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Large ranking games with
non-observable diffusion control

S. Ankirchner ∗ N. Kazi-Tani † J. Wendt ‡ C. Zhou §

February 11, 2021

We consider a symmetric game with the following features: each player
can control the fluctuation intensity of an individual dynamic state process
up to some exponentially distributed random time; no player can observe
the other players’ actions; the players whose final states are among the best
α ∈ (0, 1) of all states receive a fixed prize. Within the mean-field limit
version of the game we compute an explicit equilibrium, a threshold strategy
that consists in choosing the maximal fluctuation intensity when the state
is below a given threshold, and the minimal intensity else. We show that
for large n the n-tupel of the threshold strategy provides an approximate
Nash-equilibrium of the n-player game. We also derive the rate at which the
approximate equilibrium reward and the best response reward converge to
each other, as the number of players n tends to infinity.
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Keywords : Diffusion control; game with non-observable actions; rank-based

reward; mean-field limit; oscillating Brownian motion.

1. Introduction

We start by describing a game that models, in a stylized form, the com-
petition among many agents who can each control the fluctuation intensity
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of a state until an individual random time horizon and who receive some
benefit if their final state is among the highest α ∈ (0, 1). Our game model
is generic and allows for various interpretations: it can for instance describe
competition among research and development teams [9], among animals for
mating partners [25], or among cryptocurrencies miners [29].

Throughout let n be a large natural number representing the number of
players. Let W = (W 1, . . . ,W n) be an n-dimensional Brownian motion on a
complete probability space (Ω,F , P ). In addition, let τ1, . . . , τn be an inde-
pendent family of random variables that are exponentially distributed with
common parameter λ ∈ (0,∞). We assume that each τi, i ∈ {1, . . . , n}, is
independent of the Brownian motion W . For every i ∈ {1, . . . , n} let (F it )t≥0
be the filtration generated by the Brownian motion W i and augmented by
the P -null sets in F .

Let 0 < σ1 ≤ σ2. The set of strategies of player i, denoted by Ai, consists
of all (F it )-progressively measurable processes H : Ω × [0,∞) → [σ1, σ2].
Given that player i chooses the strategy H i, her final state satisfies

X i,Hi

τi
=

∫ τi

0

H i
s dW

i
s .

To abbreviate notation we set Ān = A1 × · · · × An.
We suppose that each player aims at maximizing the probability of her

own final state to be greater than or equal to the empirical (1− α)-quantile
of all players’ final states. More precisely, for H = (H1, . . . , Hn) ∈ Ān let

µn,H =
1

n

n∑
i=1

δ
Xi,Hi
τi

(1)

be the empirical distribution of the players’ final states. We define
q(µn,H , 1 − α) = inf{r ∈ R : µn,H((−∞, r]) ≥ 1 − α}. Each player wants
to maximize the probability P (X i,Hi

τi
≥ q(µn,H , 1 − α)). Note that X i,Hi

τi
≥

q(µn,H , 1 − α) if and only if not more than α of all final states are greater
than the final state of player i.

We stress that the assumptions imply that no player can observe the other
players’ strategy processes while controlling her own state process X i. Hence,
the other players’ states are not observable, which mathematically means
that for any t ≥ 0 and i, j with i 6= j the sigma-field σ(Xj

s : s ≤ t) is
not contained in F it . The non-observability of actions means that one can
interpret the game as a static game with a single period only: at time zero
each player i chooses a strategy H i and thus determines the distribution of
her final state; at time one each player draws independently from the chosen
distribution and the best α are rewarded with the prize.

It is standard to predict or explain the players’ behaviour in terms of a
Nash equilibrium, which here is defined as follows.
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Definition 1.1. A tupel H = (H1, . . . , Hn) ∈ Ān is called a Nash equilib-
rium if for all i ∈ {1, . . . , n} we have

P (X i,Hi

τi
≥ q(µn,H , 1− α)) ≥ sup

G∈Ai
P (X i,G

τi
≥ q(µn,(H−i,G), 1− α)),

where (H−i, G) = (H1, . . . , H i−1, G,H i+1, . . . , Hn).

Notice that the expectation of any player’s outcome is always zero, what-
ever control is chosen. However, other distributional properties such as the
variance, the skewness and the position of quantiles do depend on the strat-
egy. For example, a larger H i leads to a larger variance of the final outcome
X i
τi

. Moreover, if player i chooses large values for H i when her state is small
and small values when the state is large, then the distribution of X i

τi
has

a negative skew. In particular, a state-dependent choice of the fluctuation
intensity allows to influence the position of quantiles, and hence the prob-
ability of receiving the reward. So the game helps in understanding how a
rank-based reward determines the distributional properties of the players’
states and by which dynamic strategies they can be implemented.

The discontinuous payoff and the general information structure make it
difficult to compute an exact Nash equilibrium for the game, or even to
show existence of an equilibrium by using abstract arguments. Our idea is
to compute an approximate Nash equilibrium by considering the mean-field
limit of the game. The mean-field game approach, introduced by [19], [20],
[21] and [15], [14], is based on the observation that in a symmetric game with
many similar players, the empirical distribution of the realized players’ states
can be approximated with the state distribution of a single player. Thus, the
Nash equilibrium with many players can be approximated by solving a single
agent control problem where the reward depends on the distribution of the
state.

