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Abstract 

MicroRNAs (miRNAs) are small non-coding RNAs which regulate gene expression at the post-

transcriptional level. Because of their wide network of interactions, miRNAs became over the 

past decade the focus of many studies. To streamline the amount of potential wet lab 

experiments, the use of miRNAs targets predictions tools is nowadays the first step undertaken. 

However, the predictions made are very divergent from one tool to another. This is mostly due 

to miRNAs complex and still not fully understood mechanism of action. Such divergences bring 

biologists to wonder about which tool they should use to predict miRNAs targets. To address 

this issue, the review highlights the main characteristics of miRNA target interaction, describes 

prediction models currently used, and gives some insights on predictors’ performances 

evaluation.  
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Introduction 

MicroRNAs (miRNAs) are small (∼22 nucleotides) non-coding RNAs which act as post-

transcriptional regulators of gene expression for all known biological processes1. Indeed, 

between 60% and 90% of human genes are believed to be regulated by miRNAs as shown in 

genome wide analysis2,3. According to miRbase (Release 21), the primary database of published 

miRNA sequences and annotation, 35 828 mature miRNA products have been identified in 223 

species with 2588 of them belonging to humans4.  

miRNAs are mostly transcribed by RNA polymerase II which results in a primary miRNA (pri-

miR). This pri-miR is then processed to generate a miRNA precursor (pre-miR) by DROSHA 

and DGCR8 complex. Afterward, Exportin 5 is responsible for the transport of the pre-miR to 

the cytoplasm so that it can be further processed by DICER to give the mature miRNA 

sequence. The biogenesis of miRNAs has been further reviewed in several publications1,5–9.  

Most importantly, each miRNAs can potentially regulate several hundreds of mRNA and one 

mRNA can be targeted by several miRNAs9–12. Because of these numerous possible 

interactions, miRNAs have a major effect on cellular mechanisms such as proliferation, 

migration, apoptosis and cell differentiation13–15. In 2011, Salmena et al. suggested a concept 

of miRNAs as mediators of a regulatory language, a way to talk between mRNAs, pseudogene 

transcripts and long non-coding RNAs. These transcripts have been named “competing 

endogenous RNAs” (ceRNAs) because their expression level depends on the action of the same 

miRNAs16. This language purpose would be to expend “the functional genetic information in 

the human genome” and miscommunications are expected to have a major impact in 

pathophysiologies17,18. It is true that differential expression of miRNAs has been observed in 

many pathologies19 including cardiovascular20, neurodegenerative21, renal22 diseases and most 

notably in cancers23–25. Therefore, increased knowledge on miRNAs action mechanisms will 

improve our ability to face these diseases. 

Most miRNA targets are repressed at both the post-transcriptional and translational level26. 

miRNAs inhibition process requires the formation of the miRNA-induced silencing complexes 

(miRISCs) which is mainly composed of the Argonaute (AGO) family proteins, GW182 

(glycine-tryptophan (GW) repeat-containing protein of 182 kDa) and processing bodies (P 

bodies)27,28. In most cases, the miRISC induces silencing through a combination of translational 

repression, deadenylation, decapping and 5′-to-3′ mRNA degradation29,30.  
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Obviously, miRNAs are major actors of the epigenetic world and they have become an 

expanding area of study since 2001. To understand the role of miRNA in genes regulation, one 

needs first to focus on identifying functional miRNA targets in a pre-defined cellular and 

environmental context. To do so, the gold standard is to combine luciferase assay, qPCR and 

western-blot31. While a luciferase test can identify the direct interaction between a miRNA and 

its targeted mRNA region, qPCR and western-blot assess the transcriptional and translational 

repression resulting from the interaction31,32. These techniques are very time consuming and 

allow validation of few interactions at a time. To circumvent this issue, cross-linking and 

immunoprecipitation approaches coupled with next generation sequencing (CLIP-seq) have 

been developed. They allow massive discovery of miRNA target interactions (MTIs) without 

the need for miRNA overexpression but the functionality of the discovered sites remains to be 

elucidated31. Even though improvements were made, many datasets generated by this type of 

technique contain numerous false positives due to UV crosslinking issues33. Experimental 

procedures being long and expensive, a need for in silico MTI predictions became manifest. 

Prediction of novel target sites is mostly achieved through building a classification or ranking 

model which is based on experimentally validated MTI properties (further described below). 

During the last decade, researchers have experimented with many different computational 

approaches but a consensus on how to predict MTIs has yet to be found. Currently, more than 

160 target prediction tools exist (as of May 2018, from OMICtools’ database)34 which makes it 

even more difficult to find the one that is best designed for a particular experiment analysis. 

Computational predictions are plague with high false-positive/negative rates due to the small 

size and the binding complexity of the MTI sites35. Moreover, without a common method to 

evaluate them, it is no easy task to decide which one to test. Indeed, results lists given by each 

MTIs prediction algorithms for a given miRNA differ greatly in identified targets, prediction 

number and ranking36. To assist biologists in this choice, we will describe the main 

characteristics of a MTI as well as different up to date computational methods. The issue of 

algorithm performances evaluation will also be addressed.   

I. Analyzable elements 

Even though the mechanisms by which miRNAs act are not fully comprehended, several 

features of MTI have been defined through experimental work. Although, each algorithm uses 

a different set of features, sequence complementarity, site accessibility and sequence 

conservation are the most commonly used. 
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A. Sequence features 

1. Seed region 

The main biological feature allowing interaction between miRNA and mRNA is defined as the 

“seed” region. It includes the nucleotide (nt) 2 to 8 starting from the 5’ end of a miRNA. A 

perfect match with the seed region does not always induce mRNA repression clearly indicating 

that this parameter alone is not sufficient to predict the interaction37–39. Interestingly, the 

recognition of an adenine at the miRNA nt 1 favors miRNA-mediated protein down-regulation 

even when it cannot participate in a Watson-Crick interaction40. Seed sites are categorized in 

different types according to their pairing degree. The hierarchy of site efficacy is as follows: 

8mer >> 7mer-m8 > 7mer-A1 >> 6mer or offset-6mer (position 3-8 match) > no site, with the 

