Btη′t

)
‖zt − x∗‖2 +Atηt〈∇f(xt), zt − x∗〉 . (18)

Further,

ϕ(x̄t +G(x̄t))− ϕ(x̄t) = At (f(xt − γt∇f(xt))− f(xt))

+Bt
(
‖(zt − x∗)− γ′t∇f(xt)‖2 − ‖zt − x∗‖2

)
.

As f is L-smooth,

f(xt − γt∇f(xt))− f(xt) 6 〈∇f(xt),−γt∇f(xt)〉+
L

2
‖γt∇f(xt)‖2

= −γt
(

1− Lγt
2

)
‖∇f(xt)‖2 .

This gives

ϕ(x̄t +G(x̄t))− ϕ(x̄t) 6

(
Btγ

′2
t −Atγt

(
1− Lγt

2

))
‖∇f(xt)‖2 − 2Btγ

′
t〈∇f(xt), zt − x∗〉 . (19)

Finally, combining (17)-(18) with (19), we obtain

It 6

(
dAt
dt
−Atηt

)
〈∇f(xt), xt − x∗〉+

(
dBt
dt
−Btη′t

)
‖zt − x∗‖2 (20)

+ (Atηt − 2Btγ
′
t)〈∇f(xt), zt − x∗〉+

(
Btη

′
t −

dAt
dt

µ

2

)
‖xt − x∗‖2 (21)

+

(
Btγ

′2
t −Atγt

(
1− Lγt

2

))
‖∇f(xt)‖2 . (22)

Remember that It 6 0 is a sufficient condition for φt to be a supermartingale. Here, we choose the
parameters ηt, η′t, γt, γ′t, t > 0, so that all prefactors are 0. We start by taking γt ≡ 1

L (other choices
γt <

2
L could be possible but would give similar results) and we want to satisfy

dAt
dt

= Atηt ,
dBt
dt

= Btη
′
t Atηt = 2Btγ

′
t , Btη

′
t =

dAt
dt

µ

2
, Btγ

′2
t =

At
2L

.

To satisfy the last equation, we choose

γ′t =

√
At

2LBt
. (23)

To satisfy the third equation, we choose

ηt =
2Btγ

′
t

At
=

√
2Bt
LAt

. (24)

To satisfy the fourth equation, we choose

η′t =
dAt
dt

µ

2Bt
=
Atηtµ

2Bt
= µ

√
At

2LBt
. (25)

Having now all parameters ηt, η′t, γt, γ′t constrained, we now have that φt is Lyapunov if

dAt
dt

= Atηt =

√
2AtBt
L

,
dBt
dt

= Btη
′
t = µ

√
AtBt
2L

.
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This only leaves the choice of the initialization (A0, B0) as free: both the algorithm and the
Lyapunov depend on it. (Actually, only the relative value A0/B0 matters.) Instead of solving
the above system of two coupled non-linear ODEs, it is convenient to turn them into a single
second-order linear ODE:

d

dt

(√
At

)
=

1

2
√
At

dAt
dt

=

√
Bt
2L

,
d

dt

(√
Bt

)
=

1

2
√
Bt

dBt
dt

= µ

√
At
8L

. (26)

This can also be restated as

d2

dt2

(√
At

)
=

µ

4L

√
At ,

√
Bt =

√
2L

d

dt

(√
At

)
. (27)

B.1.1. Proof of the first part (convex case). We now assume µ = 0, and we choose the solution such
that A0 = 0 and B0 = 1. From (26), we have d

dt

(√
Bt
)

= 0, thus Bt ≡ 1, and d
dt

(√
At
)

= 1√
2L

,
thus

√
At = t√

2L
. The parameters of the algorithm are given by (23)-(25): ηt = 2

t , η
′
t = 0, γ′t = t√

2L

(and we had chosen γt = 1
L ).

From the fact that φt is a supermartingale, we obtain that the associated algorithm satisfies

Ef(xt)− f(x∗) 6
Eφt
At
6
φ0

At
=

2L‖z0 − x∗‖2

t2
.

This proves the first part of Theorem 3.
Further, one can apply martingale stopping Theorem 7 to the supermartingale φt with the

stopping time Tk to obtain

E [ATk
(f(x̃k)− f(x∗))] = E [ATk

(f(xTk
)− f(x∗))] 6 EφTk

6 φ0 = ‖z0 − x∗‖2 .

This proves the first part of Theorem 5.

