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Abstract: Facial expression conveys important signs about the human affective state, cognitive activity, 
intention and personality. In fact, the automatic facial expression recognition systems are getting more interest 
year after year due to its wide range of applications in several interesting fields such as human computer/robot 
interaction, medical applications, animation and video gaming. In this study, the authors propose to combine 
between different descriptors features (histogram of oriented gradients, local phase quantisation and binarised 
statistical image features) after applying principal component analysis on each of them to recognise the six basic 
expressions and the neutral face from the static images. Their proposed fusion method has been tested on four 
popular databases which are: JAFFE, MMI, CASIA and CK+, using two different cross-validation schemes: subject 
independent and leave-one–subject-out. The obtained results show that their method outperforms both the raw 
features concatenation and state-of-the-art methods.

past few years, especially after the winning of the ImageNet
challenge by using convolution neural network architecture called
‘AlexNet’ [6]. In contrast with the handcrafted methods, the deep-
learning architectures can extract the relevant features directly
from the data across their layers.

During the occurrence of the facial expressions, there are two
kinds of features that appear: deformation and movement of the
face components (e.g. eyes, eyebrows, mouth, nose etc.), and the
facial appearance changes such as wrinkles, furrows and skin
texture changes. The handcrafted feature extraction techniques are
categorised into geometric, appearance, or hybrid approach,
according to the kind of features that they aim to extract and
represent to recognise the facial expression. First, the geometric
techniques essentially depend on locating and tracking the facial
landmarks; for the static images, the methods use the location of
the landmark to measure meaningful distances and angles to
recognise the facial expressions, whereas, for the image sequences,
the motion of facial landmarks caused by the facial expression
occurrence is extracted from frame to frame. Second, the
appearance approach ciphers the changes on face texture by using a
mathematical relation between the intensity of each pixel and its
neighbour's intensities. Finally, the hybrid approach uses a
combination of the previous approaches to the features extraction
phase.

The facial expression recognition (FER) systems need to
overcome many challenges to perfectly recognise facial
expressions. The following challenges could badly influence the
whole process. The first significant challenge affects the face
detection process. Indeed, face detection can be very challenging
and this is due to several factors such as the three-dimensional face
pose, severe clutter, occlusion and variation of illumination [1, 7–
9]. It is very important to cope these challenges concerning the face
detection because they fail to detect the face or detect wrongly
some of its regions will mislead the system, especially for the
systems which depend on or aim to extract the features from
specific regions of the face. Other factors affect the feature

1 Introduction
The studies of how humans perceive and interpret facial 
expressions have attracted many disciplines such as neuroscience 
and psychology to pursuit human mechanisms. These studies have 
given a rise to several theories of how human encodes, represents 
and interprets the facial expressions. When the computer vision 
community first tried to define the problem of the machine analysis 
of facial expressions, it was only natural to resort to the psychology 
theories and adopt some of their theories, conventions and coding 
systems [1].

The studies of facial expression describe two main problems: 
the analysis of facial muscle actions and the recognition of 
prototypical facial expressions. In 1967 [2], Ekman developed the 
facial expression recogniser and the analysis of the facial 
expressions from photographs of the face muscular movement by 
electrical stimuli. This work of Ekman led to create the Facial 
Action Coding System (FACS 1978, [3]) which is based on the 
anatomical basis of facial action. For the second problem that seeks 
to recognise the prototypic facial expressions, it considers basic or 
non-basic emotions. Basic emotions refer to the affected model 
developed by Ekman and his colleagues, who argued that the 
production and interpretation of certain expressions are hardwired 
in our brain and recognised universally [4]. The emotions 
conveyed by these expressions are modelled with six classes: 
anger, disgust, fear, happiness, sadness and surprise.

In the last two decades, plenty of algorithms have been 
designed to detect the prototypic facial expressions from static 
images or images sequence. These algorithms can be classified, 
depending on the way features are extracted from the original data, 
into two pillars: handcrafted and learned. First, the handcrafted 
algorithms are obtained using a mathematical model which is 
designed with prior knowledge of certain characteristics which 
allow the method to overcome specific hurdles. For example, the 
local phase quantisation (LPQ) [5] descriptor proved its efficiency 
on blur data. Second, the learned features are widely used in the
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extraction process such as illumination variation, the appearance of
shadows on some regions of the face, the misalignment problems,
the low quality and blurred images [1, 7–9]. The FER systems must
effectively deal with these challenges because they directly
influence the worthiness of the features. The objective in the
decision phase is to distinguish between the facial expressions
based on features that contain much irrelevant information and can
be influenced by many factors. These factors include external ones
such as the presence of glasses, facial hair, head hair and human
demographic attributes (age, gender and ethnicity). Even the same
person can produce facial expression in different ways for each
time, for both intensity and shape [1, 7–9].

