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ABSTRACT
Magnetized neutron stars are privileged places where strong electromagnetic fields as high as
BQ = 4.4 × 109 T exist, giving rise to non-linear corrections to Maxwell equations described
by quantum electrodynamics (QED). These corrections need to be included to the general
relativistic (GR) description of a magnetic dipole supposed to be anchored in the neutron
star. In this paper, these QED and GR perturbations to the standard flat space–time dipole are
calculated to the lowest order in the fine structure constant αsf and to any order in the ratio Rs/R
where R is the neutron star radius and Rs its Schwarzschild radius. Following our new 3+1
formalism developed in a previous work, we compute the multipolar non-linear corrections
to this dipole and demonstrate the presence of a small dipolar � = 1 and hexapolar � = 3
component.
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1 IN T RO D U C T I O N

Neutron stars are exquisite objects to test our theories of gravity
and electromagnetism in the strong field regime. Indeed curvature
of space–time is important in the vicinity of the star due to its
compactness

� = Rs

R
≈ 0.345

(
M

1.4 M�

) (
R

12 km

)−1

, (1)

where R is the neutron star radius, M its mass, Rs = 2 G M/c2 its
Schwarzschild radius, c the speed of light and G the gravitational
constant. Moreover, strong magnetic fields are present, as high as
BQ = 4.4 × 109 T and even higher. These strong fields are unreach-
able in Earth laboratories. They act together to modify the standard
expression for a pure magnetic dipole in flat space–time and weak
magnetic fields B � BQ. Whereas exact analytical solutions are
known in general relativity since Ginzburg & Ozernoy (1964) for
a dipole and also for multipolar terms in a spherically symmetric
vacuum gravitational field as presented by Wald (1972), there are
no such solutions including quantum electrodynamics (QED) ef-
fects. The only work we are aware of is from Heyl & Hernquist
(1997a) who already computed the corrections to a dipole to first
order for any strength of the magnetic field following Heisenberg
& Euler (1936) effective Lagrangian. However, their description
was restricted to flat space–time. The properties of strong electric
and magnetic fields following the Euler–Heisenberg Lagrangian
and related experiments are reviewed by Battesti & Rizzo (2013).
The self-consistent Maxwell equations in curved space–time and
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in strong electromagnetic fields have been derived using a 3+1
formalism developed by Pétri (2015b). We apply these equations
to the simple case of a pure static magnetic dipole. Such correc-
tions would be most important for magnetars, i.e. neutron stars
with the strongest magnetic fields known in the Universe with B ≈
10–100 BQ (Turolla, Zane & Watts 2015).

More generally, implications of strong magnetic fields to neu-
tron star physics have been reported by Harding & Lai (2006). As
claimed by Lai & Ho (2003), X-ray polarization could be an efficient
tool to diagnose radiation in strong electromagnetic fields. See also
Heyl & Shaviv (2000) and Mazur & Heyl (2011). Strong magnetic
fields impact on atomic and molecular structure, on condensed mat-
ter, on high-energy astrophysical phenomena, on accretion flows
around compact objects and wave propagation as summarized by
Lai (2015). Radiative and plasma processes in strong fields are
discussed in length in Mészáros (1992).

In this paper, we solve the magnetostatic equations in general
relativity with the effective Euler–Heisenberg QED Lagrangian to
lowest order in spherical coordinates by using our vector spherical
harmonics expansion. The magnetostatic equations and the solution
techniques are reminded in Section 2. Results for the dipole in
flat space–time and with general-relativistic (GR) corrections are
presented in Section 3 and discussed in Section 4. We conclude
about possible extensions of this work in the concluding remarks of
Section 5.

2 MAG NETO STATI C EQUATI ONS

The general formalism to describe QED corrections including GR
effects for Maxwell equations in a fixed background metric has been
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4456 J. Pétri

presented by Pétri (2015b). These equations simplify in the case of
magnetostatic in vacuum as shown in this section. The fact that exact
analytical expressions exist in GR without QED perturbations helps
us greatly in looking for a series expansion in the QED Lagrangian
as discussed later.

