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Abstract

This article proposes two types of degradation models that are suitable for describ-
ing multivariate degrading systems subject to time-variant covariates and imperfect
maintenance activities. A multivariate Wiener process is constructed as a baseline
model, on top of which two types of models are developed to meaningfully charac-
terize the time-variant covariates and imperfect maintenance effects. The underlying
difference between the two models lies in the way of capturing the influences of
covariates and maintenance: The first model reflects these impacts in the degrada-
tion rates/paths directly, whereas the second one describes the impacts by modifying
the time scales governing the degradation processes. In each model, two particular
imperfect maintenance models are presented, which differ in the extent of reduction
in degradation level or virtual age. The two degradation models are then compared in
certain special cases. The proposed multivariate degradation models pertain to com-
plex industrial systems whose health deterioration can be characterized by multiple
performance characteristics and can be altered or affected by maintenance activities
and operating/environmental conditions.

KEYWORDS:
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1 INTRODUCTION

1.1 Background and motivation
Reliability and maintenance are crucial issues for many industrial systems, which have led to the development of associated the-
ories and methodologies. Traditional reliability analysis relies heavily on failure data for choosing appropriate lifetime models,
based on which various maintenance models are developed1,2. In recent years, due to the advances in low-cost sensoring and
monitoring techniques, degradation models have become a prevailing alternative to traditional lifetime models3,4. The rationale
of degradation-based reliability analysis is that aging failures of most systems can be attributed to the stochastic deterioration
of some key performance characteristics (PCs) such as wear of machinery, capacity of batteries, and depth of tire tread5. In this
regard, degradation-based maintenance models can be developed by meaningfully characterizing the influence of maintenance
activities on the underlying degradation processes; see, e.g., Kahle6 and Mercier and Castro7, for recent references.
This article is interested in degradation and maintenance modeling for complex industrial systems. For such systems, there

are three important features that should be considered in the modeling process:
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(i) Multiple performance characteristics.Most existing research on degradation modeling presumes that system deterioration
can be well captured by only one PC. In reality, however, there are numerous industrial systems exhibiting degradation for
multiple PCs, such as wear, crack, and vibration4. The degradation processes of a complex system are often statistically
dependent, since they reflect the health condition of the same system. Another scenario leading to degradation dependency
is that the same PC of a system is observed by multiple identical indicators (sensors) from different locations. In this
scenario, the associated degradation processes shall be highly dependent.

(ii) Time-variant covariates. The operating and environmental conditions that systems operate in—referred to as covariates or
explanatory variables in statistics—are auxiliary information that is closely related to system degradation processes. This
is because operating and environmental conditions can induce internal stresses in a system that affect the rate or mode
of system degradation8,9. Temperature, humidity, and operational profile are typical examples of such covariates. Quite
often, the values of covariates are not constant all the time. We consider here that the covariates are piece-wise constant,
which is a reasonable and mathematically tractable approximation of real scenarios.

(iii) Imperfect maintenance effects. Maintenance activities, either in a corrective or preventive manner, are indispensable for
complex industrial systems, in terms of restoring a failed system to an operational status or mitigating the deterioration of
a working system2. In particular, preventive maintenance (PM) programs are widely implemented to sustain continuous,
cost-effective operations of industrial systems. Realistic maintenance activities are mostly imperfect in the sense that
the system state after maintenance is between as-good-as-new and as-bad-as-old—the corresponding system states after
perfect maintenance (or replacement) and minimal maintenance1.

The three features above are quite common yet essential for complex industrial systems; however, reported research that
incorporates all of them into degradation modeling problems is surprisingly rare. This article intends to bridge this gap by devel-
oping two multivariate degradation models taking into account time-variant (more precisely, piece-wise constant) covariates
and imperfect maintenance effects.

1.2 Related literature
There are three streams of research closely related to our work—that is, multivariate degradation modeling, degradation-based
imperfect maintenance modeling, and degradation modeling with time-variant (dynamic) covariates. As a side note, recent
literature reviews on degradation and maintenance modeling can be found in van Noortwijk10, Ye and Xie3, Alaswad and
Xiang11, Zhang et al.4, and de Jonge and Scarf12, among others.
Reliability modeling, inference, and testing for systems/products subject to multiple degradation processes have attracted

considerable attentions. In this stream of research, how to capture the dependency structure among individual degradation
processes is a key issue. Many studies adopt copula functions for this purpose; see Sari et al.13, Pan et al.14, Wang et al.15,16,
Peng et al.17,18,19, Fang et al.20, Liu et al.21, and Palayangoda and Ng22, for example. The prevalence of copula methods is
largely attributed to its capability of separately modeling the dependency structure and univariate marginals; however, copula
methods bear one drawback: Direct modeling of degradation increments by using a copula function does not preserve the
infinite divisibility property23. On the other hand, some studies directly adopt either multivariate general path models24,25 or
multivariate stochastic processes such as Wiener26,27,28,29,30,31 and gamma32,33 to describe multivariate degradation processes.
In addition, Mercier and Pham34 andMercier et al.35 introduce the so-called tri-variate reduction method to construct a bivariate
gamma process. It is worth pointing out that most studies above focus on two PCs, resulting in various bivariate degradation
processes. There are indeed a few exceptions that consider more than two PCs, including Hong et al.36, Si et al.24, Sun et al.37,38,
Hajiha et al.31, and Lu et al.25. Another point noteworthy is that Hong et al.36, inspired by the idea in Iyengar39, construct a
bivariate Wiener process from two univariate Wiener processes sharing a common noise. This idea of constructing multivariate
degradation processes is adopted in the present article.
Moreover, maintenance modeling, inference, and planning for multivariate degrading systems are also prevailing research