It turns out that the mean-field version of the game described above pos-
sesses an explicit equilibrium strategy (see Section 2). This allows further
to show that the symmetric n-tupel is an approximate Nash equilibrium of
the n-player game (see Section 3). More precisely, the difference of expected
payoff under the approximate equilibrium strategies and the best response
payoff converges to zero as the number of players n tends to infinity.

Results and comparison to the literature

We obtain that, within the mean-field limit version of the game, there exists
a symmetric equilibrium that consists in choosing the maximal fluctuation
intensity when the state is below a given threshold, and the minimal intensity
else. We refer to such a strategy as a threshold strategy. The threshold of
the mean-field equilibrium strategy is chosen such that it coincides with the
(1−α)-quantile of the resulting final state distribution. The threshold can be

3



identified as a fixed point of a mapping from the set of threshold strategies to
itself. Fixed point arguments are a common tool for determining equilibria
in mean-field games (see, e.g., [6] and [7]).

Controlling the state with a threshold strategy entails that the state dy-
namics are a so-called oscillating Brownian motion (OBM), a process intro-
duced in [17] and studied in [24] from a control theory perspective without
interaction. The distribution of OBM is explicitly known at deterministic
times. This allows us to compute the threshold of the mean-field equilibrium
in closed form.

In the mean-field equilibrium the distribution of the final state is nega-
tively skewed and the (1− α)-quantile is farer to the right than when using
a strategy with constant fluctuations. Choosing the maximal fluctuation
intensity below the threshold increases risk, measured, e.g., in terms of the
variance of the final state. Thus, the results show that the rank-based reward
incentivizes players to introduce a negative skew, and a high variance.

We do not compute an exact Nash equilibrium for the n player game.
We believe that it is far more difficult to determine an exact equilibrium
than an approximate one based on a mean-field limit. Indeed, one can show
that already the 2 player version of the game does not, in general, possess a
symmetric Nash equilibrium in threshold strategies; a counter-example will
be presented in the dissertation of the third author.

In general, games with rank-based rewards are hard to analyze because
of discontinuities in the reward function. A workaround is to consider re-
wards depending continuously on the average state of all players. Espinosa
and Touzi [11] consider a game where each player aims at maximizing the
expected utility of her income depending on the deviation the player’s state
from the average state. They characterize a Nash equilibrium in terms of a
system of coupled backward stochastic differential equations (BSDEs). [10]
establishes a Nash equilibrium in a market with N agents with the perfor-
mance criteria of relative wealth level when the mean return rate is unob-
servable. Each investor has a heterogeneous prior belief on the return rate
of the risky asset. By a separation result and a martingale argument, they
show that the optimal investment strategy under this setting can be char-
acterized by a fully-coupled linear FBSDE system. Two sets of deep neural
networks are used for first computing each investor’s estimate of the mean
return rate and then numerically solving the FBSDEs. [13] uses a probabilis-
tic approach to study an N-player exponential utility game and a mean field
exponential utility game. Each player manages two stocks; one is driven by
an individual shock and the other is driven by a common shock. Moreover,
each player is concerned not only with her own terminal wealth but also
with the relative performance of her competitors. A multi-dimensional FB-
SDE with quadratic growth (a mean-field FBSDEs, respectively) is derived
to characterize an equilibrium of the N-player game (of the mean field game,
respectively).
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The idea to use mean-field limits for analyzing differential games with
rank-based rewards has been employed already in the articles [3],[4], [27]
and [5]. All these articles consider versions of a rank-based mean-field game,
where agents influence the drift rate of the state, but not the diffusion rate.

The articles [3], [4], [27] provide conditions guaranteeing that the mean-
field games approximate the corresponding n-player game for large n; and
they also determine the rate at which the expected reward of the mean-field
approximation and the best response converge to each other, as n → ∞.
Motivated by these articles, in Section 3 we also compute a convergence rate
for the game at hand. In the recent paper [2], the authors analyze a mean
field game where the diffusion coefficient can be controlled and show that the
solution of the problem is characterized by a McKean-Vlasov second order
backward SDE. Note that it is not possible to directly apply the results of [2]
to our setting, since the particular form of our criteria given as a probability
in Definition 1.1 would make the terminal condition of the related second
order BSDE discontinuous, which is not allowed in [2].

2. The mean-field approximation

In this section we first describe the mean-field version of the game introduced
in Section 1. We then prove that there exists an equilibrium in closed form.

Let B be a Brownian motion on a complete probability space (Ω,F , P )
and τ be an exponentially distributed random variable with parameter λ > 0
independent from B. Furthermore, let (Ft)t≥0 be the augmented Brownian
filtration, generated by B and augmented by the P -null sets in F .

We denote by M the set of all progressively measurable control processes
(βt)t≥0 taking values in [σ1, σ2]. Given that an agent chooses the control

function β ∈M, her state process is given by Xβ
t :=

∫ t
0
βs dBs.

Remark 2.1. All feedback controls with a feedback function m : R →
[σ1, σ2] of bounded variation are contained in M. Indeed, since m is uni-
formly bounded away from zero there exists a weak solution to the SDE

dXt = m(Xt)dBt, X0 = 0, (2)

according to Theorem 2.6.1 in [18], and pathwise uniqueness applies accord-
ing to results in [26]. Hence, there exists a unique strong solution Xm to (2)
(cf. section 5.3 in [16]), and (m(Xm

t ))t≥0 belongs to M.