In this paper, we propose a fully automatic framework for
recognising the basic facial expressions from static images. Our
method effectively combines different feature types that are
extracted by descriptors possessing different properties. The main
contributions of this paper are:

• We propose an efficient way to transform descriptor features
into new ones. The new features have low dimensionality with
more discriminative power than the raw features.

• Our approach allows combining different feature types which
overcome the weakness of the concatenation fusion method,
where the different features are not considered equivalently.

• We conduct experiments on several facial expression databases.
The obtained results show that our method outperforms state-of-
the-art methods.

• We compare two evaluation schemes [the classic subject
independent and leave-one–subject-out (LOSO)], to decide
which one is better to evaluate and compare FER methods.

This paper is organised as follows: Section 2 summarises some of
the previous works. The proposed approach is introduced and
detailed in Section 3. In Section 4, we describe the experimental
set-up. Section 5 presents the experimental results and comparison
with state-of-the-art methods. Finally, we conclude this paper and
give some future research directions in Section 6.

2 Related works
In the past decade, FER field has achieved a point of mature due to
two main reasons: the first one is the availability of considerable
databases, which are collected with plausible scenarios. The second
factor is the abundance of algorithms that have achieved high
performance on these databases. The developed algorithms aim to
recognise the facial expression from two types of data either from
images [10–13] or from dynamic image sequences [14–17]. The
dynamic methods exploit both temporal and spatial information
from a sequence of images; in contrast, the static methods use just
the spatial information from a single image. In this section, we will
focus on describing the works that were developed to recognise the
basic facial expressions from the static images.

In the literature, there are many approaches to extract the facial
expression features from the face. The appearance-based feature
descriptors are among the most successful methods such as local
binary pattern (LBP) [18], local mean binary pattern [19], local
Gabor binary patterns [20], LPQ [21], local directional texture
pattern (LDTP) [22] and Gabor wavelet [23]. Another feature
extraction approach is to use the shape information by using the
distances and angles between the facial landmarks. Some of the
most successful methods are active appearance model [24], elastic
bunch graph matching [17], Kanade–Lucas–Tomasi [25]. Kulkarni
et al. [26] used eight distances between specific facial features such
as inter-eyebrow distance and seven facial muscle contractions
such as nose lines to train the neural network. There are many
works that used a hybrid approach, which combine the two types of
features [23, 27–29]. In addition, there are some techniques such as
histogram of oriented gradients (HOG) [10, 30], which extract both
types of features. The handcrafted methods are the closest ones to
our approach. Usually, these existing approaches use raw
descriptor features or concatenate more than one descriptor in order
to form the final descriptor. On the other hand, in our proposed
method, we transform the raw features to obtain a higher-level

representation of each type of feature; in the last step, we
concatenate these different high-level features in order to form the
final descriptor.

In recent years, most of the dominant methods are deep-
learning ones. The strength of this approach is the way of how the
features are learnt from the data, which is inspired by the
mechanism of the human brain [31]. Some of the recent works that
have used deep learning are [11, 32–36].

In [32], Cai et al. proposed a new loss function called island
loss to enhance the discriminative power of the deeply learnt
features. Their IL-CNN architecture is constructed as follows:
Conv1, Pool1, Conv2, Pool2, Conv3, Pool1, fully connected (FC),
island loss layer and finally a softmax loss layer. Liu et al. [35]
proposed a deep architecture that was inspired by the psychological
theory which states that the expressions can be decomposed into
multiple facial action units (AUs). Their AU-inspired deep network
(AUDN) architecture is composed of three sequential modules;
first, convolution and max-pooling layers to learn the micro-action-
pattern (MAP) representation; second, feature grouping by
combining correlated MAPs adaptively to simulate larger receptive
fields, and finally, a group-wise sub-learning network to obtain
higher-level representations. In [11], Mollahosseini et al. proposed
their own architecture which consists of two convolutional layers
each followed by max-pooling and then four inception layers.
Meng et al. [36] designed a new architecture (termed IACNN) and
a new loss function (expression-sensitive contrastive loss). They
proposed to use two identical CNN architectures for extracting the
expression and identity-related features in parallel to alleviate the
inter-subject variations introduced by personal attributes. The used
CNN's architecture consists of three convolutional layers, each of
which is followed by a parametric rectified linear unit (PReLU)
layer. The first two PReLU layers are followed by batch
normalisation and max-pooling layers, whereas the third one is
followed by two FC layers consisting of 1024 neurones. The final
part is softmax and contrastive losses layers.

Deep-learning architectures are facing two main drawbacks: (i)
the requirement of a huge labelled dataset and (ii) the high
computational cost of both training and testing phases and that
requires powerful workstation with large RAM space and powerful
GPU. These make finding the optimal hyperparameters a tedious
task and lead to an expensive computational cost [37–39]. In
contrast, handcrafted methods can find the right trade-off between
accuracy and computational efficiency [37].