topics. Barker and Newby40 and Ahmadi41 study optimal inspection and replacement planning problems, respectively, for sys-
tems subject to a multivariate Wiener process. Mercier and Pham34 andMercier et al.35 investigate similar problems for systems
whose state is described by a bivariate Lévy process. Wu and Castro42 develop optimal PM policies for a system with a weighted
linear combination of multiple degradation processes. In addition, Castanier et al.43, Li et al.44, Liu et al.45, and Sun et al.38
contribute to this field by studying condition-based replacement strategies for systems subject to multiple degradation processes.
The above-summarized studies focus predominately on inspection or preventive replacement strategies. Imperfect maintenance,
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however, receives very few investigations in the context of multivariate degradation processes, though there are indeed some
studies dealing with univariate degradation processes (see, e.g., Castanier et al.46; Mercier and Castro47; Zhang et al.48; Kahle6;
Mercier and Castro7; Zhao et al.49; Salles et al.50). Basically, the extant degradation-based imperfect maintenance models, e.g.,
(virtual) age reduction6,47 and degradation level reduction6,7,49, are created by mimicking the ideas of associated lifetime-based
imperfect maintenance models. Nevertheless, developing imperfect maintenance models for multivariate degradation processes
remains an open problem.
Furthermore, existing research on modeling multivariate degradation processes with time-variant/dynamic covariates is quite

scarce. Singpurwalla8 provides a seminal overview on stochastic process-based failure models that are suitable to characterize
dynamic environments.Meeker andHong51 andHong et al.23 discuss how to link big operating and environmental data as covari-
ates to traditional reliability responses, including degradation signals. Peng et al.9 further summarize previous degradation-based
reliability models that involve multiple degradation indicators and dynamic environments. Hong et al.52 and Xu et al.53 adopt a
non-parametric model, precisely, shape-restricted splines, to estimate the influences of dynamic covariates on the degradation
path. Peng et al.17 deal with multivariate degradation analysis of complex systems under dynamic operating and environmental
conditions from a Bayesian perspective. Hajiha et al.31 investigate multivariate degradation modeling under dynamic operat-
ing conditions with both parametric and non-parametric approaches. Lu et al.25 propose a multivariate general path model with
covariates and random effects to describe degradation data with multiple PCs. In addition, as we are dealing with piece-wise
constant covariates, research on step-stress accelerated degradation test (ADT) is relevant and inspiring; see, e.g., Tseng and
Wen54, Liao and Tseng55, Peng and Tseng56, Pan and Sun33, and Zhao et al.57. In particular, Pan and Sun33 study optimal step-
stress ADT design for products subject to a bivariate gamma process. Generally speaking, the dominant approach to modeling
covariates is to represent some parameters in the degradation model as functions of the covariates of interest, known as the link
functions; see Ye and Xie3 and Zhang et al.4 for overviews.
To the best of our knowledge, no studies can be found to consider all of the three features mentioned earlier in degradation

and maintenance modeling problems, despite its significance from both practical and academic perspectives.

1.3 Overview of this work
This article contributes to the literature by providing two integrated frameworks of modeling multivariate degradation processes
with imperfect maintenance effects and time-variant covariates. The multivariate Wiener process is adopted as a baseline model
because it retains the independent increment and infinite divisibility properties. A method of constructing multivariate Wiener
processes is first introduced, based on which two types of new models are further developed to incorporate the influences
of imperfect PM and piece-wise constant covariates. In particular, the first model reflects these influences in the degradation
rates/paths directly (referred to as the degradation path adjustment model), whereas the second one captures the influences by
modifying the time scales governing the degradation processes (called the time scale adjustment model). Simulated degradation
paths are sketched to illustrate the two types of degradation models. Comparisons between the two models in some special cases
are also provided.
The focus of this article is on probabilistic modeling and simulation illustration. Inferential issues are beyond the scope of this

article and, indeed, require further investigations. Section 2 formulates the piece-wise constant covariate process and introduces
a new approach to constructing multivariate Wiener processes. The degradation path adjustment and time scale adjustment
models are developed, respectively, in Sections 3 and 4, and schematic illustrations are presented therein. Section 5 compares
the proposed models in some special cases. Finally, Section 6 concludes this article and suggests some topics for future research.

2 MODEL FORMULATION

In this section, we introduce the characterization of piece-wise constant covariates and the construction of multivariate Wiener
processes, so as to form the basis for subsequent modeling efforts.