6mer differing only slightly from no site at all2,39 (Fig. 1). Microarray experiments suggest that 

the majority of miRNAs’ target sites are 7mer-m8 type39. The complexity of using the seed 

region in targets prediction comes from “bulges” (unpaired stretches of nucleotides located in 

either of the sequences) or G:U wobbles within the sequence which reduce inhibition efficiency 

but do not prevent it37,40. These sites are named “orphans” or “non-canonical” because AGO 

family proteins can bind to them even though there isn’t a perfect seed match. They were 

thought to be relatively rare in mammals2,41–43. However, newer experimental methods tend to 

identify a much higher number of non-canonical sites or even sites not binding to the seed 

region at all (binding to the center of the miRNA or 3’ end)40,41,44–46. A possible explanation for 

some of these non-canonical sites is that a “pivot-bulge” on the 6th nucleotide of the seed could 

enable a transitional nucleation state by stabilizing nucleation base pairing (position 2-6), 

allowing subsequent bulge formation and propagation of the seed interaction42,47. An alternative 

hypothesis is that non-canonical sites, since they are poorly conserved across species, may act 

as evolutionary intermediates between non-functional sites and canonical targets sites with a 

selection pressure going toward the apparition of higher affinity sites43. In any case, functional 

assays indicate a mild regulatory effect of these non-canonical sites39,42,44. Therefore, the 

usefulness of considering both fully and partially matching seed sites to improve MTIs 

prediction is still under discussion48,49. 

2. Compensation 

While most studies consider a “canonical” site to be a full seed pairing without a bulge, 

miRNAs’ target sites can in fact be divided into three groups: “seed” (or “seed only”), 

“canonical” and “3’ compensatory” sites37. “Seed” sites, already described in the previous 

paragraph, have strong 5’ pairing but require little or no 3’ pairing. Canonical sites however 
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have both strong seed pairing and compensatory pairing in the 3’ side of the miRNA. Finally, 

“3’ compensatory” have weak seed pairing and strong 3’ pairing37. It is believed that canonical 

sites are more effective than seed sites only. However, evaluating the effectiveness of 3’ 

compensatory pairing is very difficult due to the number of pairing possibilities and the context 

dependence of this parameter10. Nevertheless, it has been found that additional Watson-Crick 

pairing of at least 4 nucleotides at position 12–17, especially from 13 to 16, enhances miRNA 

targeting39. This type of strong compensation is very rare (less than 2% of known conserved 

MTI) but when it occurs, then the target site is usually highly conserved across species2.  

B. Site accessibility 

The complexity of miRNA-mRNA interactions makes it difficult for algorithms based on 

sequence matching only to be efficient. Additional parameters such as thermodynamic, UTR 

context or site conservation must be considered. Site accessibility is as important as individual 

nucleotide matches in the seed since the action of a miRNA is mediated by a relatively large 

silencing complex.  

1. Thermodynamic 

The most basic way to consider thermodynamic is to calculate the free energy that estimate the 

stability of the RNA binding sequences. This binding is believed to form a stable low energy 

duplex. Therefore, lower energy values indicate a more feasible interaction. Since we are in the 

context of miRNA interaction, constraints imposed by the seed pairing must be taken into 

consideration. The ViennaRNA R package is the most commonly implemented to calculate the 

free energy of binding. It aggregates more than 20 programs/packages to solve the structure of 

a RNA duplex using dynamic programming50. Rehmsmeier et al. found that forbidding 

intramolecular base pairing and bulge loops seem to give a better free energy estimation51. They 

also noted that taking several nucleotides (10 and more) flanking the target site improves 

correlation between energy based scores and target repression51,52. Another possibility is to 

consider the hybridization energy (ΔΔG) which is the difference between the free energy gained 

by the binding of the miRNA to the target, ΔGduplex, and the free energy lost by unpairing the 

target-site nucleotides, ΔGopen. This ΔΔG score is then successfully correlated with the degree 

of miRNAs’ targets repression for some interactions but not all52.  

2. Target site context 

Messenger RNAs can fold into highly elaborated secondary and tertiary structures, and a perfect 

sequence match for a miRNA might not be structurally accessible for binding. Therefore, 



7 
 

context features such as local AU nucleotide composition, proximity to residues that can pair 

to miRNA nucleotides 13-16, or positioning away from the center of long UTRs must be 

included in MTI prediction algorithms. Of all context features, the AU content around target 

site is the one which favors most the interaction with a miRNA10. Indeed swapping a target site 

from an open (AU rich) UTR structure to a close one decreases site functionality52. A possible 

explanation for this is that AU-rich sequences could be recognized directly by a component of 

the RISC or reducing the tendency for formation of stable RNA secondary structures that could 

interfere with RISC binding53. Although there is so far a high prevalence of MTI sites found in 

the 3’UTR, recent papers have shown that some miRNAs can also regulate mRNAs by binding 

with the 5’UTR and CDS region of their targets54,55. Whether the site is in the 3’ or 5’UTR 

seems to have no impact on the strength of the mRNA regulation. However, ORF target sites 

are not as efficient40,56,57. Interestingly, a recent study showed that if CDS located target sites 

are not as efficient to trigger mRNA degradation, they are quite potent at inhibiting translation58. 

Remarkably, some studies have shown that under different cellular conditions, miRNA–mRNA 

interactions with different binding sites or/and cellular localizations can increase mRNA 

translation59–61. However, the precise mechanism by which a miRNA can enhance protein 

synthesis has yet to be fully discovered. Thus, it is clearly important not to restrict the search to 

the 3’UTR for MTI predictions. Aside from the localization, the number of repetitions of a 

target site and their spacing on a given mRNA also affect the repressing efficiency of a 

miRNA53,62. Another important aspect to determine the functionality of an interaction, yet rarely 

taken into consideration, is the expression level of both miRNAs and targeted mRNAs63. 

Moreover, depending on the tissue or disease, a validated MTI can be more or less 

functional64,65. This might be due to RNA-binding proteins blocking access to the miRNA or 

mRNA secondary structure in that particular tissue or disease65,66. A screen for RNA-binding 

protein motifs and considering the sample tissue should therefore improve MTIs prediction. 