Let α ∈ (0, 1) and denote by q(Xβ
τ , 1−α) the (1−α)-quantile of the random

variable Xβ
τ , i.e. q(Xβ

τ , 1− α) = inf{r ∈ R : P (Xβ
τ ≤ r) ≥ 1− α} = inf{r ∈

R : P (Xβ
τ ≥ r) ≤ α}.
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For all β ∈M the random variable Xβ
τ is absolutely continuous w.r.t. the

Lebesgue measure on R, see Proposition A.4 below. Hence,

P (Xβ
τ ≥ q(Xβ

τ , 1− α)) = α.

Definition 2.2. We call β∗ ∈ M an equilibrium strategy of the mean-field
game if

P (Xβ∗

τ ≥ q(Xβ∗

τ , 1− α)) = max
β∈M

P (Xβ
τ ≥ q(Xβ∗

τ , 1− α)) (3)

Before proving that there exists an equilibrium strategy, we first show that
it is enough to consider control processes of feedback type, that are constant
equal to the minimal volatility σ1 if the state is greater than or equal to a
given threshold b, and that are constant equal to the maximal volatility σ2
else. We refer to such controls as threshold controls. More precisely, the
threshold control with barrier b ∈ R is defined by

mb(x) =

{
σ1, if x ≥ b,
σ2, else.

In the following we simply write Xb for the state process Xmb . Note that
(mb(X

b
t ))t≥0 ∈M since mb is of bounded variation.

We have the following result:

Lemma 2.3. Let b ∈ R. Then

P (Xb
τ ≥ b) = max

β∈M
P (Xβ

τ ≥ b). (4)

Proof. This follows from [24], Remark 8. Alternatively, see Section 6 in
[1].

Lemma 2.3 shows that the strategy maximizing the probability of being above
q(Xβ

τ , 1− α) at time τ is the threshold control with threshold q(Xβ
τ , 1− α).

The following theorem provides an explicit equilibrium strategy.

Theorem 2.4. The threshold strategy mb∗ with threshold

b∗ =

 −
σ2√
2λ

log
(
σ1+σ2
σ2

α
)
, if α < σ2

σ1+σ2
,

σ2√
2λ

log
(
σ1+σ2
σ1

(1− α)
)
, if α ≥ σ2

σ1+σ2
,

(5)

is an equilibrium strategy for the mean-field game. It holds q(Xb∗
τ , 1−α) = b∗.

Notice that in order to prove Theorem 2.4 it is enough to find a fixed point
of the function

f : R→ R, b 7→ q(Xb
τ , 1− α).
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Indeed, if f(b) = b, then b = q(Xb
τ , 1 − α). Lemma 2.3 further implies that

P (Xb
τ ≥ q(Xb

τ , 1− α)) = maxβ∈M P (Xβ
τ ≥ q(Xb

τ , 1− α)), and hence that mb

is an equilibrium strategy.
For threshold controls, the controlled state process is a so-called oscillating

Brownian motion (OBM). Note that the transition densities of an OBM are
explicitly known. For the reader’s convenience we recall the following result.

Lemma 2.5. For all x ∈ R let Y x be the solution of the SDE dYt =
m0(Yt)dBt with initial condition Y0 = x. Then, for all t > 0, the random
variable Y x

t has a density p(t, x, y) with respect to the Lebesgue measure,
given by

p(t, x, y) =



2σ1
σ2(σ1+σ2)

1√
2πt
e
−( x

σ1
− y
σ2

)2 1
2t , for x ≥ 0, y < 0,

2σ2
σ1(σ1+σ2)

1√
2πt
e
−( y

σ1
− x
σ2

)2 1
2t , for x < 0, y ≥ 0,

1
σ1
√
2πt

(
e
− (y−x)2

2σ21t + σ2−σ1
σ1+σ2

e
− (y+x)2

2σ21t

)
, for x ≥ 0, y ≥ 0,

1
σ2
√
2πt

(
e
− (y−x)2

2σ22t + σ1−σ2
σ1+σ2

e
− (y+x)2

2σ22t

)
, for x < 0, y < 0.

Proof. This follows from Theorem 1 in Keilson, Wellner [17]; see also Theo-
rem 4 in [24] and Section 2 in Lejay, Pigato [22] (beware of the typo in the
last case).

As mentioned above, for any b ∈ R the state process Xb controlled by the
threshold control mb is just an OBM. Using Lemma 2.5 we observe that Xb

t

possesses the probability density function p(t,−b, x− b).
We now turn to the proof of Theorem 2.4.

