Elimination ideals and Bezout relations

Zbigniew Jelonek, André Galligo

To cite this version:

Zbigniew Jelonek, André Galligo. Elimination ideals and Bezout relations. Journal of Algebra, 2020, 562, pp.621-626. 10.1016/j.jalgebra.2020.06.022 . hal-03138363

HAL Id: hal-03138363

https://hal.science/hal-03138363

Submitted on 19 Feb 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

FEW REMARKS ON IDEALS

ANDRE GALIGO \& ZBIGNIEW JELONEK

1. Introduction

Let $I \subset \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ be an ideal such that $\operatorname{dim} V(I)=q$. Using Hilbert Nullstellensatz we can easily see, that in the set $I \cap \mathbb{K}\left[x_{1}, \ldots, x_{q+1}\right]$ there exist non-zero polynomials. It is interesting to know the degree of the minimal polynomial of this type. Here using ideas from [1] we get a sharp estimate for the degree of such minimal polynomial in terms of degrees of generators of the ideal I. In fact, in general we solve this problem only for fields of characteristic zero.

2. Main Result

Let us recall (see [1]):
Theorem 1. (Perron Theorem) Let \mathbb{L} be a field and let $Q_{1}, \ldots, Q_{n+1} \in \mathbb{L}\left[x_{1}, \ldots, x_{m}\right]$ be non-constant polynomials with $\operatorname{deg} Q_{i}=d_{i}$. If the mapping $Q=\left(Q_{1}, \ldots, Q_{n+1}\right)$: $\mathbb{L}^{n} \rightarrow \mathbb{L}^{n+1}$ is generically finite, then there exists a non-zero polynomial $W\left(T_{1}, \ldots, T_{n+1}\right) \in$ $\mathbb{L}\left[T_{1}, \ldots, T_{n+1}\right]$ such that
(a) $W\left(Q_{1}, \ldots, Q_{n+1}\right)=0$,
(b) $\operatorname{deg} W\left(T_{1}^{d_{1}}, T_{2}^{d_{2}}, \ldots, T_{n+1}^{d_{n+1}}\right) \leq \prod_{j=1}^{n+1} d_{j}$.
and (see [1]):
Lemma 2. Let \mathbb{K} be an infinite field. Let $X \subset \mathbb{K}^{m}$ be an affine algebraic variety of dimension n. For sufficiently general numbers $a_{i j} \in \mathbb{K}$ the mapping

$$
\pi: X \ni\left(x_{1}, \ldots, x_{m}\right) \rightarrow\left(\sum_{j=1}^{m} a_{1 j} x_{j}, \sum_{j=2}^{m} a_{2 j} x_{j}, \ldots, \sum_{j=n}^{m} a_{1 j} x_{j}\right) \in \mathbb{K}^{n}
$$

is finite.
Theorem 3. Let \mathbb{K} be an algebraically closed field and let $f_{1}, \ldots, f_{s} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ be polynomials such $\operatorname{deg} f_{i}=d_{i}$ where $d_{1} \geq d_{2} \ldots \geq d_{s}$. Assume that $I=\left(f_{1}, \ldots, f_{s}\right) \in$ $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ is an ideal, such that $V(I)$ has dimension q. If we take a sufficiently general system of coordinates $\left(x_{1}, \ldots, x_{n}\right)$, then there exist polynomials $g_{j} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ and a non-zero polynomial $\phi(x) \in \mathbb{K}\left[x_{1}, \ldots, x_{q+1}\right]$ such that
(a) $\operatorname{deg} g_{j} f_{j} \leq d_{s} \prod_{i=1}^{n-q-1} d_{i}$,
(b) $\phi(x)=\sum_{j=1}^{k} g_{j} f_{j}$.