2.1 Piece-wise constant covariates
Suppose there areM covariates that have significant impacts on system degradation, and their values are piece-wise constant.
Specifically, the covariates remain constant under a given operating and/or environmental stress, but might change their values
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FIGURE 1 Schematic illustration of the evolution of two covariates (�j = 20 × j, j = 1,… , 5).

upon the shift of stress. Let �j , j = 1, 2,… , J , be the time point at which the operating/environmental stress shifts (�0 = 0), i.e.,
when at least one of the covariates changes its value. Let sm,j denote the constant value of the mth covariate during the jth time
interval [�j−1, �j),m = 1, 2,… ,M ; j = 1, 2,… , J . Note that the covariates might be subject to normalization or transformation;
see, e.g., Lim and Yum58, Sun et al.37, and Zhao et al.59. Further define sj = [s1,j , s2,j ,… , sM,j]T. In essence, sj contains all
information on theM covariates during [�j−1, �j). Note also that the values of some covariates may not keep changing in every
single period. In other words, not all corresponding elements in vectors sj and sj+l (l = 1, 2,… ) are necessarily different,
namely, there may exist some m ∈ {1, 2,… ,M} such that sm,j = sm,j+l.
In this manner, the piece-wise constant covariates at time t can be fully described by

J
∑

j=1
sj1[�j−1,�j )(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

s1, 0 ≤ t < �1,
s2, �1 ≤ t < �2,
⋮ ⋮

sJ , �J−1 ≤ t < �J ,

(1)

where 1(t) is an indicator function: if t ∈  is true, then it is equal to 1; otherwise, it becomes 0. Further let St represent the
entire history of the piece-wise constant covariate process from 0 to t.
Figure 1 illustrates the evolution of two covariates in five equal-length periods (i.e., M = 2, J = 5). We suppose that

the shift of covariate value(s) occurs every 20 time units (i.e., �j = 20 × j, j = 1,… , 5). The covariates are normalized so
that their values are between zero and one. The value of covariate 1 keeps changing in every period (s1,1 = 0.50, s1,2 = 0.00,
s1,3 = 1.00, s1,4 = 0.75, s1,5 = 0.25), whereas covariate 2 remains constant in all the five periods (s2,j = 0.50, j = 1,… , 5).
Possible examples of covariate 1 include workload, temperature, and humidity, whereas covariate 2 may be geographic location
and system type, among others.

2.2 Multivariate degradation processes
Consider a complex industrial systemwhose degradation is captured by n PCs. LetXi(t), i = 1, 2,… , n, be the baseline degrada-
tion process of PC i under some nominal covariates s0. When actual covariate values differ from the nominal ones, the system’s
degradation processes can be affected. Note that in real applications,Xi(t)might be subject to certain type of transformation (e.g.,
logarithm transformation) for data preprocessing purposes. As Xi(t)’s describe the PCs of the same system, there should exist
certain dependency among them. Following Iyengar39 and Hong et al.36, we consider that Xi(t)’s share a common noise pro-
cess, but have their own noise processes as well. In essence, the common noise process characterizes the dependency among the
n degradation processes, whereas the distinct noise processes describe the uncertainty within individual degradation processes.
To capture the time-varying volatility, we use Brownian motions to model these noises. Specifically, the baseline degradation
process of PC i is described by

Xi(t) = �iΛ(t) + �0B(0)(Λ(t)) + �iB(i)(Λ(t)), i = 1, 2,… , n, (2)
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FIGURE 2 Simulated baseline degradation paths of three PCs in weak and strong correlation scenarios.

where �i is the drift parameter indicating the rate of degradation, �0 and �i are diffusion parameters, B(0)(⋅) and B(i)(⋅) are
independent standard Brownian motions, and Λ(t) is a monotone increasing function capturing the nonlinearity in degradation
processes26. A commonly used form of Λ(t) is Λ(t) = t� , where � is a positive parameter. When Λ(t) = t, Xi(t) has a linear
mean path �it; otherwise, its mean path is non-linear.
It is easy to verify that E[Xi(t)] = �iΛ(t), Var(Xi(t)) = (�20 + �

2
i )Λ(t), and Cov(Xi(t), Xi′ (t)) = �20Λ(t), i ≠ i′ . Thus, the

correlation coefficient between any Xi(t) and Xi′ (t), i ≠ i′ , is given by

�i,i′ =
�20

√

(�20 + �
2
i )(�

2
0 + �

2
i′
)
∈ [0, 1], (3)

which is independent of t. Note that when �0 → 0, Xi(t) and Xi′ (t) tend to be independent; whereas when �0 ≫ �i, i = 1,… , n,
the correlation between Xi(t) and Xi′ (t) would be positive and strong.
In this sense, the proposed multivariate Wiener process, constructed from multiple univariate Wiener processes sharing a

common noise, is quite flexible in terms of describing various extents of dependency. This property is quite important for
practical implementation: The operator may install multiple identical sensors (say, vibration sensors) in different locations of
the same system, in which case the dependency among associated indicators shall be high; on the other hand, the dependency
among indicators from different types of sensors (say, tension and vibration sensors) shall be relatively low. The two scenarios
can be well characterized by sensibly estimating the values of drift and diffusion parameters.
Figure 2 illustrates three simulated baseline degradation paths in weak and strong correlation scenarios, respectively. The

parameter setting used to generate this figure is as follows: �1 = 0.437, �2 = 0.312, �3 = 0.095, �1 = 0.068, �2 = 0.179,
�3 = 0.238, and Λ(t) = t1.2. In addition, �0 is set to 0.25 in panel (a) and 0.75 in panel (b), representing weak and strong
correlation scenarios, respectively. The degradation paths are simulated by the random walk approximation method; see Kahle
et al.60 for details on this method. Note that the baseline degradation paths in panel (a) will be used throughout Sections 3 and
4 for illustrative purposes.

Remark 1. An equivalent way of constructing model (2) is through the so-called (n+1)-variate reduction method34,35. Suppose
that we have n+1 independent univariate Wiener process: Y0(t) = �0Λ(t)+ �0B(0)(Λ(t)) and Yi(t) = (�i−�0)Λ(t)+ �iB(i)(Λ(t)),
i = 1, 2,… , n. Then, Xi(t) in (2) can be expressed as Xi(t) = Y0(t) + Yi(t) for i = 1, 2,… , n.