Face representation is another important component in FER.
Generally, there are three common facial representations: the
holistic representation extracts the features from all face regions, as
used in [10, 18, 19, 40]. The second representation type is the part
based that uses some parts from the face which are assumed to
have a direct relationship with the recognition of facial
expressions. Some works that have used this representation type
are [12, 22, 41, 42]. The third one, boosting representation, also has
proved its efficiency for the recognition of facial expressions. Shan
et al. [13] and Bartlett et al. [43] used the AdaBoost algorithm [44]
to learn the significant patches from Gabor and LBP features,
respectively.

For the decision phase, the support vector machine (SVM) is
the most used technique. In [13], Shan et al. used SVM with one-
against-rest technique and grid search for the best hyperparameters
for the different kernel functions [linear, polynomial and radial
basis function (RBF)]. Ryu et al. [22] used SVM for multi-
classification using one-against-one technique and searched about
the best hyperparameters for the RBF kernel. In [10], the one-
against-one strategy was used and RBF kernel with non-linearly
separable parameters C = 1000 and γ = 0.05. Happy and Routray
[12] used one-against-one SVMs for multi-classification purpose
and they selected RBF kernel for its superior classification
performance, after several experimental comparisons with linear
and polynomial kernels. Another classification option that has been
used for FER is two stages based classification. Turan and Lam
[42] extracted first the LPQ features from the eyes and the mouth
windows. In the first-stage classification, they fed the features to
one-versus-all SVM to classify the facial expressions. If the
difference between the highest output and the second-highest one is
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<0.1, the canonical correlation analysis is used to fuse the features
of the two windows, then they fed these fused features to a second
classification stage which is one-versus-one SVM. In [45], Xue et
al. proposed a hierarchical approach which uses one-against-rest
SVM and the grid search to pick the best hyperparameters. In the
first stage, they fed SVM with LBP and displacement features
extracted from the whole face to merge the confused expressions
together into one class. In the second stage, the expressions in the
merged class are separated by a second SVM which is learnt by the
mouth and eyebrows locations and displacements. Some other
works used different classifiers and investigated the best one. Wang
and Yin [46] used different classifiers which are: quadratic
discriminant classifier, linear discriminant analysis (LDA) and
Naive Bayesian network classifier and in their experiment LDA
classifier achieved the highest accuracy. Sebe et al. [47] also
compared between different classifiers which are: Bayesian
networks, SVMs and decision trees (kNN) and they found that the
best classifier is kNN with K = 3.

3 Methodology
3.1 Our approach

In our approach, we propose a fully automatic system to recognise
the basic facial expressions from the static images. Fig. 1 describes
the overall structure of our approach; as most of FER systems, our
system consists of three main steps, which are: (a) pre-processing,
(b) feature extraction and selection and (c) expression recognition.

and converted them into grey-scale space. In the feature extraction
and selection phase, we extracted first the features from the face
image using the three descriptors HOG, LPQ and binarised
statistical image features (BSIFs). In more details, the selected
HOG parameters are: 8 and 32 for cell size and block size without
overlapping. The chosen LPQ parameters are: the size of the local
window is 13 and the frequency estimation method is the Gaussian
derivative quadrature filter pair. For BSIF, we chose 17 × 17 × 11
filter. All the descriptors’ parameters are chosen experimentally
and they do not significantly deviate from the values used in other
image analysis problems. To consider information from face
regions, we compute histograms from 5×4 equal face blocks for
both LPQ and BSIF and the 32×32 block size for HOG. For each
descriptor, the overall histogram is the concatenation of all block
histograms. Second, we propose to use the principal component
analysis (PCA) method to transform the features into their
eigenvectors to have the same feature vector length from different
descriptors, and then select the most discriminative features which
correspond to the highest variances. The final feature vector is the
concatenation of the transformed descriptors features. In the last
phase, we feed the resulted histogram to linear SVM using lib-
linear library [49].

3.2 Descriptors

The feature extraction phase is considered as the most important
step in machine learning tasks. We selected three of the most
successful local descriptors in various computer vision problems.

3.2.1 Local phase quantisation: Since the development of LBP
[50], a lot of LBP variants have been proposed to deal with

Fig. 1  General structure of the proposed approach
(a) Face pre-processing, (b) Features extraction and selection, (c) Classification

For the pre-processing phase, first, we detected 68 facial 
fiducial points using Dlib library [48]. The points of the eyes 
region were used to assign the centre of the eyes that we used to 
align and crop the face. Then, we resized all the faces into 240×192
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different computer vision tasks [51]. LPQ [5] is one of the most
successful LBP variants for computer vision problems including
the recognition of facial expression [21]. LPQ is based on
quantising the Fourier transform phase in local neighbourhoods to
overcome the sensitivity of LBP to image blurring. Ojansivu and
Heikkilä [5] proposed the LPQ descriptor which is based on
quantising the Fourier transform phase in local neighbourhoods Nx.
For each pixel x = (x1, x2)T from the input image f, the local
frequency is computed using the short-term Fourier transform by