2.1 The field equations

To start with, we assume a non-rotating dipolar magnetic field in
vacuum, thus setting E = F = J = 0 in the equations of Pétri
(2015b). Summarizing these simplifications in the standard notation
for Maxwell equations in a medium we found the magnetostatic
relations following

∇ × H = 0 (2a)

∇ · B = 0. (2b)

The constitutive relation for the magnetic field taking into account
the metric and QED in the 3+1 decomposition of space–time reads

μ0 H = α ξ1 B, (3)

where

α =
√

1 − Rs

r
(4a)

ξ1 = 1 − 2 αsf

45 π

B2

B2
Q

= 1 − ε b2 (4b)

are the lapse function and the first order perturbation of the La-
grangian of the electromagnetic field for B � BQ. See for instance
Pétri (2013, 2014), for more details about the metric written in 3+1
and Pétri (2015b) for the definition of ξ 1. Note also by assumption
that

ε ≡ 2 αsf

45 π
� 1 (5a)

b ≡ B

BQ
� 1 (5b)

and that ε b2 measures the strength of the perturbation accounted
by QED effects. It remains a small parameter and we use ε as the
variable on to which we perform the series expansion.

2.2 The field expansion

From the general theory of vector spherical harmonics in curved
space exposed in Pétri (2013), in the limit of static fields, the diver-
gencelessness constraint on the magnetic field B reduces to a set of
scalar functions f B

�,m such that

B(r, ϑ, ϕ, t) =
∞∑

�=1

�∑
m=−�

∇ × [f B
�,m(r, t) Φ�,m] (6)

t is the coordinate time and (r, ϑ , ϕ) are the spherical coordinates.
This expansion automatically satisfies equation (2b). Note that dif-
ferential operators have to be defined with respect to the metric. The
second order linear differential equations satisfied by the potentials
f B

�,m are found by inserting equation (3) into equation (2a).
For the special case in classical vacuum with ε = 0, the ex-

act solution for a static dipole in general relativity is well known

since Ginzburg & Ozernoy (1964), see also Rezzolla & J. Ahmedov
(2004) and Pétri (2013), and given by

f
B(dip)
1,0 =

√
8 π

3
B R3 3 r

R3
s

[
ln

(
1 − Rs

r

)
+ Rs

r
+ R2

s

2 r2

]
. (7)

We now seek for approximate solutions in quantum vacuum with
ε 	= 0.

2.3 Perturbation expansion

We are looking for the first order corrections to this dipolar field
and write therefore

B = B0 + ε B1, (8)

where B0 and ε B1 independently satisfy the divergencelessness
conditions. Thus we can also expand the perturbed component ac-
cording to equation (6).

The unperturbed magnetic dipole is depicted by a 0 subscript and
satisfies the relations

∇ × (α B0) = 0 (9a)

∇ · B0 = 0 (9b)

with the exact solution given by equation (7). To first order in ε the
solution is given by

μ0 H ≈ α (1 − ε (b0 + ε b1)2) (B0 + ε B1) (10a)

≈ α B0 + α ε (B1 − b2
0 B0)). (10b)

From the equilibrium condition in the unperturbed fields we get
the inhomogeneous equation satisfied by the first order perturbation
as

∇ × (α B1) = ∇ × (α b2
0 B0). (11)

The curl on the left-hand side is transformed into second order
differential operators acting on f B

�,m, i.e. the coefficients for the
perturbation B1 such that

∞∑
�=1

�∑
m=−�

− α

[
1

r

∂

∂r

(
α2 ∂

∂r
(r f B

�,m)

)
− � (� + 1)

r2
f B

�,m

]

×Φ�,m = ∇ × (α b2
0 B0). (12)

Because the set of 
�, m forms an orthonormal basis functions, we
project the above relation on to a particular 
�,m by integration over
the solid angle d� and get

−α

[
1

r

∂

∂r

(
α2 ∂

∂r
(r f B

�,m)

)
− � (� + 1)

r2
f B

�,m

]

=
∫

∇ × (α b2
0 B0) · Φ�,m d�. (13)

It can be shown that ∇ × (α b2
0 B0) has only components along

the vectors Φ�,m. Therefore, we do not miss any coefficient in the
expansion of the magnetic field. Several examples are given below.