C. Conservation 

The level of conservation of a sequence represents its presence across species. Use of the 

evolutionary conservation of miRNA targets is motivated by the idea that closely related species 

should share common MTI sites. However, most target sites are not fully conserved over their 

entire length. There is often a higher conservation in the seed region of the target site than out 

of it. Moreover, it is generally only the degree of 3’ pairing that is conserved but not the 

nucleotide identity. Assuming that aligned sites within orthologous genes have a single origin, 
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it was proposed to quantify site conservation in a phylogenetic tree by summing all branches 

length for which the site is present67. 

Of note, the level of conservation of a target site has to be done with regard of the conservation 

of its mRNA region and length2. Stronger conservation profile has been associated with 

increased mRNA down-regulation using microarray experiments and better MTI 

prediction2,37,40,53,68,69. Indeed, over 60% of human protein-coding genes are conserved targets 

of miRNAs, supporting the importance of this parameter2. However, since functional non-

conserved MTIs exist and mediate protein translation inhibition70, sites cannot be filtered based 

on conservation criteria. Moreover, Agarwal et al. also found a decrease of performance of their 

predictor when considering only highly conserved sites 48. Therefore, an ideal equilibrium needs 

to be found where conserved sites are favored and non-conserved sites are retained. Friedman 

et al. found a high number of preferentially conserved 6mer sites2, a surprising finding since, 

as mentioned above, 6mer sites typically have poor efficacy when examined experimentally39. 

A possible explanation for this result is that these sites are inactive (or less active) decay 

products of conserved 7–8mer sites. An alternative possibility is that when binding with a 6mer, 

a miRNA induces a function other than repressing protein output. For example, a role in mRNA 

subcellular localization could allow many 6mer sites to be conserved while having a poor effect 

on protein level inhibition2.   

II. Computational prediction methods 

As mentioned in the Introduction chapter, many computational tools have been developed in 

the field of MTIs prediction. The main objective of prediction algorithms is to select the most 

discriminative features, within the categories of analyzable elements described above, and to 

find how to compute them to get a better prediction accuracy.  

A. Sequence based 

1. Heuristic scoring models 

The earliest attempt to identify in silico miRNA targets was published by Stark et al. in 200371. 

Their screening was a simple two steps procedure combining sequence comparison with 

HMMer (alignment tool) and site accessibility using Mfold. The resulting targeted 3’UTR were 

then compared based on their conservation between Drosophila pseudoobscura and Anopheles 

gambiae. Using this protocol, they successfully validated 6 MTIs for 2 Drosophila miRNAs. 

After analyzing the characteristics of these 6 validated interactions, they started to describe 

what we now know as the seed region: the first eight nucleotide at the 5’end of the miRNA71.  
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Following this publication, many more attempts have been made to improve and generalize 

MTI prediction. The vast majority of predictors utilize the seed-matching parameter since most 

of the reported functional MTI have a 6mer or more. To do so, predictors either filter sequences 

based on a defined set of rules for seed-matching48,72 or use a score system favoring this 

feature12,73,74. However, filtering based on seed rules seems too stringent because functional 

MTIs can also have non-canonical seed (G:U wobble or bulge). In this regard, some methods 

consider binding of the first eight nucleotides as important but do not restrict it to particular 

seed types75–78. MIRZA-G (evolution of MIRZA79) for instance, is a recently published 

algorithm that allows non-perfect seed matches if the final score for the site is above the author 

defined threshold69. Rare are the predictors, like RNA223, that do not consider seed-matching 

at all in its prediction. Instead, it searches the mRNA for patterns generated by comparing all 

known mature miRNA sequences (as of 2006) and keeps only the significantly similar ones. 

Sequence alignment results are almost always complemented with site accessibility and 

evolutionary inputs. Tools such as miRanda74, RNA223, and TargetScan80 make use of RNA 

folding prediction software, like RNAVienna50 or Mfold81 packages, to estimate free energy of 

predicted miRNA–target duplexes and filter out candidates above a certain threshold. 

Interestingly, authors of RNAhybrid51 used a different approach preventing intramolecular base 

pairing and bulge loops which seems to improve the estimation of the free energy51. This led 

predictors such as PicTar12 and STarMir82,83 to filter potential target sites based on results from 

RNAhybrid. As mentioned before, other predictors, such as PITA52, prefer to consider the 

hybridization energy (see “Thermodynamic” : II.B.1) to score miRNA–target duplex stability. 

Out of all the site accessibility features, the local AU content is the most implemented one since 

it has been shown to favor MTI48,75,76,78,84,85. The frequency of target sites along the mRNA and 

the distance separating them are two other features often considered for target site context 

implementation80,86,87. The value of site conservation is quite argued since omitting non-

conserved targets is irrelevant and not using this parameter at all decreases drastically the 

specificity of the method2,76,80,88. This has been widely studied by the authors of EIMMo72 who 

score MTIs based on conservation criteria only and then use Bayesian statistics to infer 

functionality. This makes EIMMo quite efficient at predicting the mRNAs targeted by a given 

miRNA but not as sensitive at the duplex level89. Features implementation for all algorithms 

cited so far has been done based on literature knowledge only. To better identify what 

combination of features to use, miRmap’s authors decided to evaluate each feature individually 

before integrating them. They first screened all human transcripts for 7mer seeds and compared 

the performance of eleven features mentioned previously on results from seven miRNA 
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overexpression experiments coming from five studies. Based on this evaluation, they combined 

these features using a linear regression model, making it the most comprehensive MTI predictor 

of the time84. Likewise, TargetScan evaluated 26 features and eventually selected 14 of them to 

upgrade itself with a similar model in 201548. Most algorithms end-up storing all resulting 

interactions in a publicly available database format like miRWalk2.048,90. 

2. Empirical machine learning models 

The limit of rule-based method comes from the complexity of MTIs. It is extremely difficult 

for a human being to take into consideration all possible aspects of these interactions. Thus, 

another promising direction toward better MTI prediction is a data driven (or machine learning, 

ML) algorithm. There are many computational models available to build such an algorithm. 