F(u, x) = ∑
y ∈ Nx

f (y)wR(y − x) e− j2πuTy
(1)

where wR(x) is a window function defining the neighbourhood Nx.
In the case of regular LPQ, wR is an M by M rectangle given as
wR(x) = 1 if x1  and x2 < M /2 and 0 otherwise. LPQ considers
four frequencies for u, which are u1 = [a, 0]T, u2 = [0, a]T,
u3 = [a, a]T and u4 = [a, − a]T, where a is selected as a sufficiently
small scalar. So, each pixel position results in a vector

F(x) = [F(u1, x), F(u2, x), F(u3, x), F(u4, x)] . (2)

The phase information in the Fourier coefficients is directly related
to signs of the real and imaginary parts of each component in F(x).
LPQ descriptor uses G(x) = [Re{F(x)}, Im{F(x)}], where Re and
Im are the real and the imaginary parts of F(x), respectively, to
obtain a binary code by

qi =
1, if gi ≥ 0
0, otherwise, (3)

where gj is the jth component of G(x). Finally, the eight binary
code is transformed into a number by: f LPQ(x) = ∑ j = 1

8 (qj2( j − 1)).

3.2.2 Binarised statistical image features: BSIF [52] is another
LBP variant, which proved its efficiency in many computer vision
tasks [51]. To the best of our knowledge, BSIF has not been used
for FER yet. In contrast with LBP and LPQ, BSIF uses a fixed set
of filters which are automatically learnt from a small set of natural
images, instead of using handcrafted filters. The filters are learnt
using independent components analyses for estimating the
independent components.

The si filter response of each pixel (u, v) of the input image is
obtained by

si = ∑
u, v

Wi(u, v)X(u, v) = wi
Tx, (4)

where Wi is the learnt set of filters of size l × l × k and X is the
image patch of size l × l pixels that corresponds to the (u, v) pixel.
For i = 1, …, k, the si response is binarised as follows:

bi =
1, if si > 0
0, otherwise, (5)

So bi contains k binary digits, the BSIF code is obtained by
f BSIF(x) = ∑i = 1

k (bi × 2(k − 1)). As a result, the BSIF feature is a
histogram of (0:2(k) − 1) codes. The code value of a pixel is
considered as a local descriptor of the image intensity pattern in the
pixel's surroundings. Furthermore, histograms of pixels’ code
values allow characterising texture properties within image
subregions.

3.2.3 Histogram of oriented gradients: In contrast to LPQ and
BSIF which were designed to extract just the appearance features,
HOG extracts the shape information. Indeed, the HOG descriptor
was originally designed for human detection [53] than it has been
extended to various computer vision tasks including FER as in [10,
30]. HOG counts the occurrences of gradient orientation in

localised portions of the image. The process includes four steps:
first, the horizontal and vertical gradients of the whole image are
computed by using two centred derivative masks [1,0,–1] and
[1,0,–1], then these gradients are used to compute the magnitude
and orientation on each pixel by

Mxy = (Gx)2 + (Gy)2, and (6)

θxy = arctan Gy
Gy

(7)

where Gx and Gy are the horizontal and vertical gradients of the
pixel (x, y). Second, the image is divided into cells. The gradient
orientations θxy of the cell pixels are used to vote into nine
corresponding orientation bins equally spaced between 0° and
180°. The vote is weighed by the gradient magnitude M. The third
step of HOG is to group the cells together into larger blocks, and
the block histogram is the concatenation of its cell histograms. The
overall image histogram is the concatenation of normalised block
histograms. There are different methods for block normalisation,
some of them are described in [53].

3.3 Principal component analysis

Dimensionality reduction techniques have been widely used in
pattern recognition and computer vision tasks. One of the most
used techniques is PCA, which considers n×d data matrix X, where
each of columns represents a data sample and each of rows
represents the observations on each feature variable. The PCA
linearly transforms the original d-dimensional space into a D-
dimensional subspace, where D ≤ d. The new feature vectors are
defined by

yi = WTxi (8)

where xi = X(i, 1:d) (xi is the ith row of the matrix X), and the
columns of W are the eigenvectors ei that are obtained by solving
the eigenstructure decomposition

λiei = Qei (9)

where Q is the covariance matrix of the data matrix X and λi is the
eigenvalue associated with the eigenvector ei [54].

In our work, we calculated the eigenvectors of the covariance
matrix associated with the transpose of the data matrix X. The
obtained n × n eigenvector matrix is used as the projected data
matrix, Y = (y1

T; y2
T; y3

T; …; yn
T).