Proof of Theorem 2.4. Suppose first that α ∈ (0, σ2
σ1+σ2

). Using Lemma 2.5
we have for all b > 0

P (Xb
τ ≥ b) = P (Y −bτ ≥ 0) =

∫ ∞
0

∫ ∞
0

λe−λtp(t,−b, y) dy dt

=
2σ2λ

σ1(σ1 + σ2)

∫ ∞
0

e−λt
∫ ∞
0

1√
2πt

e
−
(
y
σ1

+ b
σ2

)2
1
2t dy dt

=
2σ2λ

σ1 + σ2

∫ ∞
0

e−λtΦ

(
− b

σ2
√
t

)
dt

=
2σ2λ

σ1 + σ2
L
[
Φ

(
− b

σ2
√
·

)]
(λ),

where L denotes the Laplace transformation. Notice that Φ
(
− b
σ2
√
t

)
=

1
2
erfc

(
b

σ2
√
2t

)
and L

[
erfc

(
b

σ2
√
2 ·

)]
(λ) = 1

λ
e
− b
σ2

√
2λ

(see e.g. chapter 8 in

[12]). Hence,

P (Xb
τ ≥ b) =

σ2
σ1 + σ2

e
− b
σ2

√
2λ
.
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The right-hand side of the previous equation is smaller than or equal to σ2
σ1+σ2

.

Moreover, P (Xb
τ ≥ b) = α if and only if

b = − σ2√
2λ

log

(
σ1 + σ2
σ2

α

)
.

In this case, q(Xb
τ , 1−α) = b; in other words b is a fixed point of the mapping

f .
Now suppose that α ∈ [ σ2

σ1+σ2
, 1). Again with Lemma 2.5 we can conclude

that for every b ≤ 0 we have as above

P (Xb
τ ≥ b) = P (Y −bτ ≥ 0) =

∫ ∞
0

∫ ∞
0

λe−λtp(t,−b, y) dy dt

= λ

∫ ∞
0

e−λt
1√

2πσ2
1t

(∫ ∞
0

(
e
− (y+b)2

2σ21t +
σ2 − σ1
σ1 + σ2

e
− (y−b)2

2σ21t

)
dy

)
dt

= λ

∫ ∞
0

e−λt
(

Φ

(
− b

σ2
√
t

)
+
σ2 − σ1
σ1 + σ2

Φ

(
b

σ2
√
t

))
dt

= λ

∫ ∞
0

e−λt
(

1− 2σ1
σ1 + σ2

Φ

(
b

σ2
√
t

))
dt

= 1− 2σ1λ

σ1 + σ2
L
[
Φ

(
b

σ2
√
·

)]
(λ)

= 1− σ1
σ1 + σ2

e
b
σ2

√
2λ
.

Since b ≤ 0, the right-hand side of the previous inequality is greater than or
equal to σ2

σ1+σ2
. Moreover, P (Xb

τ ≥ b) = α if and only if

b =
σ2√
2λ

log

(
σ1 + σ2
σ1

(1− α)

)
.

Remark 2.6. We briefly analyze how the threshold (5) of the equilibrium
strategy depends on the model parameters.

a) First notice that b∗ increases as α decreases, and

lim
α↓0

b∗ =∞, lim
α↑1

b∗ = −∞.

Thus, reducing the proportion α of best players who receive a reward im-
plies that the players choose a higher threshold up to which they control
their process with the maximal diffusion rate. In other words, intensifying
competition leads to riskier strategies.

This observation is in line with results in [30] and [31], obtained within
models, where agents can control the time horizon of comparison. It is
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shown that as the number of agents increases and hence the proportion of
agents receiving a reward decreases, the agents choose in expectation larger
stopping rules and hence increase the standard deviation of the states at the
comparison time.

b) Note that b∗ is proportional to
√
E[τ ] = 1/

√
λ, and hence to the stan-

dard deviation of the final state Xb∗
τ . If α < σ2

σ1+σ2
, then increasing the run

time of the game encourages players to choose higher thresholds.

3. Approximate Nash equilibrium of the n player
game

We now come back to the n-player game version of Section 1. We show
that the n-tupel of the mean-field equilibrium threshold strategy is an ε-
approximate equilibrium in the n-player game, with ε converging to zero as
n tends to infinity.

We first rigorously define what we mean by an ε-Nash equilibrium for the
game at hand (cf., e.g., the similar definition in [4]).

Definition 3.1. Let ε > 0. A tupel H = (H1, . . . , Hn) ∈ Ān is called ε-Nash
equilibrium of the n-player game if for all i ∈ {1, . . . , n} we have

P (X i,Hi

τi
≥ q(µn,H , 1− α)) + ε ≥ sup

G∈Ai
P (X i,G

τi
≥ q(µn,(H−i,G), 1− α)),

where (H−i, G), µn,H and µn,(H−i,G) are defined as in Section 1.

In the following we denote by ai the threshold strategy of player i with
threshold b∗ defined as in (5). More precisely, ai = (mb∗(X

i,∗
t ))t≥0, where

(X i,∗
t ) is the strong solution of dXt = mb∗(Xt)dW

i
t , X0 = 0.

Moreover, let µ be the distribution of the equilibrium state Xb∗
τ of the

mean-field game and denote by Fµ its distribution function. Note that for
each player i the final state X i,∗

τi
has also distribution µ.

Finally, let W denote the Lambert W function, i.e. W is defined as the
unique inverse function of the mapping [0,∞)→ R, x 7→ xex.

Our main result in this section is as follows:

Theorem 3.2. There exists a sequence εn ≥ 0 with limn→∞ εn = 0 such that
a = (a1, . . . , an) is an εn-Nash equilibrium of the n-player game. We can

choose εn ∈ O(
√
W(n)n−

1
2 ).

