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Abstract. In this article, we show how to control the numerical quality
of half precision computations using stochastic arithmetic. The CADNA
library that is used to estimate rounding errors and detect numerical
instabilities in floating-point codes has been improved and extended to
support half precision. A performance gain up to a factor 20 has been
observed w.r.t. accuracy estimation in arbitrary precision. Furthermore
we present how to generate codes mixing half, single, and double precision
with a requested accuracy on results providing a user-defined numerical
quality of the code. Control of robustness and floating-point auto-tuning
taking into account half precision have been successfully performed on
various numerical simulations, in particular a control application.
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1 Introduction

Among the different tests that must be performed to validate a code, numerical
validation is crucial because rounding errors generated by its floating-point oper-
ations can invalidate its results. Indeed controlling the robustness of a simulation
code includes the analysis of its numerical quality. Numerical simulations tend to
be carried out in reduced precision (e.g. single or half precision instead of double
precision) or in mixed precision. Since reducing the precision has an impact on
performance, memory usage, and energy consumption, using half precision can
be particularly advantageous [1, 5]. However, because of the low mantissa-length
and the limited range of that format, the accuracy of half precision computation
should be carefully controlled in order to ensure code quality. We respond to
this challenging issue with the following contributions.

– We show how to estimate rounding errors and detect numerical instabilities
in any half precision computation. The related software development has
been integrated in the CADNA library [2].
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– We have extended the PROMISE software [4] which performs floating-point
auto-tuning such that it can automatically generate codes mixing half, single
and double precision.

– Thanks to the new version of CADNA, the numerical quality of various
simulations in half precision has been analysed, in particular, a control ap-
plication and a Conjugate Gradient solver. Furthermore versions of these
codes in mixed precision (including half precision) have been provided by
the new version of PROMISE.

The remaining part of this paper is organized as follows. Section 2 reminds
the principles of the rounding error estimation using the Discrete Stochastic
Arithmetic and the floating-point auto-tuning. Section 3 shows how floating-
point computation can be carried out in half precision. Sections 4 and 5 detail
the extension of the accuracy estimation and auto-tuning to half precision arith-
metic. Finally, Section 6 presents some numerical experiments, and conclusions
are given in Section 7.

2 Control of numerical quality and floating-point
auto-tuning

2.1 Principles of DSA

Discrete Stochastic Arithmetic (DSA) [9] is an automatic method for rounding
error analysis based on a probabilistic approach. DSA can provide an estima-
tion of the numerical quality of results, especially in large scale applications.
DSA allows one to estimate the number of correct digits in computed results
by executing the user programs several times using a random rounding mode:
either rounding to +∞ or to −∞ with the same probability. Therefore, the com-
puter’s deterministic arithmetic is replaced by a stochastic arithmetic, where
each arithmetic operation is performed N times before the next one is executed.
DSA supplies us with N samples R1, · · · , RN of each computed result R and the
number of correct digits in R is estimated using a statistical test.

2.2 Accuracy estimation by CADNA & SAM

DSA is implemented, on the one hand, in the CADNA3 library [2] that can be
used to control the accuracy of programs in single, double and/or quadruple pre-
cision, and, on the other hand, in the SAM4 library [3] that estimates rounding
errors in arbitrary precision programs. Thanks to three executions of the user
program with the random rounding mode, CADNA and SAM estimate, with
the probability 95%, the number of correct digits of any computed result. Their
codes are based on new numerical types: the stochastic types. Each stochastic
variable contains three values of the corresponding numerical type and an integer

3 http://cadna.lip6.fr
4 http://www-pequan.lip6.fr/∼jezequel/SAM
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to store its number of correct digits. Arithmetic operators, comparison opera-
tors, all the mathematical functions are overloaded for these stochastic types.
Therefore the use of CADNA or SAM in a program requires only a few modifi-
cations: essentially changes in the declarations of variables and in input/output
statements. CADNA and SAM can detect numerical instabilities which occur
during the execution of the code. Such instabilities are usually generated by
numerical noise, i.e. a result having no correct digits.

2.3 Floating-point auto-tuning: the PROMISE software

The PROMISE5 tool [4], based on CADNA, aims at reducing in numerical pro-
grams the number of double precision variable declarations in favor of single
precision ones. From an original program and a requested accuracy on the re-
sult, PROMISE provides a transformed program having a maximum number of
variables declared with a lower precision and computing a result that satisfies the
accuracy constraint. The search for a suitable type configuration is performed
with a reasonable complexity thanks to the Delta Debug algorithm [10] based
on a hypothesis-trial-result loop.