4 Experimental set-up
4.1 Evaluation protocols

In the literature of basic FER, the k-fold cross-validation protocol
is widely used to evaluate the performance of the proposed
methods. Cross-validation protocol consists of repeating the
training–testing process K times, where, at each time, one fold is
left for the test phase and the rest of the folds are used for training
the model. The overall accuracy is the average of the accuracies
obtained from testing all the folds. In fact, the evaluation of FER
methods using cross-validation protocol has two main schemes
which are subject dependent and subject independent. In the first
scheme, the samples of each class of the whole database are
randomly divided into K equal subsets, in order to create K-folds,
each fold contains one subset from each class. However, in the
subject-independent scheme, the subjects are randomly divided
into K equal subsets, so each fold contains the samples of subjects
corresponding to this fold. In addition, there is a special case of a
subject-independent scheme, which is known as LOSO. In this
scheme, the samples of just one subject are used for testing and the
rest of the subjects samples are used for training the model. Thus,
the number of the folds equals to the number of persons of the
database.
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4.2 Experimental data

In our experiments, we used four popular available facial
expression databases which are: JAFFE [23], MMI [55, 56],
CASIA [57] and CK+ [58]. The JAFFE [23] dataset consists of 213
images of the six basic facial expressions plus neutral face. These
images were obtained from ten Japanese females, each subject has
from two to four samples for each expression. The images are grey
scale and their sizes are 256 × 256 px2. Fig. 2a shows some image
samples. This database has just a few numbers of subjects (ten),
and that is a very challenging task to any FER system to reach high
efficiency. 

The MMI facial expression database [55, 56] is collected from
students and research staff members of both sexes aged 19–62
years. For the six basic emotions, there are 207 clips, which are
obtained from 30 subjects. Each video starts with the neutral
expression, then passing through a peak phase in the middle and
ends with the neutral face. For our experiments, we collected the
three peak frames from the middle of each sequence. Thus, we
obtained 621 images in total, all the images are the frontal or near-
frontal view of the participant's faces and digitised into
720 × 576 px2 with 24 bit colour values. The MMI database
contains a lot of challenges for facial expression systems including
illumination, gender, ageing, ethnicities, insufficient number of
subjects and many of subjects wear accessories (e.g. glasses and
scarfs) and have facial hair (moustache). Fig. 2b shows some
image samples from the MMI database.

The Oulu-CASIA [57] NIR visible (VIS) facial expression
database consists of six expressions (surprise, happiness, sadness,
anger, fear and disgust) from 80 subjects between 23 and 58 years
old, 73.8% of the subjects are males, and most of them are Finnish
and Chinese people. In our experiments, we choose the VIS (VIS
lighting) image sequences with the normal illumination conditions.
The first frame of each sequence is the neutral face and the last one
is the peak expression. We collected the three last frames from each
sequence. We obtained in total 1440 images, the images are colour
images and their resolution is 320 × 240 px2. Despite that this
database consists of a considerable number of subjects, it still has
many challenging aspects such as human demographic attributes
(gender, age and ethnicity), external factors (glasses and facial
hair). The most different aspect from the other databases is the low
quality of pictures which makes the facial appearance changes
(such as wrinkles and furrows) not clear as shown in Fig. 2c.

The CK+ database [58, 59] is one of the most comprehensive
face databases which has been widely used by the research
community. It consists of 593 image sequences from 123 subjects.
The image sequences vary in duration from 10 to 60 frames; each
sequence begins with the neutral face and ends with the peak
expression. In our experiments, we selected 309 sequences from
106 subjects. The only selection criterion is that the sequences are
labelled as one of the six basic emotions. We took the three last
frames from each sequence and the first one as a neutral face. We
have obtained 927 images for the six basic emotions and 1236 for
the six basic expressions plus neutral. The images are frontal views
and their resolution is either 640 × 490 or 640 × 480 px2 arrays
with 8 bit grey scale or 24 bit colour value. Fig. 2d shows some
image samples. Tables 1 and 2 summarise some statistics and
properties about the used databases, which we will be used to
analyse the experimental results. 

5 Experimental results
Our experimental phase is divided into three parts. In the first part,
we use ten-fold subject-independent cross-validation protocol to
evaluate our proposed approach, and then we compare the obtained

Fig. 2  Databases samples
(a) JAFFE, (b) MMI, (c) CASIA, (d) CK+

Table 1 Databases statistics
Database Angry Surprise Disgust Happy Fear Sadness Neutral
JAFFE 30 31 29 31 32 30 30
MMI 96 123 96 126 84 96 —
CASIA 240 240 240 240 240 240 —
CK+ 138 252 174 207 72 84 —
CK + 7 138 252 174 207 72 84 309

Table 2 Databases properties
Database Number of subjects Number of sessions Original images Selection criteria Number of images
JAFFE 10 — static — 213
MMI 30 207 video three middle frames 621
CASIA 80 480 sequence three last frames 1440
CK + 6 109 309 sequence three last frames 927
CK + 7 109 309 sequence first and three last frames 1236
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results with the state-of-the-art ones. In the second part, we
evaluate our approach using leave-one-subject-out scheme and
compare the results with the state-of-the-art results. Finally, we
compare the classic subject-independent and the LOSO cross-
validation schemes.