B.1.2. Proof of the second part (strongly convex case). We now assume µ > 0. We consider the
solution of (27) that is exponential:√

At =
√
A0 exp

(
1

2

√
µ

L
t

)
,

√
Bt =

√
A0

√
µ

2
exp

(
1

2

√
µ

L
t

)
.

The parameters of the algorithm are given by (23)-(25): ηt = η′t =
√

µ
L , γ

′
t = 1√

µL
(and we had

chosen γt = 1
L ).

From the fact that φt is a supermartingale, we obtain that the associated algorithm satisfies

Ef(xt)− f(x∗) 6
Eφt
At
6
φ0

At
=
A0(f(x0)− f(x∗)) +A0

µ
2 ‖z0 − x∗‖2

At

=
(
f(x0)− f(x∗) +

µ

2
‖z0 − x∗‖2

)
exp

(
−
√
µ

L
t

)
.

This proves the second part of Theorem 3. Similarly to above, one can also apply the martingale
stopping theorem to prove the second part of Theorem 5.

Remark 1. In the above derivation, in both the convex and strongly convex cases, we choose a
particular solution of (27), while several solutions are possible. In the convex case, we make the
choice A0 = 0 to have a succinct bound that does not depend on f(x0)− f(x∗). More importantly,
in the strongly convex case, we choose the solution that satisfies the relation

√
µ
2

√
At =

√
Bt, which

implies that ηt, η′t, γ′t, are constant functions of t, and ηt = η′t. These conditions help solving in
closed form the continuous part of the process

dxt = ηt(zt − xt)dt ,
dzt = η′t(xt − zt)dt ,

which is crucial if we want to have a discrete implementation of our method (for more details, see
Theorem 4 and its proof). However, in the strongly convex case, considering other solutions would
be interesting, for instance to have an algorithm converging to the convex one as µ→ 0.
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B.2. With additive noise: proof of Theorem 6. The proof of this theorem is along the same
lines as the proof of Theorem 3 above. Here, we only give the major differences.

We analyze the convergence of the continuized stochastic iteration (15)-(16), that we recall for
the reader’s convenience:

dxt = ηt(zt − xt)dt− γt
∫

Ξ

∇f(xt, ξ)dN(t, ξ) ,

dzt = η′t(xt − zt)dt− γ′t
∫

Ξ

∇f(xt, ξ)dN(t, ξ) .

In this setting, we loose the property that

φt = At (f(xt)− f∗) +Bt‖zt − x∗‖2

is a supermartingale. However, we bound the increase of φt.
The process x̄t = (t, xt, zt) satisfies the equation

dx̄t = b(x̄t)dt+

∫
Ξ

G(x̄t, ξ)dN(t, ξ), b(x̄t) =

 1
ηt(zt − xt)
η′t(xt − zt)

 , G(x̄t, ξ) =

 0
−γt∇f(xt, ξ)
−γ′t∇f(xt, ξ)

 .

We apply Proposition 2 to φt = ϕ(x̄t) = ϕ(t, xt, zt) and obtain

φt = φ0 +

∫ t

0

Isds+Mt , (28)

where Mt is a martingale and

It = 〈∇ϕ(x̄t), b(x̄t)〉+ Eξϕ(x̄t +G(x̄t, ξ))− ϕ(x̄t) .

The computation of the first term remains the same: the inequality (17)-(18) holds. The computation
of the second term becomes

Eξϕ(x̄t +G(x̄t, ξ))− ϕ(x̄t) = At (Eξf(xt − γt∇f(xt, ξ))− f(xt))

+Bt
(
Eξ‖(zt − x∗)− γ′t∇f(xt, ξ)‖2 − ‖zt − x∗‖2

)
.

As f is L-smooth,

f(xt − γt∇f(xt, ξ))− f(xt) 6 〈∇f(xt),−γt∇f(xt, ξ)〉+
L

2
‖γt∇f(xt, ξ)‖2 ,

Eξf(xt − γt∇f(xt, ξ))− f(xt) 6 〈∇f(xt),−γtEξ∇f(xt, ξ)〉+
L

2
Eξ‖γt∇f(xt, ξ)‖2 .

Bu assumptions (13) and (14), the stochastic gradient ∇f(x, ξ) is unbiased and has a variance
bounded by σ2, which implies Eξ‖∇f(xt, ξ)‖2 6 ‖∇f(xt)‖2 + σ2. Thus

Eξf(xt − γt∇f(xt, ξ))− f(xt) 6 −γt
(

1− Lγt
2

)
‖∇f(xt)‖2 + σ2Lγ

2
t

2
.

