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FEW REMARKS ON IDEALS

ANDRE GALIGO & ZBIGNIEW JELONEK

1. Introduction

Let I ⊂ K[x1, ..., xn] be an ideal such that dim V (I) = q. Using Hilbert Nullstellensatz
we can easily see, that in the set I ∩K[x1, ..., xq+1] there exist non-zero polynomials. It is
interesting to know the degree of the minimal polynomial of this type. Here using ideas
from [1] we get a sharp estimate for the degree of such minimal polynomial in terms of
degrees of generators of the ideal I. In fact, in general we solve this problem only for fields
of characteristic zero.

2. Main Result

Let us recall (see [1]):

Theorem 1. (Perron Theorem) Let L be a field and let Q1, . . . , Qn+1 ∈ L[x1, . . . , xm]
be non-constant polynomials with degQi = di. If the mapping Q = (Q1, . . . , Qn+1) :
Ln → Ln+1 is generically finite, then there exists a non-zero polynomial W (T1, . . . , Tn+1) ∈
L[T1, . . . , Tn+1] such that

(a) W (Q1, . . . , Qn+1) = 0,

(b) deg W (T d11 , T d22 , . . . , T
dn+1

n+1 ) ≤
∏n+1
j=1 dj .

and (see [1]):

Lemma 2. Let K be an infinite field. Let X ⊂ Km be an affine algebraic variety of
dimension n. For sufficiently general numbers aij ∈ K the mapping

π : X 3 (x1, . . . , xm)→
( m∑
j=1

a1jxj ,

m∑
j=2

a2jxj , . . . ,

m∑
j=n

a1jxj

)
∈ Kn

is finite. 2

Theorem 3. Let K be an algebraically closed field and let f1, . . . , fs ∈ K[x1, . . . , xn] be
polynomials such deg fi = di where d1 ≥ d2... ≥ ds. Assume that I = (f1, . . . , fs) ∈
K[x1, . . . , xn] is an ideal, such that V (I) has dimension q. If we take a sufficiently general
system of coordinates (x1, . . . , xn), then there exist polynomials gj ∈ K[x1, . . . , xn] and a
non-zero polynomial φ(x) ∈ K[x1, ..., xq+1] such that

(a) deg gjfj ≤ ds
∏n−q−1
i=1 di,

(b) φ(x) =
∑k

j=1 gjfj .

Proof. Take Fn−q = fs and Fi =
∑s

j=i αijfj for i = 1, ..., n−q−1, whre αij are sufficiently

general. Take J = (F1, ..., Fn−q). Then degFn−q = ds and deg Fi = di for i = 1, ..., n−q−1.
Moreover, V (J) has pure dimension q and J ⊂ I. The mapping

Φ : Kn × K 3 (x, z)→ (F1(x)z, . . . , Fn−q(x)z, x) ∈ Kn−q × Kn
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is a (non-closed) embedding outside the set V (J) × K. Take Γ = cl(Φ(Kn × K)). Let
π : Γ → Kn+1 be a generic projection. Define Ψ := π ◦ Φ(x, z). By Lemma 2 we can
assume that

Ψ = (

n−q∑
j=1

γ1jFjz + l1(x), . . . ,

n−q∑
j=n−q

γnjFjz + ln(x), ln−q+1(x), ..., ln+1(x)),

where l1, . . . , ln+1 are generic linear form. In particular we can assume that ln−q+i, i =
1, .., q + 1 is the variable xi in a new generic system of coordinates.

Apply Theorem 1 to L = K(z), the polynomials Ψ1, . . . ,Ψn+1 ∈ L[x]. Thus there exists
a non-zero polynomial W (T1, . . . , Tn+1) ∈ L[T1, . . . , Tn+1] such that

W (Ψ1, . . . ,Ψn+1) = 0 and degW (T d11 , T d22 , . . . , T dkk , Tk+1, . . . , Tn+1) ≤ ds
n−q−1∏
j=1

dj ,

where k = n − q. Since the coefficients of W are in K(z), there is a non-zero polynomial

W̃ ∈ K[T1, . . . , Tn+1, Y ] such that

(a) W̃ (Ψ1(x, z), . . . ,Ψn+1(x, z), z) = 0,

(b) degT W̃ (T d11 , T d22 , . . . , T dkk , Tk+1, . . . , Tn+1, Y ) ≤ ds
∏n−q−1
j=1 dj , where degT denotes

the degree with respect to the variables T = (T1, . . . , Tn+1).

Note that the mapping Ψ = (Ψ1, . . . ,Ψn+1) : Kn × K → Kn+1 is finite outside the set
V (J)× K. Let φ′ = 0 describes the image of the projection

π : V (J) 3 x 7→ (x1, ..., xq+1) ∈ Kq+1

(recall that we consider generic system of coordinates).

The set of non-properness of the mapping Ψ is contained in the hypersurface S =
{T ∈ Kn+1 : φ′(T ) = 0}. Since the mapping Ψ is finite outside S, for every H ∈
K[x1, . . . , xn, z] there is a minimal polynomial PH(T, Y ) ∈ K[T1, . . . , Tn+1][Y ] such that
PH(Ψ1, . . . ,Ψn+1, H) =

∑r
i=0 bi(Ψ1, . . . ,Ψn+1)H

r−i = 0 and the coefficient b0 satisfies
{T : b0(T ) = 0} ⊂ S. Now set H = z.