3 Half precision computation

sign exponent
(5 bits)

mantissa
(10 bits)

Fig. 1: binary16 format

Half precision is referred to as binary16 in the IEEE 754-2008 standard [6].
As shown in Figure 1, a binary16 floating-point number consists of a sign bit,
a 5-bit long exponent, and a 10-bit long mantissa. Although 10 bits are explic-
itly stored to represent the mantissa, its precision is actually 11 bits. Because
log10(211) ≈ 3.3, the accuracy of a binary16 number is at most 3 decimal digits.
In binary16, the minimum strictly positive (subnormal) value is 2−24 ≈ 5.9610−8

and the maximum representable value is 65504. The binary16 format is in-
creasingly supported by hardware. It is available for instance on ARM CPUs
from version 8.2, on NVIDIA Pascal and Volta GPUs, on AMD Radeon Instinct
MI25 GPU. binary16 computation can also be emulated, for instance using the
FlexFloat6 library [8] that supports multiple floating-point formats or the IEEE
754-based half-precision floating-point library developed by C. Rau7. In this
paper, we focus on the binary16 format, however, another 16-bit floating-point
format called bfloat16 is available, for instance on Google Cloud TPUs and ARM

5 http://promise.lip6.fr
6 https://github.com/oprecomp/flexfloat
7 http://half.sourceforge.net
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NEON CPUs. Compared to binary16 numbers, bfloat16 numbers benefit from a
wider range thanks to their 8 bit-exponent, but have a lower significand precision
(8 bits instead of 11).

4 Controlling the numerical quality of half precision
computation

4.1 Extension of CADNA to half precision

CADNA has been extended to control the robustness of codes with half precision
declarations. On processors that do not support half precision, CADNA relies on
the half precision floating-point library developed by C. Rau already mentioned
in Sec. 3. This half precision library has been improved to enable computation
mixing of half, single and double precision. CADNA has also been extended to
be used on the ARM v8.2 processor that supports half precision computation.

A new stochastic type, half st, associated with emulated or native half pre-
cision has been introduced in CADNA. A half st variable consists in three half
precision floating-point values and an integer to store the accuracy. Relational
and arithmetic operations, mathematics and intrinsic functions have been rede-
fined for this new type. With CADNA, for performance reasons, the rounding
mode is changed in an implicit way [2] as

– a⊕+∞ b = − (−a⊕−∞ −b) (similarly for 	)
– a⊗+∞ b = − (a⊗−∞ −b) (similarly for �)

where ⊕+∞ and ⊗+∞ (resp. ⊕−∞ and ⊗−∞) are the floating-point operations
rounded towards +∞ (resp. −∞). The results of each rounding mode can be
obtained from computation made in the other rounding mode. With native and
emulated half precision, operations involving half st variables are performed
with the random rounding mode thanks to the aforementioned arithmetic prop-
erties. The rounding mode is set once to rounding to +∞ in a CADNA initializa-
tion function, such that operations involving stochastic variables based on native
types can be performed with the random rounding mode, without any explicit
change of the rounding mode. In the library developed by C. Rau, half precision
operations can be performed with any rounding mode of the IEEE standard.
The rounding mode, which is by default rounding to nearest, has been set to
rounding to +∞ thanks to a parameter change.

Furthermore, because of the limited range of half precision numbers, the
detection of new kinds of instabilities can been enabled: overflow and underflow
caused by half precision computation. Codes including half precision can be
controlled by this new CADNA version using clang++ or g++ on processors
supporting half precision or thanks to emulated half precision.

4.2 Performance tests

Performance tests have been carried out using g++ 7.4.0 on a 2.5 GHz Intel
Core i7 processor and using g++ 7.5.0 on a 2.26 GHz ARM v8.2 processor, both
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with 4 MB cache memory. The latter is used in an Nvidia Jetson AGX Xavier
module designed for embedded computation. Figures 2 and 3 present execution
times for matrix multiplication on Intel Core i7 processor where half precision is
emulated and on ARM v8.2 processor using native half precision. With CADNA
computation has been carried out with no instability detection, and also with
the detection of all kinds of numerical instabilities. Our aim here is to show
the feasibility of numerical validation in half precision and to compare the cost
of CADNA in half, single and double precision. The matrix multiplication is
performed on one core using a non-optimized algorithm based on 3 nested loops.
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Fig. 2: Performance of the multiplication of matrices of size 500
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Fig. 3: Performance of the multiplication of matrices of size 2000