Remark 2. Let X(t) = [X1(t),… , Xn(t)]T. The baseline degradation model in (2) is equivalent to a multivariate Wiener
process36:

X(t) = �Λ(t) + �1∕2B(Λ(t)), (4)
where � = [�1,… , �n]T,B(⋅) is the standard n-dimensional Brownian motion, and � is the associated covariance matrix, which
is positive definite. In particular, the (i, i′)th entry of � is �2i,i = �

2
0 + �

2
i for i = i

′ , and �2
i,i′
= �20 for i ≠ i′ . Thus, the correlation

coefficient in (3) can be rewritten as �i,i′ = �2i,i′∕(�i,i�i′ ,i′ ). Also, it is clear that X(t) follows a multivariate normal distribution,
i.e., X(t) ∼ (�Λ(t),�Λ(t)).
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The baseline multivariate Wiener process will be used in Sections 3 and 4 to incorporate the influences of time-variant
covariates and imperfect PM effects. It is well known that theWiener process is not strictly monotone. This property is important
for some self-healing cases such as the healing of cracks (caused by fatigue) and battery capacities. If a multivariate degradation
process is believed to be monotonically increasing/decreasing, then one may resort to a multivariate gamma or inverse Gaussian
process, possibly constructed via the (n + 1)-variate reduction method.

3 DEGRADATION PATH ADJUSTMENT MODEL

In this section, we consider the degradation path adjustment model which assumes that covariates and imperfect PM activities
influence system degradation by directly adjusting the rates/paths of individual degradation processes.

3.1 Modeling the effect of piece-wise constant covariates
Let Xi(t|sj) denote the degradation process of PC i within [�j−1, �j), during which the system operates under covariates sj ,
i = 1, 2,… , n; j = 1, 2,… , J . Incorporating the covariates in an appropriate way requires a good understanding about how
these factors affect the parameters of the degradation model8. In the degradation path adjustment model, we assume that the
influences of piece-wise constant covariates on the individual degradation processes are reflected in the corresponding alterations
of their drift parameters. Specifically, the drift parameters are modeled as link functions of the covariates. Let �i(sj ; i) be the
drift parameter associated with Xi(t|sj), where i is the coefficient vector. Candidate forms of link functions include the linear
relation, the Arrhenius relation, the exponential relation, and the power law relation3,4. Among them, the latter three can be
unified in a common form of

�i(sj ; i) = exp

{

i,0 +
M
∑

m=1
i,msm,j

}

(5)

after some transformations58, where i = [i,0, i,1,… , i,M ]T is the coefficient vector. Notice that if we define s0 = 0, then we
would have �i(s0; i) = exp{i,0}, which can be treated as the baseline drift parameter �i in (2).
Denote Xi(t;St) as the degradation process of PC i subject to the piece-wise constant covariate process St. Analogous to

Liao and Tseng55 and Zhao et al.57, the relationships between Xi(t;St) and {Xi(t|sj), j = 1, 2,… , J} are modeled as follows.
Under covariates s1, it is clear that Xi(t;St) = Xi(t|s1) = �i(s1; i)Λ(t) + �0B(0)(Λ(t)) + �iB(i)(Λ(t)) for t ∈ [0, �1). Likewise,
for t ∈ [�1, �2) and under covariates s2, the degradation process of PC i becomes

Xi(t;St) = Xi(�1|s1) +Xi(t|s2) −Xi(�1|s2)
= �i(s1; i)Λ(�1) + �0B(0)(Λ(�1)) + �iB(i)(Λ(�1)) + �i(s2; i)Λ(t) + �0B(0)(Λ(t)) + �iB(i)(Λ(t))
− �i(s2; i)Λ(�1) − �0B(0)(Λ(�1)) − �iB(i)(Λ(�1))

= �i(s1; i)Λ(�1) + �i(s2; i)(Λ(t) − Λ(�1)) + �0B(0)(Λ(t)) + �iB(i)(Λ(t)).

(6)

By doing so, an underlying assumption here is that the degradation process exhibits a memoryless property, which means that
the rate of degradation—represented by the drift parameter �i(sj ; i)—depends only on the current covariates sj but not on the
entire history St of the covariate process61. Therefore, for general j ≥ 1 and t ∈ [�j−1, �j), we have

Xi(t;St) = Xi(t|sj) −Xi(�j−1|sj) +
j−1
∑

l=1

(

Xi(�l|sl) −Xi(�l−1|sl)
)

= �i(sj ; i)(Λ(t) − Λ(�j−1)) +
j−1
∑

l=1
�i(sl; i)(Λ(�l) − Λ(�l−1)) + �0B(0)(Λ(t)) + �iB(i)(Λ(t)).