5.1 Subject independent

The subject-independent experimental scheme has widely
investigated in the past years because it is more plausible for the
real applications, which need to recognise the facial expressions
from new persons. For each database, we divided the database into
ten folds with the condition that all samples of one subject appear
just in one fold. In addition, we repeated the whole process ten
times and the accuracy is the mean accuracy. We used ten-fold
subject independent to compare between the descriptors (LPQ,
BSIF and HOG) and the fusion between them (the concatenation of
their features). Table 3 contains the obtained results on JAFFE,
MMI, CASIA, CK + 6 and CK + 7 databases. 

From the results, we find that the fusion by concatenating the
features, obtained from the three descriptors (HOG, LPQ and
BSIF), did not always achieve the highest accuracy compared with
the use of a single descriptor. In fact, each descriptor provides a
different feature vector length (HOG: 1080, LPQ: 5120, BSIF:
40,960 and the fusing: 47,160); consequently, the classifier did not
consider the descriptors equivalently.

To deal with this issue, we use PCA not only to have the same
feature size from each descriptor, but also to obtain more
discriminative features from the features of each descriptor.
Furthermore, PCA allows reducing the dimensionality of the whole
system. For each database, we searched for the optimal number of
PCA features (the eigenvectors) that have the most discriminative
power to distinguish between the basic facial expressions. The
optimal sizes for fusion descriptors are 35, 50, 150, 130 and 210
from each descriptor features transformation for JAFFE, MMI,
CASIA, CK + 6 and CK + 7, respectively, as shown in Fig. 3. We
emphasise that in Fig. 3 and the following ones, the size of the
fusion feature is three times the value depicted on the x-axis; the
fusion is the concatenation of three features, each having a size x.
The variation of the optimal PCA-features number from one
database to another is due to the fact that the databases are captured
in different conditions. Furthermore, the number of classes (six
basic expressions and six basic expressions plus neutral) and the
number of subjects play a crucial role in the optimal size of PCA-
fusion features. In more details, for the CK+ database, we find that
the optimal PCA-fusion features number to recognise the seven
expressions (210) are considerably high compared with the one for
six expressions recognition (130), and that is very plausible due to
the added class (neutral face), which has many common features
with all of the other expressions. The number of subjects influence
is clear, where we observe that the databases which consist of
bigger subjects number (first column of Table 2) have longer
optimal PCA features and vice versa. 

With varying the number of PCA features, first, we compared
between the use of single descriptor and fusion of all descriptors
(Fig. 3), then we compared the fusion between two descriptors and
the fusion of all descriptors (Fig. 4). From the experiments on all
databases, we observe the following statements:

(i) For few PCA feaures, the recognition accuracy is low and with
the augmentation of PCA features the accuracy increases to reach a
peak-accuracy interval. Hence, the number of PCA features within
this interval has a considerable amount of discriminative features
that can highly distinguish between the different facial expressions.

For example, for the CASIA database, we can consider [100,190]
as the optimal interval (Fig. 3).
(ii) When the number of PCA features is within the peak-accuracy
interval, the accuracy of using PCA features of each descriptor
(Fig. 3) outperforms the use of its raw features (results of Table 3).
(iii) Most of the time the use of PCA-fusion between all descriptors
outperforms the use of one descriptor PCA features (Fig. 3) or a
PCA features a fusion of two descriptors (Fig. 4).
(iv) The peak-accuracy interval is larger when the number of
subjects is sufficient as we can see for CASIA, CK + 6, and CK + 7
in Figs. 3c–e and 4c–e. In contrast, when the number of subjects is
small, this interval is very small as we can see for JAFFE and MMI
databases in Figs. 3a, b and 4a, b. Indeed, we observe that the
accuracy increases with the number of PCA features until the
optimal value, and then it fast decreases.
(v) As shown in Fig. 3, there is no descriptor from the chosen ones
(HOG, LPQ and BSIF) that always performs better than the others.
For example, for CK + 7 database, BSIF outperforms the other
descriptors Fig. 3c, in contrast, for the CK + 6 the HOG descriptor
is better than the others Fig. 3d.
(vi) For the combination of two PCA feaures (Fig. 4), there is no
combination that always gives better accuracy than the other two
combinations. For example, on CASIA database (Fig. 4c), the
combination HOG-LPQ is the best combination within the interval
[50,90], whereas in the interval [100,200], the PCA features of
LPQ-BSIF is the best fusion.

Now, we will compare our fusion method with raw features
fusion, and then with state-of-the-art methods. We observe from
Table 4, comparing our proposed method with the use of raw
features concatenation, that the optimal numbers of PCA features
give better accuracies by 13, 10, 6.5, 3.5 and 4.5% for JAFFE,
MMI, CASIA, CK + 6 and CK + 7, respectively. The comparison to
the results obtained by state-of-the-art approaches is somehow
difficult to achieve due to the lack of the knowledge about the used
data (i.e. the followed procedure and number of the selection
frames, the selected subjects and their number), and the type of
declared accuracy. We compared our results with the systems that
used the same data, evaluation protocol, and declared the overall
accuracy. It should be mentioned that for the MMI database, most
of the existing works are different in terms of the number of
subjects and sequences, and the selection criterion of frames. As
shown in Table 5, our result is better than [32, 60] which used
similar experiment on the MMI database. On the other hand, for
the CASIA database, due to the lack of static experimental works,
we compared just with one work of static images [32] and many
works for image sequence. Our proposed method obtained better
recognition accuracy than [32] and competitive performance with
the dynamic algorithms as shown in Table 6. The CK+ database is
the most used database in the literature for both the first version
[59] and the extended one [58].