3 R ESULTS

Although our final goal is to compute QED corrections in general
relativity, it is worthwhile to explore the Newtonian case separately.
To this end, we start with exact analytical solutions to the first order
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QED perturbations in flat space–time and then also corrections to
arbitrary order in the parameter Rs/R in the GR case.

3.1 Non-relativistic corrections

In flat space–time geometry, the equation satisfied by the perturbed
magnetic field equation (11) simplifies into

∇ × B1 = ∇ × (b2
0 B0). (14)

We solve this equation with help of vector spherical harmonics and
write for an aligned dipole

∇ × (b2
0 B0) = B3 R9

B2
Q r10

[
24

√
6 π

5
Φ1,0 + 16

5

√
3 π

7
Φ3,0

]
. (15)

The presence of only two terms with (�, m) = {(1, 0), (3, 0)} is a
direct consequence of the cubic dependence on the magnetic field
for the source term in the right-hand side in equation (14). The
perturbed magnetic field B1 is expanded according to equation (6).
Straightforward algebra detailed in Pétri (2013) and using equa-
tion (13) shows that only two coefficients are non-zero. Indeed,
for the aligned dipole field, these coefficients of the magnetic field
expansion are given by the exact expressions

f BNR

1,0 = − 4

15

√
2 π

3

B3 R9

B2
Q r8

(16a)

f BNR

3,0 = − 4

55

√
3 π

7

B3 R9

B2
Q r8

. (16b)

These functions correspond to a particular solution of the inho-
mogeneous problem. Moreover, we set the solutions of the homoge-
neous part to zero because they can be included in the background
magnetic field before QED corrections are applied. It would simply
require a rescaling of the stellar magnetic field strength. As we are
not interested in this shift in magnetic field intensity, we cancel this
irrelevant part. Therefore, the components of the corrections to the
dipolar field are explicitly given for the � = 1 mode by

BrNR

1,0 = 4

15

B3 R9

B2
Q r9

cos ϑ (17a)

BϑNR

1,0 = 14

15

B3 R9

B2
Q r9

sin ϑ (17b)

and for the � = 3 mode by

BrNR

3,0 = 3

110

B3 R9

B2
Q r9

(3 cos ϑ + 5 cos 3 ϑ) (18a)

BϑNR

3,0 = 21

440

B3 R9

B2
Q r9

(sin ϑ + 5 sin 3 ϑ). (18b)

The B
ϕNR

1,0 and B
ϕNR

3,0 components vanish everywhere. Our tech-
nique avoids the introduction of an artificial inner boundary as used
by Heyl & Hernquist (1997a).

QED perturbations to first order give rise to a correction in the
dipolar component (�, m) = (1, 0) but also produce a hexapolar
component (�, m) = (3, 0) with a falling like r−8 thus very different
from the standard vacuum fall off as r−(� + 1). The presence of a
hexapole has already been noticed by Heyl & Hernquist (1997a).
We also found the dependence on the cube of the magnetic moment
represented by a term proportional to B3 R9. Performing a judicious

coordinate transform we can in principle find the components for
any inclination of the dipole with respect to the z axis. Neverthe-
less, having in mind to apply these corrections to an oblique rotating
dipole, we found it more convenient to directly computed the cor-
rections to an orthogonal rotator. Thus playing the same game for
this perpendicular rotator we have

∇ × (b2
0 B0) = 2

B3 R9

B2
Q r10

Re

⎡
⎣ − 24

√
3 π

5
Φ1,1

+12

5

√
π

7
Φ3,1 − 4

√
3 π

35
Φ3,3

⎤
⎦. (19)