(7)

By defining an adjusted mean degradation path as di(t;St) = �i(sj ; i)(Λ(t) − Λ(�j−1)) +
∑j−1
l=1 �i(sl; i)(Λ(�l) − Λ(�l−1)),

which is continuous over time, the degradation process of PC i involving the piece-wise constant covariate process St can be
rewritten as

Xi(t;St) = di(t;St) + �0B(0)(Λ(t)) + �iB(i)(Λ(t)), i = 1,… , n. (8)
Figure 3 shows the baseline and adjusted degradation paths of three PCs subject to piece-wise constant covariates under

the degradation path adjustment model. We assume �i(sj ; i) = �i exp{i,1s1,j + i,2s2,j}, and the associated parameters are
set to 1,1 = 0.156, 1,2 = 0.320, 2,1 = 0.535, 2,2 = 0.115, 3,1 = 0.093, and 3,2 = −0.415. The values of �i (i = 1, 2, 3),
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FIGURE 3 Baseline and adjusted degradation paths of three PCs with time-variant covariates under the degradation path
adjustment model.

sj (j = 1,… , 5), and other parameters follow directly from Figures 1 and 2 . In this figure, the baseline degradation paths
(dotted lines) are the same as those in Figure 2 (a). As can be seen, the piece-wise constant covariates could pull the baseline
degradation paths up or down, depending on their positive or negative effects on the rates of degradation, and the rates change
upon the shift of covariate values.

3.2 Modeling the effect of imperfect PM actions
Suppose that imperfect PM actions are performed at time instants t1, t2,… , tk,… , with t0 = 0. The maintenance instants tk
and covariate shift instants �j are not necessarily identical for any k and j. We further assume that if any failure occurs between
two successive PM actions, then the system will be minimally repaired; after a minimal repair, the system is restored to an
operational status, without any impact on its degradation processes.
In the degradation path adjustment model, the influence of imperfect PM activities is captured by the amount of degradation

reduction before and after each PM activity. For convenience of notation, let Xi,k = Xi(t−k ;St−k ) represent the intrinsic (i.e.,
without maintenance) degradation level of PC i at time t−k , k = 1, 2,… ; let �i,k be the associated degradation level immediately
after the kth PM activity. Define �i,k ∈ [0, 1] as the degradation reduction factor of the kth PM action for PC i. A larger value
of �i,k corresponds to a higher maintenance efficiency. If �i,k = 0, then the maintenance effect is minimal; if �i,k = 1, then the
maintenance effect is perfect; whereas �i,k ∈ (0, 1) corresponds to an imperfect maintenance effect. In practice, for a specific PM
action k, the degradation reduction factor �i,k for all imight be correlated, as maintaining a system usually results in simultaneous
degradation reduction for all of its PCs. A possible way of capturing this type of correlation is to model �i,k, i = 1, 2,… , n, as
functions of the maintenance effort ek, e.g., �i,k = �i(ek), where �i(⋅) is a PC-specific function.
In principle, we might have the following two assumptions on the maintenance efficiency—following the ideas in Doyen and

Gaudoin1, Kahle6, Mercier and Castro7, and Salles et al.50, which lead to two different imperfect maintenance models:
(i) ARD1 model. The first model is called the Arithmetic Reduction of Degradation with memory one (ARD1). The idea is

that an imperfect maintenance action only removes a proportion of the degradation accumulated since the last maintenance. As
a result, the degradation level right after the kth PM action can be formulated as

�i,k = �i,k−1 + (Xi,k −Xi,k−1)(1 − �i,k), (9)

which can be iteratively derived as �i,k =
∑k
l=1(1 − �i,l)(Xi,l −Xi,l−1), k = 1, 2,… . Let X̃i(t;St) represent the degradation path

of PC i at t ∈ [tk, tk+1), after the kth PM action. Then, we have

X̃i(t;St) = �i,k +Xi(t;St) −Xi,k

=
k
∑

l=1
(1 − �i,l)(Xi,l −Xi,l−1) +Xi(t;St) −Xi,k, k = 1, 2,… ,

(10)
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FIGURE 4 Degradation paths of three PCs involving time-variant covariates and imperfect PM actions under the degradation
path adjustment model.

where Xi(t;St) is given by (8).
(ii)ARD∞ model.Another idea is that an imperfect maintenance action reduces the degradation of an amount proportional to

the current degradation level. The corresponding model is called the Arithmetic Reduction of Degradation with infinite memory
(ARD∞). According to this assumption, one has

�i,k = (�i,k−1 +Xi,k −Xi,k−1)(1 − �i,k), (11)

which can be iteratively derived as �i,k =
∑k
l=1

∏k+1−l
l′=1 (1−�i,l′ )(Xi,l−Xi,l−1), k = 1, 2,… . The corresponding degradation path

of PC i at t ∈ [tk, tk+1), after the kth PM, becomes

X̃i(t;St) =
k
∑

l=1

k+1−l
∏

l′=1

(1 − �i,l′ )(Xi,l −Xi,l−1) +Xi(t;St) −Xi,k, k = 1, 2,… (12)

This way, X̃i(t;St) in (10) or (12)—depending on which imperfect maintenance model is applied—is able to fully characterize
the influences of both piece-wise constant covariates and imperfect PM activities on the degradation process. Figure 4 shows the
simulated degradation paths of three PCs with both covariates and imperfect PM effects under the degradation path adjustment
model. To generate this figure, we suppose that the PM interval is 25 time units and the degradation reduction factor is equal
to 0.5 for all cases, namely, tk = 25 × k, �i,k = 0.5, i, k = 1, 2, 3. The dotted lines represent the degradation paths involving
covariates only (i.e., the same as those red lines in Figure 3 ); the red and blue lines indicate the degradation paths with both
covariates and imperfect maintenance (red: ARD1 model; blue: ARD∞ model). As can be seen, between two successive PM
actions, the degradation paths adjusted by imperfect maintenance are vertically parallel to the paths without maintenance. That
is to say, if we move the red or blue paths upwards, then they would coincide with those dotted lines. This is because an imperfect
PM action reduces the current degradation level to a lower level, and the degradation process then develops in the same rate as
that without maintenance.