We tested our method for 6 and 7 expressions on the CK+
database to compare with different algorithms that have achieved
the highest accuracies on that database. Tables 7 and 8 contain the
comparison for 6 and 7 expressions, respectively. Our method
outperforms all the algorithms, despite that the works [11, 61]
selected just the last frame representing the most exaggerated
expression from each sequence. When we selected just the last
frame from each sequence, the optimal PCA-fusing vector gives
96.47% (against 93.20% in [11]) and 96.27% (against 95.70% in
[61]) for the CK + 6 and CK + 7 databases, respectively. 

In addition, we compared our results with [13] (see Tables 7
and 8) which used the first version of the CK database, where some
works showed that the experiment on CK+ is much harder than CK

Table 3 Our experimental results using different descriptors and the fusion between them for the subject-independent protocol
Technique JAFFE MMI CASIA CK + 6 CK + 7
HOG 60.09 65.62 67.92 94.45 90.85
LPQ 57.28 55.99 69.7361 92.2654 88.81
BSIF 54.46 61.90 71.25 88.17 87.32
descriptors fusion 60.09 63.03 73.47 92.56 91.26
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in the JAFFE database Fig. 5a HOG gave the better accuracy for
angry, LPQ performed better for disgust, happy and sadness, BSIF
is better for fear, while for neutral expression both BSIF and HOG
provided almost the same accuracy.

LOSO scheme has not been widely used in the literature. To the
best of our knowledge, there are only two works [22, 60] that have
used this scheme in their experiments. The comparison with our
method is summarised in Table 10. Unfortunately, in the works [22,
60], there are no experiments on CASIA and CK + 6 databases.
From Table 10, we observe that our method's performance is better
than the two works on MMI and CK + 7 databases. 

In addition to the previous databases, we tested our method on
the SoFace database [65]. The SoFace database consists of 2662
original images which have a variety of challenges including and
not limited to different illuminations and subjects wearing glasses.
The faces are labelled with four facial expressions/classes, which
are neutral, happy, sad/angry/disgusted and surprised/fearful. Our
fusion method achieved an accuracy of 73.1% using the LOSO
scheme. Unfortunately, to the best of our knowledge, there is no
published result on this database for FER to compare our result
with.

5.3 Discussion

Finally, we compare the classic subject-independent scheme and
LOSO. From Fig. 6, we note that the accuracies obtained using
LOSO are frequently higher than classic subject-independent
scheme because LOSO has the advantage of using more data in the
training phase. To calculate the accuracy for the subject-
independent scheme, there is a need to repeat ten times the process
by dividing the subjects randomly into ten equal subsets which

Fig. 3  Comparison between the descriptors and the fusion between them according to PCA-features number
(a) JAFFE, (b) MMI, (c) CASIA, (d) CK + 6 expressions, (e) CK + 7 expressions

database such as [64]. Finally for the JAFFE database, Table 9 
shows that our method performs better than [22]. 

5.2 Leave-one–subject-out

In addition to the classic subject-independent scheme, we produced 
experiments using LOSO scheme on MMI, CASIA and CK + 6 
expressions and 7 expressions databases. The number of the 
optimal PCA features are 50, 150, 130 and 240 from each 
descriptor features transformation, for MMI, CASIA, CK + 6 and 
CK + 7, respectively, as shown in Fig. 5. To obtain a better picture 
of our method behaviour on the level of recognising the individual 
expressions, we compared our fusion method with the raw features 
fusion and the use of the features from the single descriptors 
(HOG, LPQ and BSIF), Fig. 5 on JAFFE, MMI, CASIA, CK + 6 
and CK + 7. We observe that the accuracy of PCA-fusion for 
recognition individual expressions is often better than all the 
accuracies that obtained using single descriptors, and that is due to 
the PCA-fusion power of combining properties from each 
descriptor. We observe also from Fig. 5 that the PCA-fusion 
exceeds the raw features combination in the level of recognising 
the individual expressions. 

On the other hand, we note that the expressions (fear, disgust),
(fear, sadness) and (disgust, angry) are the most confused 
expressions for JAFFE, MMI and CASIA, respectively. While for 
CK + 6 and CK + 7, the PCA-fusion recognition accuracies of the 
individual expressions are high, and that probably due to the 
plausible number of subjects in the CK+ database.