Unfortunately, there is no fixed rule as to which one to select for a given problem. In general, 

ML methods are categorized into two groups depending on whether the output values are 

present in the training data (supervised learning) or not (unsupervised learning). In the field of 

MTI prediction, all data driven methods use supervised learning regression (scoring system) or 

classifier (categories) to differentiate functional from non-functional sites. The performance of 

each method depends on the amount and quality of the training data, the complexity of the 

relationship between the inputs and outputs, as well as the local computational restrictions (time 

and memory). Computational constraints depend mostly on the number of features used91. Since 

a ML approach can only be as effective as the dataset used to train it, a large high-quality dataset 

is therefore primordial to build an accurate model. An ideal experimental dataset would contain 

all types of functional MTI and as many negative experimental examples while, of course, being 

free from any experimental biases. Since the precise mechanism of miRNA binding is not yet 

completely known, the aim of a data driven algorithm is to find the best features compromise 

to obtain a generalization model92 able to classify a MTI in a binary fashion or according to a 

scoring method. Features are ranked by a metric system like F-score (harmonic mean between 

precision and recall) or correlation coupled with statistics and the top-ranked ones are selected 

to build the algorithm. This procedure is known as features extraction. To validate their 

approaches, most authors use a 10-fold cross validation technique. In other words, a subset of 

the dataset is used for training the algorithm and the other part for testing it. This is done 10 

times using different partitions of the original dataset and the performance results are averaged 

over the rounds. 
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a) Genetic programming 

Genetic programming is a ML method which generates functions (represented as trees) using 

the different rules or features implemented in order to best describe a positive interaction93,94 

(Fig. 2). One of the first ML model developed with this method was TargetBoost in 200594. 

This model is one of the rare type of algorithms that does not use the seed matching criteria to 

predict MTIs. Instead, TargetBoost creates sequence motifs from a set of 36 experimentally 

validated MTIs (from the literature) and 3,000 random strings of 30 nucleotides as negative 

examples. These motifs are then weighted with a boosting algorithm which eventually returns 

a score indicating the probability of interaction. Boosting algorithms combine a set of simple 

rules (or features) by assigning to each one of them a weight. The idea is to form a single model 

with better performance than each rule taken individually93. The final score is calculated by 

summing the number of true and false positive/negative hits and the relative weights given by 

the algorithm for each sequence. No features extraction done in this model nor did they apply 

a conservation or site density filter. The data from 3 miRNAs were used to train the model and 

tested it on the data of another miRNA using the “leave one out” method. TargetBoost 

compared itself to RNAhybrid and another algorithm named nucleus and was either as good as 

each of them or more performant depending on the dataset used for testing95. To improve the 

performance of this type of model, a recent study by Rabiee-Ghahfarrokhi et al. used a genetic 

algorithm (Fig. 2) in combination with C4.5 decision tree instead of boosting96. The output of 

C4.5 algorithm results in several rule sets to take as inputs for the genetic algorithm. To begin, 

their algorithm was trained and tested on a small dataset, taken from TarBase database (version 

3.0) and containing 48 positive and 16 negative examples97–99. They obtained a 94% accuracy 

using a 10-fold-cross-validation method for testing. This performance was confirmed by 

training and testing the model on a different dataset (taken from Ahmadi et al.100) containing 

113 positive and 312 negative examples and therefore, they obtained 97% accuracy. Authors 

relate the high performances of their method to the set of rules used as inputs. However, in both 

cases, the training and testing datasets were not independent making it more likely for this 

algorithm to perform well. 

b) Probabilistic based classifier 

A commonly used method is to model the relationship between features and the output 

categories using probabilities with a Naïve Bayes (NB) classifier. In other words, this model 

computes the probability that a feature belongs to a certain class (in our case, positive or 

negative). A MTI is then classified based on the product of all features probabilities91 (Fig. 3).  
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NBmiRTar101 is an example of such a probabilistic machine learning method. Using both ‘seed’ 

and ‘out-seed’ features, they applied the NB classifier on predictions from miRanda taking its 

scoring and free energy calculation as filters. They used the same dataset of 3,000 random 30 

nt strings for negative examples as TargetBoost method. Interestingly, the two most important 

features in this model discriminate seed pairing mismatches (number of bulges in the seed and 

number of bulges in the seed with length 1). To avoid excluding non-conserved MTIs, authors 

did not use sequence conservation in their model, which has the inconvenience of generating a 

large number of MTIs. Nevertheless, they claim to be able to reduce this number of MTIs while 

retaining most of the positive targets (10 out of 13) by using a high score threshold. However, 

the consistency of this model would need to be tested on more than 13 positives targets. Also 

using a Bayesian probabilistic method, GenMiR3102 (an evolution of  GenMiR++103) considers 

the hybridization energy, target site conservation (PhastCons algorithm104) and context 

information (5 sequence features) to establish a prior probability for the target site to be 

functional. They tested the performance of each features using multiple linear regression 

models and cross-validation. Hybridization energy seems to be the feature which enhanced the 

most the predictive power of this model. Expression data for miRNAs and mRNAs were also 

used to compute a final (or posterior) probability for the site to be functional. Unfortunately, no 

performance evaluation is available for GenMiR3.  Interestingly, even though they restricted 

their training data to colorectal cancer MTIs, CRCmiRTar105 authors compared different ML 

approaches (NB, SVM, Random forest (RF), Artificial Neural Network (ANN)) and found NB 

classifier to be the most sensitive and specific method. This algorithm also showed to be more 

efficient when compared to other tools on an independent colorectal cancer-specific test dataset. 

The tissue origin of the samples seems therefore to be a parameter that should be included in 

MTI predictions. 

Another probabilistic model in use for MTIs prediction is the Random Forest (RF) classifier. 