We have

degTPz(T
d1
1 , T d22 , . . . , T dnn , Tn+1, Y ) ≤ ds

n−q−1∏
j=1

dj

and consequently we obtain the equality b0(x1, ..., xq+1) +
∑
Figi = 0, where deg Figi ≤∏n−q

j=1 dj . Set φ = b0. By the construction the polynomial φ has zeros only on the image
of the projection

π : V (J) 3 x 7→ (x1, ..., xq+1) ∈ Kq+1.

2

Remark 4. Simple application of the Bezout theorem shows that our estimations on the
degree of φ is sharp.

Corollary 5. Let I be as above. If V (I) has pure dimension q and I has not embedded
components, then there is a polynomial φ1 ∈ K[x1, ..., xq+1] which describes the image of
the projection

π : V (I) 3 x 7→ (x1, ..., xq+1) ∈ Kq+1

such that

(a) φ1 ∈ I,
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(b) deg φ1 ≤ ds
∏n−q−1
i=1 di.

Proof. Let I =
⋂r Ik be a primary decomposition of I. Then dim V (Ik) = q for every k.

Let φ be a polynomial as above. If φ = φ1φ2, where φ2 does not vanish on any component
of V (I) then φ1 ∈ Ik for every k (by properties of primary ideals) and consequently φ1 ∈ I.
But φ1 describes the image of the projection

π : V (I) 3 x 7→ (x1, ..., xq+1) ∈ Kq+1.

�

Theorem 6. Let f1, . . . , fs ∈ C[x1, . . . , xn] be polynomials such deg fi = di where d1 ≥
d2... ≥ ds. Let I = (f1, ..., fs) be the ideal in C[x1, ..., xn] such that dimV (I) = q. Then in

I we can find a non-zero polynomial φ(x) ∈ C[x1, ..., xq+1] such that deg φ ≤ ds
∏n−q−1
i=1 di.

Proof. By theorem 3 for generic α = (αi,j ; i = 1, ..., q + 1, j ≥ i) there exist a non-zero
polynomial φα ∈ C[t1, ..., tq+1] such that

a) deg φα ≤ ds
∏n−q−1
i=1 di,

b) φα(X1(α), X2(α), ..., Xq+1(α)) ∈ I, where X1(α) = α1,1x1 + ... + α1,nxn, X2(α) =
α2,2x1 + ...α2,nxn, ..., Xq+1(α) = αq+1,q+1xq+1 + ...+ αq+1,nxn.

For a polynomial p =
∑

α aαx
α ∈ C[x1, ..., xn] we define a norm ||p|| = maxα|aα|. In

particular for every generic α we can assume that ||φα|| = 1 (we consider the polynomial
φ
||φ|| instead of φ). Moreover, we can take generic αm in this way that Xi(αm) → xi for

m → ∞ and for i = 1, ..., q + 1. Polynomial φα we can treat as an element of a vector
space B(D) of all polynomials from C[x1, ..., xn] of degree bounded by D = ds

∏n−q−1
i=1 di.

Since the norm of every φαm is bounded by 1, we can assume that this sequence converges

to a polynomial φ, with norm 1 and of degree bounded by D = ds
∏n−q−1
i=1 di. Thus also

a sequence φαm(X1(αm), ..., Xq+1(αm)) tends to the same polynomial φ. Of course it is
non-zero because ||φ|| = 1. It is enough to show that φ ∈ I. However the space I ∩B(D) is
a linear subspace of a finitely dimensional complex vector space B(D), hence it is closed
subset of B(D). This finishes the proof. �

Remark 7. By Lefchetz Principle Theorem 6 holds for every field of characteristic zero.

Corollary 8. Let f1, . . . , fs ∈ C[x1, ..., xn] be polynomials such deg fi = di where d1 ≥
d2... ≥ ds. Let I = (f1, ..., fs) be the ideal in C[x1, ..., xn] such that dimV (I) = 1. Assume
that the image S of the projection x 7→ (x1, x2) of a one dimensional part of V (I) into C2

is a curve. Then in I we can find a non-zero polynomial φ(x1, x2) = φ1(x1, x2)ρ(x1) ∈
C[x1, x2] such that

a) deg φ ≤ D2 − 2D + 2, where D = ds
∏n−2
i=1 di,

b) φ1 describes the image of the projection x 7→ (x1, x2) of a one dimensional part of
V (I) into C2.

Proof. Consider the ideal Iα = (fs,
∑s−1

i=1 α1ifi,
∑s−1

i=2 α2ifi, ...,
∑s−1

i=n−2 α2ifi). By Theorem
6 we have that there exists a non-zero polynomial φα ∈ I ∩ C[x1, x2] of degree bounded
by D. We can write φα = φ1,αφ2,α, where φ1,α describes S and φ2,α does not vanish on
S. Since the degree of φ1,α is bounded, there is infinitely many αi such that φ1,αi up to a
multiplicative constant is the same. Moreover, the ideal J = (φ2,αi , i = 1, 2, ...) describes
the zero dimensional part of the image of the projection x 7→ (x1, x2) of V (I) into C2.
If deg φ1 = a, then deg φ2,αi ≤ D − a. Consequently we can find a non zero polynomial
ρ(x1) ∈ J , such that deg ρ ≤ (D − a)2. The ideal I contains a polynomial φρ of degree
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bounded by a + (D − a)2. The expression a + (D − a)2, where 0 < a ≤ D attains its
maximal value for a = 1. This finishes the proof. �

Remark 9. If the ideal I has not embedded components, then we can assume that the
polynomial ρ describes the image of the projection x 7→ x1 of a zero dimensional part of
V (I) into C. In general case it can describe also some extra points.
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