Another observation from the individual expressions 
recognition is that there is a descriptor that often performs better 
than the others in the recognition of one expression. For example,
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give ten accuracies, then the overall accuracy is the average of
these accuracies. In contrast, the LOSO scheme has known folds.
In addition, repeating a subject-independent experiment gives
different accuracies, may be the difference between two accuracies
is neglected, but sometimes that difference is significant. When we
studied the recognition of the individual expressions, we noted that
repeating a subject-independent experiment gives different
recognition accuracies for the individual expressions, so no unique
result can be concluded from the subject-independent scheme. We
conclude that this is better to use the LOSO scheme because it
gives a unique accuracy for each experiment and allows studying
the recognition of the individual expressions. 

6 Conclusion
In this paper, we proposed to use PCA-fusion between three
descriptors (HOG, LPQ and BSIF) for recognising the basic facial
expressions (anger, disgust, fear, happiness, sadness and surprise
plus the neutral face) from the static images. Our experiments are
produced on JAFFE, MMI, CASIA, CK+, and CK + 7 databases
using two different cross-validation schemes. The obtained results
show that our fusing method outperformed the use of the

Fig. 4  Comparison between the fusion between two descriptors and the fusion between all of them according to PCA-features number
(a) JAFFE, (b) MMI, (c) CASIA, (d) CK + 6 expressions, (e) CK + 7 expressions

Table 4 Comparison between the raw-fusion and PCA-fusion using the subject-independent scheme
Database JAFFE MMI CASIA CK + 6 CK + 7
raw-fusion 60.09 63.03 73.47 92.56 91.26
PCA-fusion 73.24 73.57 79.99 95.98 95.96

Table 5 Comparison to state-of-the-arts methods on MMI
database using subject-independent cross-validation
Article Method Accuracy
2017 [60] IACNN 69.48
2017 [32] IL-CNN 70.67
our method PCA-fusion 73.57

Table 6 Comparison to state-of-the-art methods on CASIA
database using subject-independent cross-validation
Article Method Feature type Accuracy
2015 [14] ADTAGN (joint) dynamic 81.46

DTAGN (weighted sum) dynamic 80.62
DTGN dynamic 74.17
DTAN dynamic 74.38

2016 [15] UMM Dis-ExpLet dynamic 79.0
UMM ExpLet dynamic 76.90

2014 [16] STM-ExpLet dynamic 74.59
2017 [32] IL-CNN static 77.29
our method PCA-fusion static 79.99
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Table 7 Comparison to state-of-the-art methods on CK + 6 database using subject-independent cross-validation
Article Method Accuracy
2017 [33] DLP-CNN 95,78
2015 [40] lp-norm MKL multiclass-SVM 95.50
2009 [13] Boosted-LBP 95.10

LBP uniform 92.60
2016 [11] deep NN architecture 93.20
2013 [45] two-stage classification of (LBP + shape) 89.20
our method PCA-fusion 95.97

Table 8 Comparison to state-of-the-art methods on CK + 7 database using subject-independent cross-validation
Article Method Accuracy
2017 [61] Boosting-POOF 95.70
2017 [36] IACNN 95.37
2017 [32] IL-CNN 94.35
2017 [62] triplet-wise-based of GSF 94.09
2015 [35] AU-inspired deep networks (AUDN GSL = 2) 93.70
2015 [40] lp-norm MKL multiclass-SVM 93.60
2013 [63] AU-aware deep networks (AUDNs) (OR) 91.44

AUDN (AURF) 92.22
AUDN 92.05

2009 [13] Boosted-LBP 91.40
LBP uniform 88.90

our method PCA-fusion 95.96

Table 9 Comparison to state-of-the-arts methods on JAFFE database using subject-independent cross-validation
Article Method Accuracy
2017 [22] LDTP 64.79
our method PCA-fusion 73.23

Fig. 5  Comparison between the descriptors and the fusion between them on the recognition of the individual expressions
(a) JAFFE database, (b) MMI database, (c) CASIA database, (d) CK + 6 database, (e) CK + 7 database
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traditional fusing and the existing works of different state-of-the-art
approaches.

Our proposed approach is based on making different descriptors
equivalent to the classifier by using PCA to transform the
descriptors features into their eigenvectors. The power of our
method is not only due to the use of PCA that allows our approach
to obtain efficient discriminative features from the raw ones, but
also the fusion between different features types made our approach
stronger; appearance features using (HOG, LPQ and BSIF), shape
features using (HOG) and learned features using (BSIF). The
combination of these specific descriptors plays a crucial role by
complimenting each other to overcome the different challenges that
are facing the recognition of facial expressions, which are different
from one database to another. In this paper, we also compared
between two different cross-validation schemes (ten-fold cross-
validation and LOSO), and we concluded that the use of the LOSO
scheme is preferred due to many advantages.

As future work, we propose to use supervised techniques to fuse
different features. We also plan to use more descriptors that can
provide different feature types to deal with more FER challenges.
Finally, we fit our method to recognise the facial expressions from
videos.
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