Each tree of the forest is a predictor which depends on the values and order of a randomly 

selected subset of features. When an unlabeled example is given to the algorithm, each tree 

votes and the majority defines the predicted class for this example106 (Fig. 4). The mechanism 

used to grow the trees allows to easily estimate the most important set of features and is also 

easily interpretable. An example of such model is RFMirTarget107. They used the dataset 

published by Bandyopadhyay and Mitra85 containing 289 experimentally validated functional 

pairs and 289 “systematically identified tissue-specific negative examples” to train a RF 

classifier. Since no site alignment is given in this dataset, they used miRanda to define potential 

MTI sites sequences and alignments. After testing, their model proved to be more efficient on 
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their training set than other types of machine learning (support vector machines and NB based) 

and was able to identify more positive targets than TargetSpy and miRanda while generating a 

higher false positive rate. Using the same training dataset, a Multiple Instance Learning 

Random Forest classifier (MIL-RF) called MBSTAR has been developed64. This model 

considers potential binding sites as instances and miRNA-mRNA pairs as bags. Thus, a bag can 

contain several instances. If at least one of the instance is labeled positive, then the bag is labeled 

as functional. Since authors of this algorithm deem secondary structure of the target to be more 

important than site hybridization, the top features used by MBSTAR are nucleotide patterns in 

the flanking areas of the potential site and are not seed related. MBSTAR achieves an accuracy 

of 78% on a large independent dataset (2nd best is miRanda with 58%). Unfortunately, they did 

not make a comparison with RFMirTarget which is the closest related method to MBSTAR. 

Recently, authors of TarPmir decided to use CLASH (crosslinking, ligation, and sequencing of 

miRNA-RNA hybrids) data, a new high-throughput experimental method to identify MTIs, to 

train a RF-based model for MTI predictions108. The advantage of CLASH compare to CLIP-

seq experiments is that it provides both the miRNA and the corresponding target sequences. 

The training dataset was published by Helwak et al. in 2013 and contains 18 534 MTIs for 399 

miRNAs44. Since no other CLASH dataset was available at the time, the performances of this 

method has been tested on three independent PAR-CLIP datasets. Validated MTIs were 

identified using DIANA-TarBase (v7.0)97. Even though TarPmir came out better than three 

other commonly used algorithms, it still only achieved 55% recall and 19% precision, leaving 

much space for improvement. However, since CLASH data includes many “non-seed” MTIs, 

TarPmir can better predict most sites of this type. 

c) Support vector machines 

Support Vector Machines (SVMs) are machine learning algorithms made to identify the best 

hyperplanes (linear separation between positive and negative data) while maximizing the 

margin of error. The training data points that are on the margin hyperplanes are called “support 

vectors”. In the field of biology however, it is impossible to separate all training data points by 

a straight line. Thus, some will end-up within the margin or on the wrong side of the hyperplane. 

SVMs are then formulated to soften the impact of these points or use more support vectors. 

SVMs often use a nonlinear curve to create a decision boundary between data points91 (Fig. 5).  

Most SVMs used for MTI prediction are non-linear and based on a similarity function, called a 

kernel, between pairs of samples (miRNA:mRNA)75,77,78,85,109. MiTarget was one of the first 

algorithm to implement a SVM to predict MTI and showed equal performances than popular 

predictors such as miRanda, TargetScan or RNAhybrid78. Interestingly, SVMicrO implemented 
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two SVMs, one for site and one for UTR-related features75. Naturally, the most important 

features of the site-SVM are seed based but surprisingly, the 3’ context region conservation of 

the interaction was the 2nd best ranked feature. The debate over the use of conservation criteria 

has been quite active in the field of SVM with some not using it at all and some showing it as 

an important parameter or not46,75,78,109,110. As for the UTR-SVM of SVmicrO, predictions result 

mainly from the number of positive sites in the UTR (the more the better) and the score of each 

of these sites (the higher the better) as well as the length of the UTR. SVMicrO showed overall 

better performance than Pictar, miRanda, mirTarget, TargetScan and PITA. Another SVM 

approach, MiREE, proposed a hybrid solution by combining genetic programming for the 

miRNA duplex characteristics (sequence homology and thermodynamic) and a non-linear SVM 

for the context features77. Just like SVMicrO, its most important features are seed related. This 

method obtained a 95% accuracy on human MTI predictions which is higher (2nd best is 

miTarget with >60%) than the other compared methods in this review. Surprisingly, Aviskar, a 

recently published predictor used a linear SVM model because it has the advantage of being 

directly interpretable from the weights of each feature and for its ease of implementation46. 

However, as mention above, this type of machine learning is expected to perform poorly due to 

the complexity of MTIs. As a result, even though Aviskar obtained a 98% recall on human 

MTI, it showed poor accuracy with 30% of all predicted targets being misclassified. 

Interestingly, Li et al. proposed to improve the performance of miRNA target prediction by 

searching a second MTI on the whole mRNA sequence after finding one in the 3’UTR111. Thus, 

they trained a SVM on a two sites search dataset of validated MTIs from miRecords and 

pSILAC (quantitative proteomics) experiment. When tested on an independent dataset, it 

showed higher performance than other commonly used methods (PicTar, MirTarget2, miRanda, 

PITA, TargetSpy, TargetMiner, and TargetScan). Trying to improve both the prediction model 

and the training dataset, Lu et Leslie created chimiRic, a two SVMs model based on CLASH 

and AGO-CLIP sequencing data112. One SVM uses both data types for duplex prediction and 

the other one serves for AGO sites discrimination (true or not). This strategy has the advantage 

of training on a large dataset of interacting miR-target duplexes but without any guaranties on 

their functionality. Nevertheless, it shows superior performances to MIRZA, MirTarget, 

TargetScan, miRanda and Diana-microT-CDS. 

d) Artificial neural networks 

Artificial Neural Networks (ANNs, also called neural networks) systems have been developed 

in the same idea than interconnected neurons in the brain. Features are used as input nodes in 

this model to feed the “neurons” or working units of the algorithm which then create new 
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combinations (hidden layers) of these inputs, following principles such as fuzzy logic, genetic 

algorithm or Bayesian statistics, to eventually return a prediction. Weight factors are assigned 

to each neuron to modulate its impact on the predicted result. The model is computed to be 

adaptive so that weight factors and neurons ordering can change to best suit the training data113 

(Fig. 6). One of the first MTI prediction method using an ANN was MTar114. Unlike most of 

the algorithms of the time who heavily focus on seed region matching, MTar aimed to 

efficiently identify MTIs no matter the type of interaction. It first calculates a complementarity 

score to decide in which of these 3 categories (determined from Betel et al., 2010) the site falls: 