In the CADNA codes, a matrix is a stochastic array. The matrix values are
accessed from a structure that implies indirect memory access. With CADNA,
accessing matrix values is expensive, especially for small problems. Therefore
as the matrix size increases, the cost of CADNA w.r.t. classic computation de-
creases. The higher execution times and the higher cost of CADNA on ARM v8.2
processor than on Intel Core i7 processor can be explained by the higher cost
of memory access. One can observe that the cost of CADNA is not particularly
higher in half precision than in single or double precision. The cost of CADNA
in half precision w.r.t single or double precision is even significantly lower when
small matrices are multiplied on Intel Core i7 processor. In that case, because of
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half precision emulation, the ratio computation/memory access is more favorable
to CADNA in half precision than in other precisions.

The detection of all kinds of numerical instabilities mainly requires tests and
accuracy estimation, no extra access to matrix values. Its cost w.r.t. no instability
detection is about 2 on Intel Core i7 processor and 1.4 on ARM v8.2 processor.
Furthermore, it has been observed that the cost of underflow/overflow detection
in half precision is a factor between 1.3 and 1.6 on Intel Core i7 processor and
approximately 1.2 on ARM v8.2 processor.

The performance of CADNA and SAM for the numerical validation of half
precision codes have been compared on Intel Core i7 processor where CADNA
uses emulated half precision. For different matrix sizes, Figure 4 presents the
execution times of matrix multiplication computed with CADNA in half preci-
sion and with SAM using 11-bit mantissa length variables. A log scale is used
for the y-axis to improve the readability of the results obtained. Two instability
detection levels have been chosen: no instability detection and the detection of
all kinds of numerical instabilities.
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Fig. 4: Execution time of matrix multiplications in half precision with CADNA
and SAM

One can observe that the cost of SAM w.r.t. CADNA is a factor between
13 and 20. Both with CADNA and SAM the detection of all instabilities costs
about 2 w.r.t. no instability detection. As a remark, CADNA has an extra fea-
ture compared to SAM, it enables one to detect underflows and overflows in
operations involving half precision variables.

5 Floating-point auto-tuning using half precision

A new version of PROMISE has been developed in order to generate mixed pre-
cision codes including half precision. This new version also benefits from various
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improvements. It is more user-friendly and has better performance. Indeed the
search for a valid type configuration can be accelerated thanks to information
provided by the user, such as variables that should have the same type.

PROMISE

initial code

instrumented
code

CADNA

reference

double

double float

comparison

double float

double float half

comparison
mixed-precision

code

Delta Debug Delta Debug

step 1 step 2

Fig. 5: PROMISE dataflow

PROMISE is based on the Delta-Debug algorithm [10], initially proposed for
debugging programs using a scientific approach of hypothesis-trial-result loop.
The approach is here used to test the numerical quality of the code with various
precisions.

From a C/C++ code having a set of variables to be considered (with sim-
ply changing their type to a generic PROMISE-adapted type), PROMISE uses
Discrete Stochastic Arithmetic (with CADNA) to determine a reference result.
This reference is then used to verify the numerical quality of subsequent re-
sults obtained with several mixed-precision codes. The search for a valid type
configuration relies on the Delta-Debug algorithm, as shown in Figure 5.

If PROMISE is run in half, single and double precision, the Delta Debug
algorithm is executed twice. First, PROMISE determines which variables should
stay in double and which ones can be relaxed to single precision. Then, from the
single precision variables, PROMISE determines which ones can be relaxed to
half precision.

6 Numerical experiments

The numerical experiments described in this section have been carried out using
g++ 7.4.0 on a 2.5 GHz Intel Core i7 processor with 4 MB cache memory where
half precision is emulated.