Similarly,

Eξ‖(zt − x∗)− γ′t∇f(xt, ξ)‖2 − ‖zt − x∗‖2 = −2γ′t〈Eξ∇f(xt, ξ), zt − x∗〉+ γ′2t Eξ‖∇f(xt, ξ)‖2

6 −2γ′t〈∇f(xt), zt − x∗〉+ γ′2t ‖∇f(xt)‖2 + σ2γ′2t .

This gives

ϕ(x̄t +G(x̄t))− ϕ(x̄t) 6

(
Btγ

′2
t −Atγt

(
1− Lγt

2

))
‖∇f(xt)‖2 − 2Btγ

′
t〈∇f(xt), zt − x∗〉

+ σ2

(
At
Lγ2

t

2
+Btγ

′2
t

)
.
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Combining the bounds, we obtain

It 6

(
dAt
dt
−Atηt

)
〈∇f(xt), xt − x∗〉+

(
dBt
dt
−Btη′t

)
‖zt − x∗‖2

+ (Atηt − 2Btγ
′
t)〈∇f(xt), zt − x∗〉+

(
Btη

′
t −

dAt
dt

µ

2

)
‖xt − x∗‖2

+

(
Btγ

′2
t −Atγt

(
1− Lγt

2

))
‖∇f(xt)‖2 + σ2

(
At
Lγ2

t

2
+Btγ

′2
t

)
,

which is an additive perturbation of the bound (20)-(22) in the noiseless case, with a perturbation
proportional to σ2. The choices of parameters of Theorem 3 cancel all first five prefactors, and
satisfy γt = 1

L , At
Lγ2

t

2 = Btγ
′2
t . We thus obtain

It 6 σ
2At
L
.

This bound controls the increase of φt. Using the decomposition (28), we obtain

Ef(xt)− f(x∗) 6
Eφt
At
6
φ0

At
+

∫ t
0
EIsds
At

6
A0(f(x0)− f(x∗)) +B0‖z0 − x∗‖2

At
+
σ2

L

∫ t
0
Asds

At
.

B.2.1. Proof of the first part (convex case). In this case, At = t2

2L and B0 = 1. Thus
∫ t

0
Asds =

1
2L

t3

3 . Thus

Ef(xt)− f(x∗) 6
2L‖z0 − x∗‖2

t2
+ σ2 t

3L
.

B.2.2. Proof of the second part (strongly convex case). In this case, At = A0 exp
(√

µ
L t
)
and

B0 = A0
µ
2 . Thus

∫ t
0
Asds 6 A0

√
µ
L

−1
exp

(√
µ
L t
)

=
√

L
µAt. Thus

Ef(xt)− f(x∗) 6
(
f(x0)− f(x∗) +

µ

2
‖z0 − x∗‖2

)
exp

(
−
√
µ

L
t

)
+ σ2 1√

µL
.

Appendix C. Proof of Theorem 4

By integrating the ODE

dxt = ηt(zt − xt)dt ,
dzt = η′t(xt − zt)dt ,

between Tk and Tk+1−, we obtain that there exists τk, τ ′′k , such that

ỹk = xTk+1− = xTk
+ τk(zTk

− xTk
) = x̃k + τk(z̃k − x̃k) , (29)

zTk+1− = zTk
+ τ ′′k (xTk

− zTk
) = z̃k + τ ′′k (x̃k − z̃k) .

From the first equation, we have x̃k = 1
1−τk (ỹk − τkz̃k), which gives by substitution in the second

equation,

zTk+1− = z̃k + τ ′′k

(
1

1− τk
(ỹk − τkz̃k)− z̃k

)
= z̃k + τ ′k(ỹk − z̃k) ,

where τ ′k =
τ ′′
k

1−τk .
Further, from (4)-(5), we obtain the equations

x̃k+1 = xTk+1
= xTk+1− − γTk+1

∇f(xTk+1−) = ỹk − γTk+1
∇f(ỹk) , (30)

z̃k+1 = zTk+1
= zTk+1− − γ′Tk+1

∇f(xTk+1−) = z̃k + τ ′k(ỹk − z̃k)− γ′Tk+1
∇f(ỹk) . (31)

The stated equation (10)-(12) are the combination of (29), (30) and (31).
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(1) The parameters of Theorem 3.1 are ηt = 2
t , η
′
t = 0, γt = 1

L and γ′t = t
2L . In this case, the

ODE

dxt = ηt(zt − xt)dt =
2

t
(zt − xt)dt ,

dzt = η′t(xt − zt)dt = 0 ,

can be integrated in closed form: for t > t0,

xt = zt0 +

(
t0
t

)2

(xt0 − zt0) = xt0 +

(
1−

(
t0
t

)2
)

(zt0 − xt0) ,

zt = zt0 .