5’seed-only, 5’dominant and 3’canonical. Three different ANNs were trained depending on the 

site category. They contain 16 input nodes, 9 neurons in the hidden layer and 1 unit in the output 

layer. This method produces more than 90% less targets for each miRNA compared to 

conventional methods with a 94.5% sensitivity and 90.5% specificity. Using a very similar 

model to the one of MTar, HomoTarget uses a pattern recognition neural network (PRNN) 

coupled with a principle component analysis (PCA) for features selection100. It contains 16 input 

nodes, 14 neurons in the hidden layer and 2 units in the output layer. Unlike MTar, HomoTarget 

is focusing on the seed region to predict MTIs since it filters sequences based on standard seed 

rules. HomoTarget was trained on a 425 examples dataset and showed a 99% specificity using 

cross-validation. These two algorithms quickly achieved high performance values due to the 

limited number of duplexes in their training and testing datasets. It would be interesting to test 

them on independent and larger datasets.  

e) Training datasets 

As mentioned above, a good training dataset needs to have a high amount of high quality 

examples. The training dataset truly is a critical aspect of all machine learning methods. A 

difficult challenge in creating a MTI dataset is to generate real negative examples. The strategy 

of creating random nucleotide sequences of varying lengths was tried for a few models but was 

then quickly disregarded because such sequences often interact with miRNAs, as shown in the 

signal-to-noise ratio experiments of previous studies12,78,80,94,101,115. TargetMiner’s authors (who 

later also created MBSTAR) especially emphasized this issue85. Instead of generating random 

sequences as negative MTIs, they crossed the predictions of other algorithms (miRanda, 

TargetScanS, PicTar and DIANA-micro-T) with microarray experiments. If, in a given tissue, 

a miRNA and its potential targeted mRNA were both overexpressed, then this pair was retained 

as a negative example. Using this method, 289 negative MTI were generated. A subset of 

negative examples were then confirmed on a separate pSILAC dataset26. To complete the 
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dataset, 289 experimentally validated positive sites were retrieved from miRecords and 

TarBase97,98,116. Using an independent dataset (187 positive and 59 negative pairs), TargetMiner 

showed a 74% accuracy when NBmiRTar and MirTarget2 only had 51% and 46% respectively 

(lower than in their original publications) clearly showing the importance of the testing dataset 

on the performance evaluation. Furthermore, they showed that TargetMiner performs better 

when trained with their negative dataset than with an artificially generated negative set. They 

confirmed this by obtaining similar results with the model of NBmiRTar when repeating the 

experiment. While validated interactions are most often taken from miRecords or TarBase, 

some predictors, such as MirTarget2, TargetSpy and Avishkar, were directly trained with 

positive interactions inferred from microarray or CLIP-seq experiments46,109,110. The 

development of high throughput methods brought the tendency to include the most amount of 

examples regardless of the lack of functional testing. Being used by many predictors, several 

datasets marked the history of MTIs prediction such as the one published by Linsley et al. in 

2007 (microarray), Selbach et al. in 2008 (pSILAC), Chi et al. in 2009 (HITS-CLIP) or Hafner 

et al. in 2010 (PAR-CLIP)26,41,117,118. As mentioned in introduction, miRNA targets are not 

necessarily repressed at the mRNA level, making microarray data not sufficient to fully 

encompass the action of a miRNA. Use of complementary proteomics data is strongly suggested 

in this case. Moreover, under-expressed mRNA/protein levels measured by high throughput 

experiments can be due to secondary effects of miRNA regulation119. Recently, some predictors 

were trained on CLASH experiments which identifies both AGO binding miRNA and target 

sites on a transcriptome-wide scale. However, one needs to be careful with CLASH data as the 

specificity of the ligation and the exhaustivity of the captured MTIs are questionable33,112. At 

the moment, as difficult and expensive as it might be to acquire the data, combining all these 

technologies (CLIP-seq, CLASH, microarray and pSILAC) seems the best solution to be able 

to rely on large training datasets.  

3. Popular prediction tools 

When published, most if not all prediction algorithms compare themselves to miRanda, Diana-

microT-CDS and/or TargetScan. This is because biologists have mostly been using these 3 

heuristic scoring methods to identify MTIs before going for wet-lab experiments. Their 

popularity is mostly due to their age, frequent updates and a strong adaptation ability to new 

advances in MTIs prediction. 

In the direct foot-steps of the Stark method, miRanda (2003) was developed to further identify 

MTIs in animals. Miranda uses the ViennaRNA package to calculate the thermodynamic 
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folding energy of interaction and a scoring matrix assigning values for each nucleotide pairing 

with higher scores for seed matching74. Site conservation is also included in the tested features 

and results are ranked according to the conservation score. From 2004 to 2010, miRanda was 

upgraded to integrate target site context (global, local and at the duplex level) with a final 

scoring done by a support vector regression algorithm (mirSVR) based on mRNA expression 

change76,120. They trained mirSVR on a set of nine microRNA transfection experiments 

performed on HeLa cells from Grimson et al39. The score resulting from mirSVR is intended to 

estimate the efficiency of miRNA regulation on a given target site and not the probability of 

regulating this site. With this model as well, authors found that the most important features are 

related to the seed region. The mirSVR upgrade showed significant better performances than 

the previous version of miRanda and seems slightly above TargetScan76. 

Diana-microT is an algorithm published in 2004 that first searches for the miRNA-recognition 

elements (MREs), which include Watson-Crick pairing identification and minimum binding 

energy calculation using 38 nucleotides window, in the 3’UTR of a mRNA. A second parameter 

takes into account the miRNA-associated proteins complex which impacts both pairing between 

the miRNA and its target and site accessibility121. In 2009, microT was updated to filter MREs 

that do not have at least a 7mer in the seed region. Authors also decided to integrate 

conservation profiles of MREs using 27 species. Eventually, each considered 3’UTR is ranked 

by the weighted sum of the scores of all its identified MREs and a precision score is calculated 

by comparing results with a set of mock miRNAs. An enrichment analysis is also done with all 

potential MREs for a given miRNA using KEGG pathways database. Results are highlighted 

in the significantly identified pathways122. In 2012, the algorithm was renamed DIANA-

microT-CDS because numerous studies had shown that the coding region of a mRNA can be 

targeted by a miRNA with measurable effect on its degradation. Therefore, microT now screens 

for MREs in this mRNA region and associated conservation scores are also calculated. 