We remark that Theorem 3.2 is formulated in a way similar to Theorem
4.2 of [8]. In order to prove Theorem 3.2 we recall the following result for
the approximation of sample quantiles (see e.g. Lemma 4.3 in [28] or [23,
p. 468]). This result is also know as Smirnov’s lemma. We state it in a
version adapted to our setting.
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Lemma 3.3. Let a = (a1, . . . , an) and (αn)n∈N be a sequence with αn ∈ (0, 1)
and limn→∞

√
n(αn − α) = 0. Then there exists a constant C > 0 such that

for all n ≥ 1

sup
x∈R

∣∣∣∣∣P (q(µn,a, 1− αn) ≤ x)− Φ

(
√
n
Fµ(x)− (1− α)√

α(1− α)

)∣∣∣∣∣ ≤ C√
n
.

Proof. The random variables X1,∗
τ1
, . . . , Xn,∗

τn are independent and identically
distributed with distribution function Fµ, because each strategy ai is based
on the feedback function mb∗ applied to the state i and the times τ1, . . . , τn
are independent and identically distributed. Hence, we can apply Lemma
4.3 in [28] and obtain the result.

As a consequence of Lemma 3.3 we obtain the following result:

Lemma 3.4. Let a = (a1, . . . , an) and (αn)n∈N be a sequence with αn ∈ (0, 1)
and limn→∞

√
n(αn − α) = 0. Then there exists a C > 0 such that

P

(
|q(µn,a, 1− αn)− q(µ, 1− α)| > C

√
W(n)

n

)
∈ O

(
1√
n

)
.

We postpone the proof of this lemma to the Appendix and now prove The-
orem 3.2.

Proof of Theorem 3.2. We compare a = (a1, . . . , an) with the tupel where
player i deviates from ai by choosing a strategy G ∈ Ai. To this end, we
write ã = (a−i, G) = (a1, . . . , ai−1, G, ai+1, . . . , an).

Then we have

P (X i,G
τi
≥ q(µn,ã, 1− α))− P (X i,∗

τi
≥ q(µn,a, 1− α)) = An +Bn + Cn, (6)

where

An := P (X i,G
τi
≥ q(µn,ã, 1− α))− P (X i,G

τi
≥ q(µ, 1− α)),

Bn := P (X i,G
τi
≥ q(µ, 1− α))− P (X i,∗

τi
≥ q(µ, 1− α)),

Cn := P (X i,∗
τi
≥ q(µ, 1− α))− P (X i,∗

τi
≥ q(µn,a, 1− α)).

Note that q(µ, 1 − α) = b∗ and that ai is the control in Ai maximizing
the probability to be greater than or equal to b∗ at time τi. Therefore,
P (X i,G

τi
≥ q(µ, 1− α)) ≤ P (X i,∗

τi
≥ q(µ, 1− α)) (see Lemma 2.3), and hence

Bn ≤ 0. (7)

We next show that Cn converges to zero. To this end, we use that the
sequence X1,∗

τ1
, . . . , Xn,∗

τn is i.i.d., and hence that µn,a converges weakly to µ.
Moreover, due to Lemma 3.4 there exists a constant K1 > 0 such that

P

(
|q(µn,a, 1− α)− q(µ, 1− α)| > K1

√
W(n)

n

)
∈ O

(
1√
n

)
. (8)
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Therefore, we can choose two sequences un := q(µ, 1 − α) + K1

√
W(n)
n

and

ln := q(µ, 1−α)−K1

√
W(n)
n

controlling the speed of convergence. Note that
we can write

|Cn| ≤ P (q(µn,a, 1− α) /∈ [ln, un]) + P (X i,∗
τi
∈ [ln, un]). (9)

Lemma A.3 below implies that we can estimate the speed of convergence of
P (X i,∗

τi
∈ [ln, un]). In particular, there exists a constant K2 > 0 such that for

n sufficiently large

P (X i,∗
τi
∈ [ln, un]) ≤ K2(un − ln) = 2K1K2

√
W(n)

n
. (10)

Thus, (9) together with (8) and (10) implies

|Cn| ∈ O

(√
W(n)

n

)
. (11)

The convergence of An to zero as n → ∞ follows from similar arguments.
Notice that the state X i,G

τi
of player i is not necessarily independent of the

other players’ states Xj,∗
τj
, j 6= i, and can also have a different distribution.

We can, however, replace the quantile q(µn,ã, 1− α) by a quantile that does
not depend on G. To this end, let µn−1,a := 1

n−1
∑

j 6=i δXj,∗
τj

be the empirical

measure without player i, and observe that

q(µn,ã, 1− α) ≥ q
(
µn−1,a, 1− n

n−1α
)
, n ≥ 2, (12)

where we set q(µn−1,a, 1− n
n−1α) := −∞ if n

n−1α ≥ 1. (Proof of (12): Suppose

that r ≥ q(µn,ã, 1 − α). Then at most αn players are better than r, or
equivalently, at least (1 − α)n players are worse than r. In the (n − 1)-
player game without player i then also at most αn players are better than
r, or equivalently, at least (1 − α)n − 1 players are worse than r. This
means µn−1,a((−∞, r]) ≥ 1 − n

n−1α and r ≥ q
(
µn−1,a, 1− n

n−1α
)
. Choosing

r = q(µn,ã, 1− α) yields the assertion.)
Since the sequence (Xj,∗

τj
)j 6=i is i.i.d., the empirical measure µn−1,a converges

weakly to µ. Then Lemma 3.4, with αn := 1
n

+ 1(0,1)