6.1 Determinant of Hilbert’s matrix

The determinant of Hilbert’s matrix of size n defined by Hi,j = 1
i+j−1 for i =

1, · · · , n, j = 1, · · · , n is computed using Gaussian elimination without pivoting.
The determinant D is the product of the computed pivots: D =

∏n
i=1 pi. Table 1

presents the results obtained with and without CADNA in double and half
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precision for Hilbert’s matrix of size 3. The digits in common with the exact
results are displayed in bold.

without CADNA with CADNA

double half double half

p1 1.00000000000000e+00 1.000000e+00 1.00000000000000e+00 1.00e+00
p2 8.33333333333333e-02 8.325195e-02 8.33333333333333e-02 8.3e-02
p3 5.55555555555553e-03 5.310059e-03 5.5555555555555e-03 5.e-03
D 4.62962962962960e-04 4.420280e-04 4.6296296296296e-04 4.e-04

Table 1: Determinant of Hilbert’s matrix of size 3 with and without CADNA in
half and double precision

Without CADNA, results computed in half precision are casted to single
precision to be printed. CADNA displays only the digits not affected by rounding
errors: 14 or 15 digits in double precision and 1 to 3 digits in half precision.
No numerical instability, nor underflow, nor overflow is detected. The digits
displayed by CADNA in double and half precision are those of the exact results.

6.2 Control application

This example is a multi-input, multi-output controller from the automotive con-
text. It is part of an active controller of vehicle longitudinal oscillations [7]. It is
a linear State-Space system of the form{

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

where u(k) ∈ R5 is the vector of inputs at time k, y(k) ∈ R7 the vector of
outputs at time k and x(k) ∈ R4 the state-vector containing the internal state
of the controller. A, B, C and D are small dense matrices with double precision
coefficients (they define the behavior of the controller).

The associated code is executed for 100 iterations. At each iteration, 7 ele-
ments of an array are computed. When the computation is completely carried
out in half precision, the number of correct digits estimated by CADNA varies
from 0 to 3 and its mean value is about 2.0. Table 2 presents the results provided
by PROMISE with three precisions (half, single, double): it shows the number
of requested digits, the number of executions performed, the number of vari-
ables of each precision in the code provided by PROMISE, the execution time of
PROMISE. A mixed precision type configuration that includes half precision is
found if 1 or 2 correct digits are requested in all the results. If 3 correct digits are
requested, a single precision version of the code is provided. Then, the number
of double precision variables increases, as the requested accuracy increases.
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# req. digits # exec # half-# single-# double time (s)

1-2 58 6-12-0 58.16
3 52 0-18-0 51.47
4 55 0-15-3 47.53
5 62 0-11-7 50.92
6 67 0-9-9 53.76
7 66 0-7-11 50.89
8 63 0-4-14 47.36

9-11 52 0-1-17 38.10

Table 2: PROMISE results for the signal processing application

6.3 Conjugate Gradient code

In this experiment, the sequential version of a CG (Conjugate Gradient) code
from the Seoul National University NPB (NAS Parallel Benchmarks) suite8 is
analyzed using PROMISE. The code solves a linear system with a matrix of size
7,000 with 8 non-zero values per row by performing 15 CG iterations. Table 3
presents the results provided by PROMISE, the number of requested digits on
the solution vector varying from 1 to 12. Indeed, because of rounding errors, the
maximal accuracy is 12 correct digits. Whatever the requested accuracy from 1
to 12 correct digits, PROMISE always provides in less than 5 minutes a mixed-
precision configuration that includes half precision variables. Out of the 325

(more than 847 billions) possible different configurations, PROMISE considers
in the worst case only 100 possibilities.

# req. digits # exec # half-# single-# double time (s)

1 44 19-6-0 212.71
2 55 18-7-0 235.07
3 53 17-8-0 241.90
4 69 14-11-0 209.08
5 67 12-13-0 197.04

6-7 74 12-13-0 204.96
8 100 10-13-2 256.29
9 89 11-9-5 225.77
10 89 12-5-8 219.10
11 94 9-9-7 233.45
12 82 11-3-11 207.51

Table 3: PROMISE results for the Conjugate Gradient code

8 http://aces.snu.ac.kr/software/snu-npb
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7 Conclusion & perspectives

User-friendly and efficient tools for the numerical validation of half precision
codes and floating-point auto-tuning including half precision have been pre-
sented. They can ensure that a given code can be tuned to use low precision
types while providing a user-defined numerical code quality. This work can be
extended to other floating-point formats, such as bfloat16 available for instance
on Google Cloud TPUs and ARM NEON CPUs. Since CADNA and PROMISE
have been successfully used for the numerical validation of real-life applications
in single or in double precision, we plan to control the numerical quality of large
scale applications in half precision, such as deep learning codes.
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