3.3 Further discussions
It is worth mentioning that the proposed model can be reduced to a model with pure covariates or imperfect maintenance effects.
More specifically, when �i(sj ; i) = �i for all j, then the proposed model reduces to a model with only imperfect maintenance
effect; when �i,k = 0 for all k, then there is only time-variant covariate effect; whereas when �i(sl; i) = �i and �i,k = 0 for all
j and k, then the proposed model simplifies to the original one in (2).
We now explore the probabilistic properties of the increments of individual degradation processes. Consider any time instant t

and time stepΔt that satisfy tk ≤ t < t+Δt < tk+1. DefineΔX̃i = X̃i(t+Δt;St+Δt)−X̃i(t;St),Δdi = di(t+Δt;St+Δt)−di(t;St),
and ΔΛ = Λ(t + Δt) − Λ(t). Then, for both ARD1 and ARD∞ models, we have the following results.

Property 1. E[ΔX̃i] = Δdi, Var(ΔX̃i) = (�20 + �
2
i )ΔΛ, and Cov(ΔX̃i,ΔX̃i′ ) = �20ΔΛ for i ≠ i′ .
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All proofs in this article can be found in the Appendix. Based on the results in Property 1, the correlation coefficient between
any ΔX̃i and ΔX̃i′ , i ≠ i′ , can be derived as �̃i,i′ = �20∕

√

(�20 + �
2
i )(�

2
0 + �

2
i′
), which is exactly the same as �i,i′ in (3). This

implies that the incorporation of covariates and imperfect maintenance effects via the degradation path adjustment model does
not change the dependency structure among individual degradation processes; also, the infinite divisibility property is well
preserved. Let ΔX̃ = [ΔX̃1,… ,ΔX̃n]T and Δd̃ = [Δd̃1,… ,Δd̃n]T. Then, for any tk ≤ t ≤ t + Δt ≤ tk+1, the increment of
the multivariate degradation process, i.e., ΔX̃, follows a multivariate normal distribution with mean Δd̃ and covariance matrix
�ΔΛ, where � is the same as that in Remark 2. This result is helpful for parameter estimation of the model.

Remark 3. In addition to degradation reduction, an imperfect maintenance action might have another key effect: Practical obser-
vations suggest that the degradation path after an imperfect maintenance actionmight increase faster than before48,49. This hybrid
effect of imperfect maintenance can be captured by a degradation-rate increase factor �k (�k ≥ 1, k = 1, 2,… ), with �0 = 1.
After the kth PM action, the degradation path can be modified to X̃i(t;St) = �i,k + �k[di(t;St) − di(tk;St)] + �0[B(0)(Λ(t)) −
B(0)(Λ(tk))] + �i[B(i)(Λ(t)) − B(i)(Λ(tk))], t ∈ [tk, tk+1), k = 1, 2,… . Nevertheless, the modified degradation path X̃i(t;St)
should be fed back to (7) to revise Xi(t;St), which complicate the problem. We thus leave this issue for future research.

4 TIME SCALE ADJUSTMENT MODEL

In this section, we introduce the time scale adjustment model. The principle of this model is to consider that covariates and
imperfect maintenance activities modify the time scales governing the degradation processes.

4.1 Modeling the effect of piece-wise constant covariates
Again, letXi(t|sj) represent the ith degradation process under covariates sj , during the time interval [�j−1, �j). In the time scale
adjustment model, the influences of piece-wise constant covariates on system degradation is characterized by the modification
of time scales. As the system is supposed to operate under different covariates one period after another, actual (chronological)
operating time is not capable to reflect system degradation under different covariate levels.62 In order to facilitate degradation
correspondence in different regimes, we introduce the concept of equivalent operating time. The rationale of this concept is that
for a degradation process exposed under a specific covariate level for a certain time period, there exists an equivalent operating
time for this process under another covariate level. In particular, the existence of such an equivalent operating time is obvious
when the covariate of interest is usage rate; while for other types of covariates, the cumulative exposure model61 guarantees the
existence of an equivalent operating time.
Let �i,j represent the equivalent operating time of degradation process i when the system starts operating under covariates sj

(�i,1 = 0). With the concept of equivalent operating time, exposing PC i under covariates sj for �i,j time units is equivalent to
exposing it under covariates sj−1 for �j−1 − �j−2 + �i,j−1 time units54,56; see Figure 5 for demonstration. From the degradation
perspective, this statement corresponds to

Xi(�i,j|sj) = Xi(�j−1 − �j−2 + �i,j−1|sj−1), j ≥ 2. (13)

In this manner, during [�j−1, �j) and under covariates sj , the ith degradation process at time t can be expressed in terms of
�i,j , as

Xi(t;St) = Xi(t|s1), j = 1;
Xi(t;St) = Xi(t − �j−1 + �i,j|sj), j ≥ 1.