(
n
n−1α

) (
n
n−1α−

1
n

)
for

n ≥ 2, implies that there is a K3 such that

P

(∣∣q (µn−1,a, 1− n
n−1α

)
− q(µ, 1− α)

∣∣ > K3

√
W(n− 1)

n− 1

)

∈ O

(√
W(n)

n

)
,

(13)

11



as n → ∞. Now, consider again the two sequences (un)n∈N and (ln)n∈N
defined as above by replacing the constant K1 with K3. We obtain with (12)
that, for n ≥ 2,

An ≤ P
(
X i,G
τi
≥ q

(
µn−1,a, 1− n

n−1α
))
− P (X i,G

τi
≥ q(µ, 1− α))

≤ P
(
q
(
µn−1,a, 1− n

n−1α
)
/∈ [ln−1, un−1]

)
+ P (X i,G

τi
∈ [ln−1, un−1]). (14)

To determine the convergence rate of the second term on the right-hand side
of (14), note that we have to find a bound uniform in G. By Lemma A.3
below we have

P (X i,G
τi
∈ [ln−1, un−1]) ≤ K4(un−1 − ln−1) = K4

√
W(n− 1)

n− 1

The bound on the right-hand side is independent of the control G and con-
verges to zero as n→∞. Therefore, we obtain with (13) and (14) that

sup
G∈Ai

An ∈ O

(√
W(n)

n

)
. (15)

Finally, by combining (6) with (7), (9) and (15) we arrive at

sup
G∈Ai

(
P (X i,G

τi
≥ q(µn,ã, 1− α))

)
≤ P (X i,∗

τi
≥ q(µn,a, 1− α)) +K5

√
W(n)

n
,

for some constant K5 > 0, and hence the proof is complete.

Remark 3.5. The choice of the convergence rate
√
W(n)
n

in the proof of

Theorem 3.2 is indeed optimal. Firstly, in Lemma 3.4 we cannot expect a
better convergence rate than the Berry-Esseen rate O(n−

1
2 ). Secondly, any

rate faster than
√
W(n) in the definition of (un)n∈N and (ln)n∈N, slows the

convergence of those sequences down. Lastly, any rate slower than
√
W(n)

results in a faster convergence rate for (un)n∈N and (ln)n∈N, but slows the
convergence of the first term on the right-hand side of (9) down (see proof
of Lemma 3.4).

A. Appendix

A.1. Proof of Lemma 3.4

Proof of Lemma 3.4. Let Fµ denote the cumulative distribution function of
the equilibrium measure µ = PXb∗

τ
. Note that Xb∗

t has the probability density

12



f ∗(t, x) := p(t,−b∗, x− b∗), with p denoting the probability density function
of the OBM, given in Lemma 2.5. More explicitly, f ∗(t, ·) is given by

f ∗(t, x) =



2σ1
σ2(σ1+σ2)

1√
2πt
e
−
(
x
σ2

+b∗
(

1
σ1
− 1
σ2

))2
1
2t , for b∗ ≤ 0, x < b∗,

1
σ1
√
2πt

(
e
− x2

2σ21t + σ2−σ1
σ1+σ2

e
− (x−2b∗)2

2σ21t

)
, for b∗ ≤ 0, x ≥ b∗,

1
σ2
√
2πt

(
e
− x2

2σ22t + σ1−σ2
σ1+σ2

e
− (x−2b∗)2

2σ22t

)
, for b∗ > 0, x < b∗,

2σ2
σ1(σ1+σ2)

1√
2πt
e
−
(
x
σ1

+b∗
(

1
σ2
− 1
σ1

))2
1
2t , for b∗ > 0, x ≥ b∗,

t > 0.

At first, we show that f ∗ is locally bounded from below at the point x =
b∗ = q(µ, 1− α), and that one can bound the difference Fµ(y)− Fµ(x): Fix
t > 0. We consider the two cases b∗ ≤ 0 and b∗ > 0.

1. case b∗ ≤ 0: Let ε > 0. Then we have that for b∗ − ε ≤ x < b∗

f ∗(t, x) ≥ 2σ1
σ2(σ1 + σ2)

1√
2πt

e
−
(
b∗
σ1
− ε
σ2

)2
1
2t ≥ 2σ1

σ2(σ1 + σ2)

1√
2πt

e
− (b∗−ε)2

2σ21t ,

and for b∗ ≤ x ≤ b∗ + ε

f ∗(t, x) ≥ 2σ2
σ1 + σ2

1

σ1
√

2πt
e
− (−b∗+ε)2

2σ21t ≥ 2σ1
σ2(σ1 + σ2)

1√
2πt

e
− (b∗−ε)2

2σ21t .

2. case b∗ > 0: Let ε > 0. Then we have for b∗ − ε ≤ x < b∗

f ∗(t, x) ≥ 1

σ2
√

2πt

(
e
− (b∗)2

2σ22t − σ2 − σ1
σ1 + σ2

e
− (b∗)2

2σ22t

)
≥ 2σ1
σ2(σ1 + σ2)

1√
2πt

e
− (b∗+ε)2

2σ21t ,

and for b∗ ≤ x ≤ b∗ + ε

f ∗(t, x) ≥ 2σ2
σ1(σ1 + σ2)

1√
2πt

e
−
(
b∗
σ2

+ ε
σ1

)2
1
2t ≥ 2σ1

σ2(σ1 + σ2)

1√
2πt

e
− (b∗+ε)2

2σ21t .