Proof. Take $F_{n-q}=f_{s}$ and $F_{i}=\sum_{j=i}^{s} \alpha_{i j} f_{j}$ for $i=1, \ldots, n-q-1$, whre $\alpha_{i j}$ are sufficiently general. Take $J=\left(F_{1}, \ldots, F_{n-q}\right)$. Then $\operatorname{deg} F_{n-q}=d_{s}$ and $\operatorname{deg} F_{i}=d_{i}$ for $i=1, \ldots, n-q-1$. Moreover, $V(J)$ has pure dimension q and $J \subset I$. The mapping

$$
\Phi: \mathbb{K}^{n} \times \mathbb{K} \ni(x, z) \rightarrow\left(F_{1}(x) z, \ldots, F_{n-q}(x) z, x\right) \in \mathbb{K}^{n-q} \times \mathbb{K}^{n}
$$

[^0]is a (non-closed) embedding outside the set $V(J) \times \mathbb{K}$. Take $\Gamma=\operatorname{cl}\left(\Phi\left(\mathbb{K}^{n} \times \mathbb{K}\right)\right)$. Let $\pi: \Gamma \rightarrow \mathbb{K}^{n+1}$ be a generic projection. Define $\Psi:=\pi \circ \Phi(x, z)$. By Lemma 2 we can assume that
$$
\Psi=\left(\sum_{j=1}^{n-q} \gamma_{1 j} F_{j} z+l_{1}(x), \ldots, \sum_{j=n-q}^{n-q} \gamma_{n j} F_{j} z+l_{n}(x), l_{n-q+1}(x), \ldots, l_{n+1}(x)\right),
$$
where l_{1}, \ldots, l_{n+1} are generic linear form. In particular we can assume that $l_{n-q+i}, i=$ $1, . ., q+1$ is the variable x_{i} in a new generic system of coordinates.

Apply Theorem 1 to $\mathbb{L}=\mathbb{K}(z)$, the polynomials $\Psi_{1}, \ldots, \Psi_{n+1} \in \mathbb{L}[x]$. Thus there exists a non-zero polynomial $W\left(T_{1}, \ldots, T_{n+1}\right) \in \mathbb{L}\left[T_{1}, \ldots, T_{n+1}\right]$ such that

$$
W\left(\Psi_{1}, \ldots, \Psi_{n+1}\right)=0 \text { and } \operatorname{deg} W\left(T_{1}^{d_{1}}, T_{2}^{d_{2}}, \ldots, T_{k}^{d_{k}}, T_{k+1}, \ldots, T_{n+1}\right) \leq d_{s} \prod_{j=1}^{n-q-1} d_{j}
$$

where $k=n-q$. Since the coefficients of W are in $\mathbb{K}(z)$, there is a non-zero polynomial $\tilde{W} \in \mathbb{K}\left[T_{1}, \ldots, T_{n+1}, Y\right]$ such that
(a) $\tilde{W}\left(\Psi_{1}(x, z), \ldots, \Psi_{n+1}(x, z), z\right)=0$,
(b) $\operatorname{deg}_{T} \tilde{W}\left(T_{1}^{d_{1}}, T_{2}^{d_{2}}, \ldots, T_{k}^{d_{k}}, T_{k+1}, \ldots, T_{n+1}, Y\right) \leq d_{s} \prod_{j=1}^{n-q-1} d_{j}$, where deg_{T} denotes the degree with respect to the variables $T=\left(T_{1}, \ldots, T_{n+1}\right)$.
Note that the mapping $\Psi=\left(\Psi_{1}, \ldots, \Psi_{n+1}\right): \mathbb{K}^{n} \times \mathbb{K} \rightarrow \mathbb{K}^{n+1}$ is finite outside the set $V(J) \times \mathbb{K}$. Let $\phi^{\prime}=0$ describes the image of the projection

$$
\pi: V(J) \ni x \mapsto\left(x_{1}, \ldots, x_{q+1}\right) \in \mathbb{K}^{q+1}
$$

(recall that we consider generic system of coordinates).
The set of non-properness of the mapping Ψ is contained in the hypersurface $S=$ $\left\{T \in \mathbb{K}^{n+1}: \phi^{\prime}(T)=0\right\}$. Since the mapping Ψ is finite outside S, for every $H \in$ $\mathbb{K}\left[x_{1}, \ldots, x_{n}, z\right]$ there is a minimal polynomial $P_{H}(T, Y) \in \mathbb{K}\left[T_{1}, \ldots, T_{n+1}\right][Y]$ such that $P_{H}\left(\Psi_{1}, \ldots, \Psi_{n+1}, H\right)=\sum_{i=0}^{r} b_{i}\left(\Psi_{1}, \ldots, \Psi_{n+1}\right) H^{r-i}=0$ and the coefficient b_{0} satisfies $\left\{T: b_{0}(T)=0\right\} \subset S$. Now set $H=z$.