(14)

In order to obtain an explicit expression of Xi(t;St), we need to specify a detailed formulation for Xi(t|sj). Following Peng
and Tseng56, we assume here thatXi(t|sj) = Xi(�i(sj ;�i)t), whereXi(⋅) is given by (2) and �i(sj ;�i) is a time-scale adjustment
function with �i being its coefficient vector. In essence, if �i(sj ;�i) > 1 (resp. < 1), then degradation process i is accelerated
(resp. decelerated) by the stresses induced by covariates. A candidate form of the time-scale adjustment function is �i(sj ;�i) =
exp{

∑M
m=1 �i,msm,j}, where �i = [�i,1, �i,2,… , �i,M ]T. According to this form, we have �i(s0;�i) = 1 for s0 = 0, namely, the

time scale remains unchanged under nominal covariates s0 and the corresponding degradation process reduces to the baseline
model in (2).
Substituting Xi(t|sj) = Xi(�i(sj ;�i)t) into (13) yields

�i(sj ;�i)�i,j = �i(sj−1;�i)(�j−1 − �j−2 + �i,j−1), j ≥ 2, (15)
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FIGURE 5 Schematic illustration of the concept of equivalent operating time.
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FIGURE 6 Conversion to equivalent operating time under nominal covariates s0 (�i,j stands for �i(sj ;�i), j = 1, 2).

which can be iteratively derived as

�i(sj ;�i)�i,j =
j
∑

l=2
�i(sl−1;�i)(�l−1 − �l−2), j ≥ 2. (16)

This way, we can convert the actual operating time periods under all covariate levels sj , i.e., �j − �j−1, j = 1, 2,… , J , to the
corresponding equivalent operating time periods under nominal covariates s0, i.e., �i(sj ;�i)(�j −�j−1). For illustrative purposes,
Figure 6 shows that the degradation amount of process i accumulated under covariate s1 for �1 time units is equivalent to that
under covariate s0 for �i(s1;�i)�1 time units; similarly, the degradation amount at �2 is equivalent to that accumulated under
covariate s0 for �i(s1;�i)�1 + �i(s2;�i)(�2 − �1) time units.
By introducing an adjusted time scale !i(t;St) as

!i(t;St) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�i(s1;�i)t, 0 ≤ t < �1,
�i(s2;�i)(t − �1) + �i(s1;�i)�1, �1 ≤ t < �2,
⋮ ⋮

�i(sj ;�i)(t − �j−1) +
∑j
l=2 �i(sl−1;�i)(�l−1 − �l−2), �j−1 ≤ t < �j ,

⋮ ⋮,

(17)

the ith degradation process with the piece-wise constant covariate process St can be reformulated as

Xi(t;St) = �iΛ(!i(t;St)) + �0B(0)(Λ(!i(t;St))) + �iB(i)(Λ(!i(t;St))), i = 1, 2,… , n. (18)
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FIGURE 7 Baseline and adjusted degradation paths of three PCs with time-variant covariates under the time scale adjustment
model.

Notice that!i(t;St) is a piece-wise, continuous function. Figure 7 shows the baseline and adjusted degradation paths of three
PCs subject to piece-wise constant covariates under the time scale adjustment model. We assume �i(sj ;�i) = exp{�i,1s1,j +
�i,2s2,j}, and its parameters are set to �1,1 = 0.156, �1,2 = 0.320, �2,1 = 0.535, �2,2 = 0.115, �3,1 = 0.093, and �3,2 = −0.415.
The values of other parameters follow directly from Figures 1 and 2 . In this figure, the baseline degradation paths (dotted
lines) are again the same as those in Figure 2 (a). Unlike the degradation path adjustment model in which covariates lead to
either increase or decrease in the degradation rates, the time scale adjustment model reflects the influence of covariates in the
stretching of the time scales. As the Wiener process is non-monotone, the adjusted degradation paths may intersect with the
baseline paths. This explains the phenomenon that the two curves are crossing in Figure 7 (c).

4.2 Modeling the effect of imperfect PM actions
Suppose again that imperfect PM actions are performed at time instants t1, t2,… , tk,… . For convenience of notation, let !i,k
represent the equivalent operating time of degradation process i at time t−k (say, under certain sj and tk ∈ [�j−1, �j)). The
value of !i,k can be easily obtained by substituting t−k into (17). Further let �i,k denote the virtual age of degradation process
i immediately after the kth PM action. The virtual age concept is initially introduced by Kijima63 in the context of recurrent
events, and then adapted to maintenance modeling of deteriorating systems6,7; see Finkelstein and Cha62 for a recent discussion
on virtual age in reliability context. In the time scale adjustment model, the effect of an imperfect PM activity is described by the
amount of age reduction between !i,k and �i,k. By mimicking the virtual age reduction ideas in Doyen and Gaudoin1, Mercier
and Castro7,47, and Kahle6, below we introduce two imperfect maintenance models—the Arithmetic Reduction of Age with
memory one (ARA1) and Arithmetic Reduction of Age with infinite memory (ARA∞).
(i)ARA1 model. This model assumes that an imperfect maintenance action only removes a proportion of the age accumulated

since the last maintenance. As a result, the virtual age of degradation process i right after the kth PM action is given by

�i,k = �i,k−1 + (!i,k − !i,k−1)(1 − �i,k), (19)

which can be iteratively derived as �i,k =
∑k
l=1(1 − �i,l)(!i,l − !i,l−1), k = 1, 2,… .

Let !̃i(t;St) represent the virtual time scale of degradation process i at t ∈ [tk, tk+1) after the kth imperfect PM action. Then,
!̃i(t;St) evolves as follows:

!̃i(t;St) = �i,k + !i(t;St) − !i,k

=
k
∑

l=1
(1 − �i,l)(!i,l − !i,l−1) + !i(t;St) − !i,k, k = 1, 2,… ,

(20)

where !i(t;St) is given by (17).
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FIGURE 8 Degradation paths of three PCs involving time-variant covariates and imperfect PM effects under the time scale
adjustment model.