The perturbed magnetic field B1 is expanded according to equa-
tion (6). Again, using equation (13) for the perpendicular dipole
field, these coefficients are given by

f BNR

1,1 = 8
√

3 π

45

B3 R9

B2
Q r8

(20a)

f BNR

3,1 = − 6

55

√
π

7

B3 R9

B2
Q r8

(20b)

f BNR

3,3 = 2

11

√
3 π

35

B3 R9

B2
Q r8

. (20c)

Explicitly, the components of the corrections to the dipolar fields
are for the (�, m) = (1, 1) mode

BrNR

1,1 = 4

15

B3 R9

B2
Q r9

sin ϑ cos ϕ (21a)

BϑNR

1,1 = −14

15

B3 R9

B2
Q r9

cos ϑ cos ϕ (21b)

B
ϕNR

1,1 = 14

15

B3 R9

B2
Q r9

sin ϕ (21c)

for the (�, m) = (3, 1) mode

BrNR

3,1 = − 9

220

B3 R9

B2
Q r9

(3 + 5 cos 2 ϑ) sin ϑ cos ϕ (22a)

BϑNR

3,1 = 21

1760

B3 R9

B2
Q r9

(cos ϑ + 15 cos 3 ϑ) cos ϕ (22b)

B
ϕNR

3,1 = − 21

880

B3 R9

B2
Q r9

(3 + 5 cos 2 ϑ) sin ϕ (22c)

and for the (�, m) = (3, 3) mode

BrNR

3,3 = 3

22

B3 R9

B2
Q r9

sin3 ϑ cos 3 ϕ (23a)

BϑNR

3,3 = −21

88

B3 R9

B2
Q r9

cos ϑ sin2 ϑ cos 3 ϕ (23b)

B
ϕNR

3,3 = 21

88

B3 R9

B2
Q r9

sin2 ϑ sin 3 ϕ. (23c)

These expressions can be deduced from equations (17) and (18)
by rotating the system of coordinates about the y-axis.
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3.2 GR corrections

In curved space–time geometry, the equation satisfied by the per-
turbed magnetic field is equation (11). Hereto vector spherical har-
monics are helpful. Getting exact analytical expression for the first
order perturbation is cumbersome so we only give correction to a
specified order in the ratio Rs/R. Knowing that for an aligned dipole
we have

∇ × (α b2
0 B0) = B3 R9

B2
Q r10

⎡
⎣ 24

√
6 π

5
δR

1,0 Φ1,0

+16

5

√
3 π

7
δR

3,0 Φ3,0

⎤
⎦ (24a)

δR
1,0 =

⎛
⎝1 + 79

36

Rs

r
+ 61

18

R2
s

r2
+ 6509

1440

R3
s

r3

+24959

4480

R4
s

r4
+ 5275691

806400

R5
s

r5

⎞
⎠ (24b)

δR
3,0 =

⎛
⎝1 + 3

2

Rs

r
+ 41

24

R2
s

r2
+ 419

240

R3
s

r3

+22459

13440

R4
s

r4
+ 203621

134400

R5
s

r5

⎞
⎠. (24c)

The perturbed magnetic field B1 is expanded according to equa-
tion (6). Straightforward, algebra here again shows that only two
coefficients are non-zero. Nevertheless, it is impossible to get an
exact analytical expression for the particular solution to equa-
tion (13). We therefore resort to a series expansion in Rs/R. A
particular solution to this inhomogeneous equation is found through
the usual technique employing the Wronskian for the homoge-
neous equation as described in Morse & Feshbach (1953). Letting
the new unknown function y�,m = r f B

�,m, we rewrite the problem
as

y ′′
�,m(r) + Rs

α2 r2
y ′

�,m(r) − l (l + 1)

α2 r2
y�,m(r)

= −
∫

r

α3
∇ × (α b2

0 B0) · Φ�,m d�, (25)

where the unperturbed static magnetic field is B0 and the right-hand
side is known explicitly according to equation (24).