Moreover, a dynamic programming algorithm identifies the optimal alignment for the miRNA 

extended seed sequence (nucleotides 1–9 from the 5’-end of the miRNA) with a 9 nucleotides 

window on the 3’-UTR or CDS. The prediction method scores differently the 3’UTR and CDS 

region and then combined these scores to create the final estimation for the whole mRNA123. 

This last update showed better performance than miRanda and TargetScan at the time of the 

publication (2012). 

Released as a freely available web-tool in 2003 by Bartel’s group, TargetScan first used 

conservation of miRNAs and mRNA UTR as a filter and then seed matching (length and 
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frequency), 3’ compensation and folding free energy as prediction features80,124. The algorithm 

progressively evolved (last version: v7.0, 2015) to take into consideration all analyzable 

elements of MTI previously described2,39,48,124–126. TargetScan broke down these elements into 

14 features using multiple linear regression models (one for each of the four common seed 

types, off-set 6mer included) trained on microarray datasets published by Garcia et al. in 

2011125. The resulting models were collectively called the context++ model. When multiple 

sites are present, individual context++ scores are summed to rank that predicted 3’UTR. Over 

the years, site conservation became one of the features of TargetScan instead of being used as 

filter. With a relatively weak contribution to the context++ score, non-conserved targets can 

even make it to the top predictions. After thoroughly analyzing CLIP datasets, TargetScan 

authors concluded that “non-canonical sites might exist but have not yet been characterized to 

the point that they can be used for miRNA target prediction” and they therefore did not include 

these sites into their predictions48. They also evaluated the use of other, more complex, types 

of regression (e.g., linear regression models with interaction terms, lasso/elastic net-regularized 

regression, multivariate adaptive regression splines, random forest, boosted regression trees, 

and iterative Bayesian model averaging) but found no better performances compare to linear 

regression model48. This result is consistent with a similar test done by Vejnar et al. in 201284. 

The most recent version for TargetScan (2015) showed better performance than 15 other 

predictors (miRanda and microT included) when tested on the dataset from Linsley et al118. 

With 8 publications describing its content and updates, TargetScan is so far the most widely 

used MTI prediction tool by the scientific community (3180 citations from web of science core 

collection as of Mai 2018)89,127,128. 

B. Data combination 

Due to the small overlap of results (5-70%) between all previously cited methods129, researchers 

often combine all results from different prediction tools to strengthen the likelihood of studying 

true positive MTIs. Several strategies to combine MTI predictions have been proposed. 

1. Union and intersection 

Assuming that an interaction predicted by more than one algorithm is more likely to be 

functional, databases such as miRWalk, miRSystem or miRGator store and compare results 

predicted by several popular tools using statistics and/or mRNA/protein expression data90,130–

133. It is with such an intersection strategy that Kuhn et al. validated the interaction of the human 

angiotensin II type 1 receptor (hAT1R) with miR-155 leading them to suggest to cross results 

between at least two MTI predictors before going for experimental investigations134. Ritchie et 
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al., however, demonstrated that targets resulting from the intersection of two lists of predictions 

are not more likely to be present in the intersection of two other lists35. Therefore, intersecting 

results do not increase the probability of retaining true positives. Moreover, approaches based 

on intersection of predictions may lead to decreased sensitivity because of possibly omitting 

valid interactions as shown by Sethupathy et al135. This is supported by Oliveira et al.136 who 

showed that the union of the results from several prediction tools was more efficient than the 

intersection. However, when ranking of MTIs is required, this method should not be used since 

it increases the rate of false positives and therefore decreases the specificity of the predictions 

(which is the most important aspect for ranking purpose). Nevertheless, these databases have 

the advantage of giving a wide panel of predictions for a given miRNA with an edge for 

miRWalk which has been recently updated. However, most users have not enough 

understanding of MTI predictions to decide which database to take or remove from the union 

and intersections strategies to be efficient. 

2. Ensemble methods  

Because of the limits of the intersection strategy, others have used the union with a rescoring 

method to better rank MTIs according the likelihood of being true. It was first investigated by 

DeConde et al. in 2006 with an algorithm that combines ranked lists of miRNA targets from 

five microarray studies and re-rank the targets using a statistical test proposed by Tusher et 

al137. Performances of this method compared to other tools was not evaluated. While this was 

done on experimental data, other methods have used aggregation strategies on predicted MTIs 

from several popular tools. It is the case of MiRror-Suite which gathered predicted and/or 

validated MTIs from 18 databases making it possible to analyze about 40 000 genes and 2500 

miRNAs138. The aggregation strategy consisted in creating a set of potential targets using a 

several filters (species, miR family, cell line, number of databases etc.) and then calculating the 

probability of a MTI to be functional based on a hypergeometric test. However, its ranking 

performances were not compared to other methods. Alternative strategies were tested, such as 

ExprTarget which used a multivariate logistic regression model to combine the scores of 3 

databases (miRanda, PicTar and TargetScan) and clearly out-performed aggregated methods139. 

The good performances of similar combination approaches were also confirmed with a model 

that aggregates 9 predictive algorithms140. Others, like BCmicrO and ComiR, have used more 

complex strategies for the combination step with a NB classifier for BCmicrO and a SVM for 

ComiR141,142. Interestingly, ComiR takes into consideration inputted miRNAs expression levels 

in its rescoring methods. Of note, ComiR was especially designed to predict the targets of a set 

of miRNAs and to consider combinatory interactions. As expected, all aggregation methods 
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were able to outperform, in term of MTI ranking, each aggregated database taken individually. 

This was also confirmed with the aggregation method miRabel (soon to be published) using a 

very large dataset (982 411 common interactions). MiRabel uses a statistic R package 

(RobustRankAgreg) to rescore each MTI from their ranks in 3 databases (miRanda, PITA and 

SVMicrO). This recently published method showed better or equal ranking specificity when 

compared to other (not aggregated) popular prediction tools. The biological relevance of 

combined miRNA target predictions from multiple prediction algorithms can also be enhanced 

by prioritizing results based on functional ranking (inferred from Gene Ontology and 

enrichment analysis)143. 