We have

$$
\operatorname{deg}_{T} P_{z}\left(T_{1}^{d_{1}}, T_{2}^{d_{2}}, \ldots, T_{n}^{d_{n}}, T_{n+1}, Y\right) \leq d_{s} \prod_{j=1}^{n-q-1} d_{j}
$$

and consequently we obtain the equality $b_{0}\left(x_{1}, \ldots, x_{q+1}\right)+\sum F_{i} g_{i}=0$, where deg $F_{i} g_{i} \leq$ $\prod_{j=1}^{n-q} d_{j}$. Set $\phi=b_{0}$. By the construction the polynomial ϕ has zeros only on the image of the projection

$$
\pi: V(J) \ni x \mapsto\left(x_{1}, \ldots, x_{q+1}\right) \in \mathbb{K}^{q+1}
$$

Remark 4. Simple application of the Bezout theorem shows that our estimations on the degree of ϕ is sharp.
Corollary 5. Let I be as above. If $V(I)$ has pure dimension q and I has not embedded components, then there is a polynomial $\phi_{1} \in \mathbb{K}\left[x_{1}, \ldots, x_{q+1}\right]$ which describes the image of the projection

$$
\pi: V(I) \ni x \mapsto\left(x_{1}, \ldots, x_{q+1}\right) \in \mathbb{K}^{q+1}
$$

such that
(a) $\phi_{1} \in I$,
(b) $\operatorname{deg} \phi_{1} \leq d_{s} \prod_{i=1}^{n-q-1} d_{i}$.

Proof. Let $I=\bigcap^{r} I_{k}$ be a primary decomposition of I. Then $\operatorname{dim} V\left(I_{k}\right)=q$ for every k. Let ϕ be a polynomial as above. If $\phi=\phi_{1} \phi_{2}$, where ϕ_{2} does not vanish on any component of $V(I)$ then $\phi_{1} \in I_{k}$ for every k (by properties of primary ideals) and consequently $\phi_{1} \in I$. But ϕ_{1} describes the image of the projection

$$
\pi: V(I) \ni x \mapsto\left(x_{1}, \ldots, x_{q+1}\right) \in \mathbb{K}^{q+1}
$$

Theorem 6. Let $f_{1}, \ldots, f_{s} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ be polynomials such $\operatorname{deg} f_{i}=d_{i}$ where $d_{1} \geq$ $d_{2} \ldots \geq d_{s}$. Let $I=\left(f_{1}, \ldots, f_{s}\right)$ be the ideal in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ such that $\operatorname{dim} V(I)=q$. Then in I we can find a non-zero polynomial $\phi(x) \in \mathbb{C}\left[x_{1}, \ldots, x_{q+1}\right]$ such that $\operatorname{deg} \phi \leq d_{s} \prod_{i=1}^{n-q-1} d_{i}$.

Proof. By theorem 3 for generic $\alpha=\left(\alpha_{i, j} ; i=1, \ldots, q+1, j \geq i\right)$ there exist a non-zero polynomial $\phi_{\alpha} \in \mathbb{C}\left[t_{1}, \ldots, t_{q+1}\right]$ such that
a) $\operatorname{deg} \phi_{\alpha} \leq d_{s} \prod_{i=1}^{n-q-1} d_{i}$,
b) $\phi_{\alpha}\left(X_{1}(\alpha), X_{2}(\alpha), \ldots, X_{q+1}(\alpha)\right) \in I$, where $X_{1}(\alpha)=\alpha_{1,1} x_{1}+\ldots+\alpha_{1, n} x_{n}, X_{2}(\alpha)=$ $\alpha_{2,2} x_{1}+\ldots \alpha_{2, n} x_{n}, \ldots, X_{q+1}(\alpha)=\alpha_{q+1, q+1} x_{q+1}+\ldots+\alpha_{q+1, n} x_{n}$.