The particular solution can be represented by an integral includ-
ing the Wronskian and two linearly independent solutions of the
homogeneous equation. For the aligned dipole field, the coefficients
f B

�,m of the magnetic field expansion are given by

f B
1,0 = f BNR

1,0 δL
1,0 (26a)

f B
3,0 = f BNR

3,0 δL
3,0 (26b)

δL
1,0 = 1 + 417

140

Rs

r
+ 7011

1232

R2
s

r2
+ 19917

2240

R3
s

r3

+225441

18200

R4
s

r4
+ 691443

43120

R5
s

r5
(26c)

δL
3,0 = 1 + 151

60

Rs

r
+ 163

39

R2
s

r2
+ 73667

12740

R3
s

r3

+3680413

509600

R4
s

r4
+ 9544139

1128960

R5
s

r5
. (26d)

The superscript L stands for the longitudinal part, the radial com-
ponent. Explicitly, the components of the corrections to the dipolar
fields are for the � = 1 mode

Br
1,0 = BrNR

1,0 δL
1,0 (27a)

Bϑ
1,0 = BϑNR

1,0 δT
1,0 (27b)

δT
1,0 = 1 + 1423

490

Rs

r
+ 236713

43120

R2
s

r2
+ 368927

43120

R3
s

r3

+597977

50050

R4
s

r4
+ 4881733783

313913600

R5
s

r5
(27c)

and for the � = 3 mode they are

Br
3,0 = BrNR

3,0 δL
3,0 (28a)

Bϑ
3,0 = BϑNR

3,0 δT
3,0 (28b)

δT
3,0 = 1 + 499

210

Rs

r
+ 41611

10920

R2
s

r2
+ 5513087

1070160

R3
s

r3

+270893431

42806400

R4
s

r4
+ 625810279

85612800

R5
s

r5
. (28c)

The superscript T stands for the transverse part, the spherical
components (ϑ , ϕ).

We can play the same game for the orthogonal rotator. Knowing
that for an orthogonal dipole we have

∇ × (α b2
0 B0) = B3 R9

B2
Q r10

⎡
⎣ − 48

√
3 π

5
δR

1,0 Φ1,1

+24

5

√
π

7
δR

3,0 Φ3,1 − 8

√
3 π

35
δR

3,0 Φ3,3

⎤
⎦. (29a)

The perturbed magnetic field B1 is expanded according to equa-
tion (6). Straightforward algebra detailed in Pétri (2013) shows that
only three coefficients are non-zero. Indeed, for the perpendicular
dipole field, these coefficients are given by

f B
1,1 = f BNR

1,1 δL
1,0 (30a)

f B
3,1 = f BNR

3,1 δL
3,0 (30b)

f B
3,3 = f BNR

3,3 δL
3,0. (30c)

Explicitly, the components of the corrections to the dipolar fields
are for the (�, m) = (1, 1) mode

Br
1,1 = BrNR

1,1 δL
1,0 (31a)

Bϑ
1,1 = BϑNR

1,1 δT
1,0 (31b)
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B
ϕ
1,1 = B

ϕNR

1,1 δT
1,0 (31c)

for the (�, m) = (3, 1) mode

Br
3,1 = BrNR

3,1 δL
3,0 (32a)

Bϑ
3,1 = BϑNR

3,1 δT
3,0 (32b)

B
ϕ
3,1 = B

ϕNR

3,1 δT
3,0 (32c)

and for the (�, m) = (3, 3) mode

Br
3,3 = BrNR

3,3 δL
3,0 (33a)

Bϑ
3,3 = BϑNR

3,3 δT
3,0 (33b)

B
ϕ
3,3 = B

ϕNR

3,3 δT
3,0. (33c)

The � = 3 modes possess the same GR corrections as expected
from the geometric transform through a rotation about the y-axis.
The orthogonal rotator does not lead to new radial dependences
of the magnetic field components compared to the aligned rotator.
This is expected because through a judicious coordinate system
transform we can retrieve the latter geometry. In realistic neutron
stars, the ratio Rs/R is at most 0.5 such that the series of terms Sn

= (Rs/R)n converge to zero geometrically. As the series in δ only
converges slowly, we had to take several terms in the summation
to reach an acceptable accuracy. The rate of convergence depends
strongly on the stellar compactness Rs/R � 0.5.