In particular, taking t0 = Tk, t = Tk+1−, we obtain τk = 1 −
(

Tk

Tk+1

)2

, τ ′′k = 0 and thus

τ ′k =
τ ′′
k

1−τk = 0. Finally, γ̃k = γTk
= 1

L and γ̃′k = γ′Tk
= Tk

2L .
(2) The parameters of Theorem 3.2 are ηt = η′t ≡

√
µ
L , γt ≡

1
L and γ′t ≡ 1√

µL
. In this case, the

ODE

dxt = ηt(zt − xt)dt =

√
µ

L
(zt − xt)dt ,

dzt = η′t(xt − zt)dt =

√
µ

L
(xt − zt)dt ,

can also be integrated in closed form: for t > t0,

xt =
xt0 + zt0

2
+
xt0 − zt0

2
exp

(
−2

√
µ

L
(t− t0)

)
= xt0 +

1

2

(
1− exp

(
−2

√
µ

L
(t− t0)

))
(zt0 − xt0) ,

zt =
xt0 + zt0

2
+
zt0 − xt0

2
exp

(
−2

√
µ

L
(t− t0)

)
= zt0 +

1

2

(
1− exp

(
−2

√
µ

L
(t− t0)

))
(xt0 − zt0) .

In particular, taking t0 = Tk, t = Tk+1−, we obtain τk = τ ′′k = 1
2

(
1− exp

(
−2
√

µ
L (Tk+1 − Tk)

))
and thus τ ′k =

τ ′′
k

1−τk = tanh
(√

µ
L (Tk+1 − Tk)

)
. Finally, γ̃k = γTk

= 1
L and γ̃′k = γ′Tk

= 1√
µL

.

Appendix D. Heuristic ODE scaling limit of the continuized
acceleration

D.1. Convex case. With the choices of parameters of Theorem 3.1, the continuized acceleration
is

dxt =
2

t
(zt − xt)dt−

1

L
∇f(xt)dN(t) ,

dzt = − t

2L
∇f(xt)dN(t) .

The ODE scaling limit is obtained by taking the limit L→∞ (so that the stepsize 1/L vanishes)
and rescaling the time s = t/

√
L. Some law of large number argument heuristically gives us that,

as L→∞, dN(t) = dN(
√
Ls) ≈

√
Lds. Thus in the limit, we obtain

dxs =
2√
Ls

(zs − xs)
√
Lds− 1

L
∇f(xs)

√
Lds ,

dzs = −
√
Ls

2L
∇f(xs)

√
Lds .
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The second term of the first equation becomes negligible in the limit. Thus the equations simplify
to

dxs
ds

=
2

s
(zs − xs) ,

dzs
ds

= −s
2
∇f(xs) .

Thus

−s
2
∇f(xs) =

dzs
ds

=
d

ds

(
xs +

s

2

dxs
ds

)
=

dxs
ds

+
1

2

dxs
ds

+
s

2

d2xs
ds2

,

and thus
d2xs
ds2

+
3

s

dxs
ds

+∇f(xs) = 0 .

This is the same limiting ODE as the one found by Su et al. (2014) for Nesterov acceleration.

D.2. Strongly-convex case. With the choices of parameters of Theorem 3.2, the continuized
acceleration is

dxt =

√
µ

L
(zt − xt)dt−

1

L
∇f(xt)dN(t) ,

dzt =

√
µ

L
(xt − zt)dt−

1√
µL
∇f(xt)dN(t) .

Again, we take joint scaling L→∞, s = t/
√
L, with the approximation dN(t) ≈

√
Lds. We obtain

dxs =

√
µ

L
(zs − xs)

√
Lds− 1

L
∇f(xs)

√
Lds ,

dzs =

√
µ

L
(xs − zs)

√
Lds− 1√

µL
∇f(xs)

√
Lds .

As before, the second term of the first equation becomes negligible in the limit. Thus the equations
simplify to

dxs
ds

=
√
µ(zs − xs) , (32)

dzs
ds

=
√
µ(xs − zs)−

1
√
µ
∇f(xs) . (33)

From (32), we have zs = xs + 1√
µ

dxs

ds , and by substitution in (33), we obtain

d2xs
ds2

+ 2
√
µ

dxs
ds

+∇f(xs) = 0 .

This is the so-called “low-resolution” ODE for Nesterov acceleration of Shi et al. (2018).
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