For a polynomial $p=\sum_{\alpha} a_{\alpha} x^{\alpha} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ we define a norm $\|p\|=\max _{\alpha}\left|a_{\alpha}\right|$. In particular for every generic α we can assume that $\left\|\phi_{\alpha}\right\|=1$ (we consider the polynomial $\frac{\phi}{\|\phi\|}$ instead of $\left.\phi\right)$. Moreover, we can take generic α_{m} in this way that $X_{i}\left(\alpha_{m}\right) \rightarrow x_{i}$ for $m \rightarrow \infty$ and for $i=1, \ldots, q+1$. Polynomial ϕ_{α} we can treat as an element of a vector space $B(D)$ of all polynomials from $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ of degree bounded by $D=d_{s} \prod_{i=1}^{n-q-1} d_{i}$. Since the norm of every $\phi_{\alpha_{m}}$ is bounded by 1 , we can assume that this sequence converges to a polynomial ϕ, with norm 1 and of degree bounded by $D=d_{s} \prod_{i=1}^{n-q-1} d_{i}$. Thus also a sequence $\phi_{\alpha_{m}}\left(X_{1}\left(\alpha_{m}\right), \ldots, X_{q+1}\left(\alpha_{m}\right)\right)$ tends to the same polynomial ϕ. Of course it is non-zero because $\|\phi\|=1$. It is enough to show that $\phi \in I$. However the space $I \cap B(D)$ is a linear subspace of a finitely dimensional complex vector space $B(D)$, hence it is closed subset of $B(D)$. This finishes the proof.
Remark 7. By Lefchetz Principle Theorem 6 holds for every field of characteristic zero.
Corollary 8. Let $f_{1}, \ldots, f_{s} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ be polynomials such $\operatorname{deg} f_{i}=d_{i}$ where $d_{1} \geq$ $d_{2} \ldots \geq d_{s}$. Let $I=\left(f_{1}, \ldots, f_{s}\right)$ be the ideal in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ such that $\operatorname{dim} V(I)=1$. Assume that the image S of the projection $x \mapsto\left(x_{1}, x_{2}\right)$ of a one dimensional part of $V(I)$ into \mathbb{C}^{2} is a curve. Then in I we can find a non-zero polynomial $\phi\left(x_{1}, x_{2}\right)=\phi_{1}\left(x_{1}, x_{2}\right) \rho\left(x_{1}\right) \in$ $\mathbb{C}\left[x_{1}, x_{2}\right]$ such that
a) $\operatorname{deg} \phi \leq D^{2}-2 D+2$, where $D=d_{s} \prod_{i=1}^{n-2} d_{i}$,
b) ϕ_{1} describes the image of the projection $x \mapsto\left(x_{1}, x_{2}\right)$ of a one dimensional part of $V(I)$ into \mathbb{C}^{2}.

Proof. Consider the ideal $I_{\alpha}=\left(f_{s}, \sum_{i=1}^{s-1} \alpha_{1 i} f_{i}, \sum_{i=2}^{s-1} \alpha_{2 i} f_{i}, \ldots, \sum_{i=n-2}^{s-1} \alpha_{2 i} f_{i}\right)$. By Theorem 6 we have that there exists a non-zero polynomial $\phi_{\alpha} \in I \cap \mathbb{C}\left[x_{1}, x_{2}\right]$ of degree bounded by D. We can write $\phi_{\alpha}=\phi_{1, \alpha} \phi_{2, \alpha}$, where $\phi_{1, \alpha}$ describes S and $\phi_{2, \alpha}$ does not vanish on S. Since the degree of $\phi_{1, \alpha}$ is bounded, there is infinitely many α_{i} such that $\phi_{1, \alpha_{i}}$ up to a multiplicative constant is the same. Moreover, the ideal $J=\left(\phi_{2, \alpha_{i}}, i=1,2, \ldots\right)$ describes the zero dimensional part of the image of the projection $x \mapsto\left(x_{1}, x_{2}\right)$ of $V(I)$ into \mathbb{C}^{2}. If $\operatorname{deg} \phi_{1}=a$, then $\operatorname{deg} \phi_{2, \alpha_{i}} \leq D-a$. Consequently we can find a non zero polynomial $\rho\left(x_{1}\right) \in J$, such that $\operatorname{deg} \rho \leq(D-a)^{2}$. The ideal I contains a polynomial $\phi \rho$ of degree
bounded by $a+(D-a)^{2}$. The expression $a+(D-a)^{2}$, where $0<a \leq D$ attains its maximal value for $a=1$. This finishes the proof.
Remark 9. If the ideal I has not embedded components, then we can assume that the polynomial ρ describes the image of the projection $x \mapsto x_{1}$ of a zero dimensional part of $V(I)$ into \mathbb{C}. In general case it can describe also some extra points.

References

[1] Jelonek, Z. On the Effective Nullstellensatz. Invent. Math. 162(2005), pp 1-17.

[^0]: 1991 Mathematics Subject Classification. 14 D 06, 14 Q 20.