4 D ISCUSSION

The above results show the effect of vacuum polarization on the
structure of a purely magnetic field. In a real astrophysical context
such as magnetospheres of magnetars, the strength of the magnetic
field at the surface can largely exceed the quantum critical field
BQ. The associated electromagnetic stress-energy tensor acts as a
supplementary source for the gravitational field. However, even for
such extreme field strengths the generation of gravitational fields
remains marginal. Indeed the induced curvature in the metric ge-
ometry can be estimated by the ratio of magnetic energy density
over rest mass energy density of the star by the expression

2 π

3 μ0

B2 R3

M c2
≈ 3.1 × 10−10

(
B

BQ

)2 (
R

12 km

)3 (
M

1.4 M�

)−1

(34)

assuming constant and homogeneous magnetization and density in-
side the star. Thus space–time distortions from the electromagnetic
field remain rather weak compared to equation (1).

Moreover, rotation of the magnet, assuming to be a perfect con-
ductor inside the star, induces an electric field at the surface of the
order

E

c B
= R

rL
= 2 π R

c P
≈ 2.5 × 10−4

(
R

12 km

) (
P

1s

)−1

. (35)

For magnetars, the observed period P of rotation is more than one
second (between 2 and 12 seconds according to Turolla et al. 2015).
This small rotation rate implies a large light-cylinder radius of more
than 9 × 107 metres and a ratio R/rL � 1.3 × 10−4. Therefore, we

do not expect the electric field to drastically change the properties
of quantum vacuum. Moreover, in the slow rotation approximation,
corrections to the magnetic field inside the light-cylinder are of the
order r/rL, see for instance appendix B of Pétri (2015a). Conse-
quently, rotation of the neutron star will not affect the multipole
geometry described in the previous section. In any way, the field
of a magnetar is significantly affected by currents in its magneto-
sphere. In the standard picture pulsar magnetospheres, the current
induced by the corotation of charges distorts the electromagnetic
field to the same order of magnitude than rotation in vacuum alone.
However, in the twisted magnetosphere of magnetars, the supporting
currents for the magnetic twists are much larger than the currents in-
duced by the corotation charge density (Beloborodov & Thompson
2007). Such high current flows are evidenced by their non-thermal
emission properties and should be taken into account for an accu-
rate description of the magnetic topology of neutron star magnetic
fields.

5 C O N C L U S I O N

Strong electromagnetic fields in neutron stars and especially in
magnetars are at the heart of pulsar machinery, the crucial electron–
positron pair creation scenario and the related radiative processes.
If the emission observed at Earth emanates from the base of the
magnetosphere, close to the stellar surface, we should have indirect
evidence of these strong fields. The magnetic topology is also of
great importance to understand the observations. In this paper, we
have shown that QED corrections induce multipolar components
in the magnetic field. We gave exact analytical expressions for flat
space–time and a power expansion series in Rs/R in curved space–
time. The strength of the corrections decrease very steeply with
radius at least as the ninth power of r, BQED ∝ r−9. Therefore,
QED corrections to the field can only lead to palpable effects in the
vicinity of the neutron star surface.

What would happen if this GRQED dipole is put into rotation and
emits a large amplitude electromagnetic wave in vacuum? Would the
classical magnetodipole formula still be valid or should we expect
an enhancement in the radiating fields. We answer quantitatively this
question in another paper by performing time-dependent numeri-
cal simulations of an inclined rotating dipole in curved space–time
including vacuum polarization. We also plan to extend these cor-
rections to other magnetic field topologies such as a quadrupole, a
hexapole or an octupole as well as to an arbitrary strong static mag-
netic field with any value of B, not necessarily B � BQ, using for
instance an analytical formula for the effective Lagrangian derived
by Heyl & Hernquist (1997b).
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