Summing up, we see that if b∗ ≤ 0 we have for any ε > 0 and x, y ∈
[b∗ − ε, b∗ + ε], x ≤ y,

Fµ(y)− Fµ(x) =

∫ ∞
0

λe−λt
(
P (Xb∗

t ≤ y)− P (Xb∗

t ≤ x)
)
dt

=

∫ ∞
0

λe−λt
∫ y

x

f ∗(t, z) dz dt

≥ 2σ1λ

σ2(σ1 + σ2)

y − x√
2π

∫ ∞
0

e−λt
1√
t
e
− (b∗−ε)2

2σ21t dt

=
σ1
√

2λ

σ2(σ1 + σ2)
e
−−b

∗+ε
σ1

√
2λ

(y − x).

(16)
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In the last step we have used that the Laplace transform of the function
1√
t
e−

a2

4t is given by
√

π
λ
e−a
√
λ for a > 0 (see e.g. chapter 8 in [12]).

If b∗ > 0 we have for any ε > 0 and x, y ∈ [b∗ − ε, b∗ + ε], x ≤ y, that

Fµ(y)− Fµ(x) ≥ σ1
√

2λ

σ2(σ1 + σ2)
e
− b
∗+ε
σ1

√
2λ

(y − x). (17)

Now, let un := q(µ, 1−α)+εn, ln := q(µ, 1−α)−εn with εn := 1
C1

√
W(n)
n

and

C1 := σ1
σ2(σ1+σ2)

√
λ
2
e
− |b
∗|
σ1

√
2λ

. (16) and (17) imply that for x, y ∈ [ln, un], x ≤
y, and for n sufficiently large, we have that

Fµ(y)− Fµ(x) ≥ 2C1e
−
√
2λ

σ1C1

√
W(n)
n (y − x) ≥ C1 (y − x) , (18)

since W(n)
n

n→∞−−−→ 0. Moreover, Lemma 3.3 implies that

sup
x∈R

∣∣∣∣∣P (q(µn,a, 1− αn) ≤ x)− Φ

(
√
n
Fµ(x)− (1− α)√

α(1− α)

)∣∣∣∣∣ ≤ C2√
n
, (19)

for n ≥ 1 and some C2 > 0. Combining (18) and (19) we observe for n
sufficiently large that

P (q(µn,a, αn) /∈ [ln, un])

= 1− (P (q(µn,a, 1− αn) < un)− P (q(µn,a, 1− αn) ≤ ln))

≤ 1−

(
Φ

(
√
n
Fµ(un)− (1− α)√

α(1− α)

)
− Φ

(
√
n
Fµ(ln)− (1− α)√

α(1− α)

))
+

2C2√
n

= Φ

(
−
√
n
Fµ(un)− (1− α)√

α(1− α)

)
+ Φ

(
−
√
n

(1− α)− Fµ(ln)√
α(1− α)

)
+

2C2√
n

≤ 2 Φ

(
−
√
n

C1εn√
α(1− α)

)
+

2C2√
n

≤ 2 Φ

(
−
√
W(n)√

α(1− α)

)
+

2C2√
n

≤ 2 Φ
(
−
√
W(n)

)
+

2C2√
n
,

since 1√
α(1−α)

≥ 1. One can show that Φ(−x) ∈ O
(

1
x
e−

x2

2

)
as x → ∞.

Therefore, there is a C3 > 0 such that for n large enough

P (q(µn,a, αn) /∈ [ln, un]) ≤ C3
e−
W(n)

2√
W(n)

+
2C2√
n

= (C3 + 2C2)
1√
n
.
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A.2. Auxiliary results

In this section we aim at finding an upper bound for the probability P (Xx,β
τ ∈

[l, u]) independent of the control β chosen. This task is motivated by the
proof of Theorem 3.2, where this estimate is needed. In particular, we need
an explicit formula for this bound, given in (21) below, to determine the
speed of convergence. The results stated here can be found in [1] and are
proven there in full detail.

We consider the following set-up: Let B be a Brownian motion on a
complete probability space (Ω,F , P ) and τ be an exponentially distributed
random variable with parameter λ > 0 independent of B. Furthermore,
let (Ft)t≥0 be the augmented Brownian filtration, generated by B and aug-
mented by the P -null sets in F .

Let 0 < σ1 ≤ σ2 and l, u ∈ R, l < u. We denote by M̃ the set of all
(Ft)t≥0-progressively measurable control processes (βt)t≥0 taking values in

the interval [σ1, σ2]. For β ∈ M̃ and any initial value x ∈ R we consider
state processes Xx,β, given by

Xx,β
t = x+

∫ t

0

βs dBs, t ≥ 0.

Note that similar to Remark 2.1, all feedback controls (m(Xx,m
t ))t≥0 with

m : R→ [σ1, σ2] being of bounded variation are contained in M̃. Here Xx,m

denotes the solution to the SDE

dXt = m(Xt)dBt, X0 = x. (20)

Let m̂ : R→ [σ1, σ2] be a feedback function, given by

m̂(x) =

{
σ1, x ∈ [l, u],

σ2, else.