III. Performances evaluation 

Since the prediction tools are designed for biologists, the ease of use should be a criterion in 

the overall performances. These tools usually come in 3 different platform usage: web-service, 

downloadable programs or R/python packages. The first kind is the most used because of its 

user-friendly aspect. However, ease of use being generally inversely proportional to flexibility, 

it also offers the least amount of freedom in sequence analysis127. 

It is common to consider state of the art tools which harbor a greater correlation between their 

predictions and protein or RNA downregulation144. However, that would be the case if the 

downregulation is directly due to the miRNA transfection which is far from certain in high 

throughput experiments. A more interesting and widely used evaluation method is the area 

under the Receiver Operating Characteristic (ROC) Curve (AUC) which is now well recognized 

for its capacity to evaluate the performance of classifiers145. It plots the sensitivity or True 

Positive Rate (TPR) against specificity or False Positive Rate (FPR) with TPR = TP/(TP+FN) 

while FPR = FP/(FP+TN). An MTI is considered to be a True Positives (TP) if it has been 

predicted and validated, a True Negative (TN) if it has been neither predicted nor validated, a 

False Positive (FP) if it has been predicted and not validated, and a False Negative (FN) if 

validated but not predicted. TPs are readily available through several databases but it is sadly 

not the same for tested but not validated interactions. Therefore, in the case of MTI prediction, 

a non-negligible part of FPs and TNs are mislabeled creating biases in ROC analysis 140. To 

complement the ROC analysis, the precision (TP/(TP+FP)) can be plotted versus the recall 

(same as TPR) and the AUC can also be used for classifier performance evaluation (PR 

analysis)146. An alternative is to plot the cumulated precision versus the normalized scores 

(sorted in descending order)140. Both methods have the advantage of not taking TN in 
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consideration which minimized the number of mislabeled MTI in the analysis. The problem is 

not completely solved however since these methods are still depending on FP. The use of both 

ROC and PR analysis is thus recommended for complete performance evaluation of a MTI 

prediction tool. 

 

Unfortunately, not all reviews or published algorithms use the same type of measurement to 

evaluate performances which makes publications nearly impossible to be compared. A common 

mistake, which tends to disappear nowadays, is to use the training dataset to evaluate prediction 

performances. Indeed, using several datasets for truly evaluating predictors’ performances is 

crucial. To address this issue, several independent reviews have already benchmarked some of 

the previously presented tools, with some predictors being in all benchmarking papers89,133,147. 

Using all measurements addressed above and more, Fan et Kurgan89 compared 7 target 

predictors with 4 testing datasets. Even though TargetScan and miRmap looked the strongest 

in this review, there was no consistent best predictor across all possible measurements. Of note, 

TargetScan performs systematically well across the vast majority of studies comparing MTIs 

prediction algorithms, closely followed by Diana-microT-CDS and miRanda-mirSVR.  

Despite the increasing enthusiasm for the field of MTI prediction, much improvements remain 

to come. MTI prediction is a complex challenge and overcoming it will necessarily reside in a 

closer concertation between multidisciplinary teams. Nevertheless, there is no doubt that future 

studies on MTI prediction will eventually bring us a greater ability to quickly identify major 

contributors to the epigenetic network and therefore a better understanding of human 

physiology. 

IV. Conclusion 

All prediction algorithms use a combination of sequence, site accessibility and conservation 

features to identify potential MTIs. However, since the mechanisms of miRNAs action are not 

yet fully understood, predictors still have a high false positive rate. To improve accuracy, 

different computational methods have been tested. None so far have shown consistently better 

performances. Surprisingly, empirical methods do not seem to perform better than heuristic 

methods suggesting that actual training datasets do not efficiently capture all possible MTI 

examples. There is clearly a great need for standardizing methods to compare algorithms. 

Overall, 3 predictors, TargetScan, miRanda and Diana-microT seem to perform well across 

benchmarking reviews. Until better algorithms come to be developed, ensemble methods seem 
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to be the most efficient strategies to get an integrated vision of the target predictions for a given 

miRNA. Ultimately, efficient MTI prediction will reduce the time and resources spent 

validating miRNA targets and therefore increase the speed at which molecular biologists 

elucidate the role of miRNAs in healthy and pathological conditions.   
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Figures legends 

Figure 1: microRNA seed site types 

The vast majority of miRNA interactions happens through several matching possibilities of the 

seed region as described above. Mismatches in the seed region can still result in a functional 

interaction with the help of 3’ compensatory pairing. 

 

Figure 2: Basic schematics for Genetic Programming (GP) and Genetic Algorithm (GA) 

Using training data, both GP and GA will create subtree crossover of parents A and B to form 

offspring C and D. A fitness test is done for each tree (parents and offspring) to decide which 

one is best suited for the classification of the training data. 

 

Figure 3: Naïve Bayes classification  

The probability that a given interaction is positive or negative is calculated for multiple sets of 

features. The final decision of the algorithm is the product of all probabilities. 

 

Figure 4: Random Forest (RF) classifier 

A) All data are being subsetted randomly to generate several trees using a predefined set of 

rules to optimize the split. B) This specific tree considers an interaction to happen if this one 

possesses all necessary parameters to fall in one of the green leafs. The RF algorithm returns 

the prediction made by the majority of the trees. 

 

Figure 5: Nonlinear Support Vector Machine (SVM) 

A) SVM constructs hyperplanes (grey dotted lines) in a multidimensional space that separates 

cases of different class labels. B) Biological data being rarely separable by straight lines, a 

transformation is often used to get a nonlinear separation model. 

 

Figure 6: Neural Network 
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Selected features are used as input signals in this feedforward partially connected neural 

network example. Each node decides what to send to the next one following principles such as 

fuzzy logic, genetic algorithm or Bayesian statistics. Weight factors are applied to each edge. 

Eventually, an output layer will combine all results in one or several nodes (one in this example) 

allowing the classifier to make a decision. The model can change the weights and nodes 

ordering in order to best classify the training data.  
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