We set

F (l, u, x) =



e
−
√
2λ
σ2

(l−x)

σ1
σ2

coth
(
u−l
2σ1

√
2λ
)

+ 1
, x < l,

1−
cosh

(
2x−(u+l)

2σ1

√
2λ
)

cosh
(
u−l
2σ1

√
2λ
)

+ σ2
σ1

sinh
(
u−l
2σ1

√
2λ
) , x ∈ [l, u],

e
−
√
2λ
σ2

(x−u)

σ1
σ2

coth
(
u−l
2σ1

√
2λ
)

+ 1
, x > u.

(21)

We obtain the following uniform estimate:
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Proposition A.1. For any β ∈ M̃ we have

P (Xx,β
τ ∈ [l, u]) ≤ F (l, u, x).

Moreover, F (l, u, x) = P (Xx,m̂
τ ∈ [l, u]).

One can prove this proposition by solving the control problem of maximizing
the probability P (Xx,β

τ ∈ [l, u]) over all controls β ∈ M̃. To this end, one
can perform a classical verification with the function F to show that it is
equal to the value function v. It is easy to verify that F (l, u, ·) is concave on
[l, u] and convex otherwise. We refer to Proposition 2.3 in [1] for a complete
proof. In particular, one can show the following:

Proposition A.2. We have

v(x) := sup
β∈M̃

P (Xx,β
τ ∈ [l, u]) = F (l, u, x), x ∈ R,

and (m̂(Xx,m̂
t ))t≥0 is an optimal control.

To determine the speed of convergence of P (Xx,β
τ ∈ [l, u]) when u − l → 0

we need the following estimate. It also entails the absolute continuity of the
random variable Xx,β

τ .

Lemma A.3. We have, for any β ∈ M̃,

P (Xx,β
τ ∈ [l, u]) ≤ σ2

σ2
1

√
λ

2
e
√
2λ
σ1

(u−l)
(u− l). (22)

In particular, this estimate holds true for F (l, u, x).

Proposition A.4. Let β ∈ M̃. Then Xx,β
τ is absolutely continuous w.r.t.

the Lebesgue measure on R.

Proof of Lemma A.3. If x /∈ [l, u] we have

P (Xx,β
τ ∈ [l, u]) ≤ F (l, u, x)

≤ 1

σ1
σ2

coth
(
u−l
2σ1

√
2λ
)

+ 1
≤ σ2
σ1

1

coth
(
u−l
2σ1

√
2λ
)

+ 1

=
σ2
σ1

1

2 + 2

exp
(
u−l
σ1

√
2λ
)
−1

=
σ2
2σ1

exp
(
u−l
σ1

√
2λ
)
− 1

exp
(
u−l
σ1

√
2λ
)

≤ σ2
2σ1

(
e
√
2λ
σ1

(u−l) − 1

)
≤ σ2
σ2
1

√
λ

2
e
√
2λ
σ1

(u−l)
(u− l).
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If x ∈ [l, u] we have

P (Xx,β
τ ∈ [l, u]) ≤ F (l, u, x) ≤ 1− 1

cosh
(
u−l
2σ1

√
2λ
)

+ σ2
σ1

sinh
(
u−l
2σ1

√
2λ
)

=
cosh

(
u−l
2σ1

√
2λ
)

+ σ2
σ1

sinh
(
u−l
2σ1

√
2λ
)
− 1

cosh
(
u−l
2σ1

√
2λ
)

+ σ2
σ1

sinh
(
u−l
2σ1

√
2λ
)

≤ cosh

(
u− l
2σ1

√
2λ

)
+
σ2
σ1

sinh

(
u− l
2σ1

√
2λ

)
− 1

≤ σ2
σ1

(
cosh

(
u− l
2σ1

√
2λ

)
+ sinh

(
u− l
2σ1

√
2λ

)
− 1

)
=
σ2
σ1

(
e
√
2λ

2σ1
(u−l) − 1

)
≤ σ2
σ2
1

√
λ

2
e

√
λ√

2σ1
(u−l)

(u− l)

≤ σ2
σ2
1

√
λ

2
e
√
2λ
σ1

(u−l)
(u− l).

Proof of Proposition A.4. Let N ⊆ R be a Lebesgue null set and ε > 0.
Then N can be covered by a countable union of intervals [ln, un], n ∈ N,
such that

∑∞
n=1 |un − ln| < ε. We have, using Lemma A.3,

P
(
Xx,β
τ ∈ N

)
≤

∞∑
n=1

P
(
Xx,β
τ ∈ [ln, un]

)
≤

∞∑
n=1

G(ln, un, x)

≤
∞∑
n=1

σ2
σ2
1

√
λ

2
e
√
2λ
σ1

(un−ln)(un − ln)

≤ σ2
σ2
1

√
λ

2
e
√
2λ
σ1

ε
∞∑
n=1

(un − ln) <
σ2
σ2
1

√
λ

2
e
√
2λ
σ1

ε
ε.

Since the choice of ε > 0 was arbitrary, we obtain that P
(
Xx,β
τ ∈ N

)
= 0.
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