(ii) ARA∞ model. The assumption of this model is that an imperfect maintenance action reduces the virtual age of an amount
proportional to its age just before maintenance. This leads to

�i,k = (�i,k−1 + !i,k − !i,k−1)(1 − �i,k), (21)

which is equivalent to �i,k =
∑k
l=1

∏k+1−l
l′=1 (1 − �i,l′ )(!i,l − !i,l−1), k = 1, 2,… . In this case, the virtual time scale !̃i(t;St) at

t ∈ [tk, tk+1) evolves as follows:

!̃i(t;St) =
k
∑

l=1

k+1−l
∏

l′=1

(1 − �i,l′ )(!i,l − !i,l−1) + !i(t;St) − !i,k, k = 1, 2,… . (22)

Finally, the overall degradation process of PC i subject to piece-wise constant covariates and imperfect PM is given by

X̃i(t;St) = �iΛ(!̃i(t;St)) + �0B(0)(Λ(!̃i(t;St))) + �iB(i)(Λ(!̃i(t;St))), (23)

where !̃i(t;St) is given by (20) or (22), depending on which imperfect maintenance model is applied.
Figure 8 shows the simulated degradation paths of three PCs with both covariates and imperfect PM effects under the time

scale adjustment model. The dotted lines represent the degradation paths involving covariates only (i.e., the same as those red
lines in Figure 7 ); the red and blue lines represent the degradation paths with both covariates and imperfect maintenance (red:
ARA1 model; blue: ARA∞ model). One can observe that between two successive PM actions, the degradation paths adjusted
by imperfect maintenance are horizontally parallel to the paths without maintenance. That is to say, if we move the red or blue
paths to the left, then they would coincide with those dotted lines. This is because an imperfect PM action reduces the current
virtual age to an earlier age, and the degradation process then evolves along the same path as that without maintenance. Another
observation noteworthy is that in Figure 8 (c) the blue line is even above the red line in some cases, although the corresponding
ARA∞ model reduces the virtual age to a lower level than theARA1 model. This is also attributed to the non-monotone property
of the Wiener process.

4.3 Further discussions
Analogous to the degradation path adjustment model, the proposed time scale adjustment model can also be reduced to a model
with pure covariates or imperfect maintenance effects. More specifically, when �i(sj ;�i) = 1 for all j, then the proposed model
reduces to a model with only imperfect maintenance effects; when �i,k = 0 for all k, then there is only time-variant covariate
effect; whereas when �i(sl;�i) = 1 and �i,k = 0 for all j and k, then the proposed model simplifies to the original model in (2).
In this model, the virtual time scales !̃i(t;St) of noise processes B(i)(Λ(⋅)), i = 0, 1,… , n, are different due to the influences

of covariates and imperfect PM actions. We re-order the n virtual time scales at any t ∈ [tk, tk+1) in an ascending order, i.e.,
!̃(1)(t;St) ≤ !̃(2)(t;St) ≤ ⋯ ≤ !̃(n)(t;St), and let X̃(i)(t;St) be the overall degradation process corresponding to !̃(i)(t;St).
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Further define ΔX̃(i) = X̃(i)(t+Δt;St+Δt)− X̃(i)(t;St) and ΔΛ(i) = Λ(!̃(i)(t+Δt;St+Δt))−Λ(!̃(i)(t;St)) for any Δt > 0. In some
mild conditions, we have the following probabilistic properties on the increments of degradation processes.

Property 2. E[ΔX̃(i)] = �(i)ΔΛ(i), and Var(ΔX̃(i)) = (�20 + �
2
(i))ΔΛ(i). If the ascending order of !̃(i)(t;St) well preserves over

[t, t + Δt], then for i ≤ i′ we have

Cov(ΔX̃(i),ΔX̃(i′ )) =

{

0, if !̃(i)(t + Δt;St+Δt) ≤ !̃(i′ )(t;St);
�20
[

Λ(!̃(i)(t + Δt;St+Δt)) − Λ(!̃(i′ )(t;St))
]

, if !̃(i)(t + Δt;St+Δt) > !̃(i′ )(t;St).
(24)

Based on the results above, the correlation coefficient between any ΔX̃(i) and ΔX̃(i′ ), i ≠ i′ , is either �̃(i),(i′ ) = 0 or

�̃(i),(i′ ) =
�20
[

Λ(!̃(i)(t + Δt;St+Δt)) − Λ(!̃(i′ )(t;St))
]

√

(�20 + �
2
i )ΔΛ(i)(�

2
0 + �

2
i′
)ΔΛ(i′ )

,

which is different from �i,i′ in (3) and dependent on time t. Property 2 shows that unlike the degradation path adjustment model,
the incorporation of covariates and imperfect maintenance effects via the time scale adjustment model changes the dependency
structure among individual degradation processes; also, the infinite divisibility property is no longer preserved.

5 COMPARISONS OF THE PROPOSED MODELS

In this section, we compare the degradation paths for the degradation path adjustment and time scale adjustment models both
analytically and graphically.
We first look at the degradation paths involving only piece-wise constant covariates in (8) and (18). The following result on

the mean degradation paths can be obtained.

Property 3. When Λ(t) = t and �i(sj ; i) = �i ⋅ �i(sj ;�i) for all j, the mean degradation paths E[Xi(t;St)] for the degradation
path adjustment and time scale adjustment models are identical.

By further examining the overall degradation paths involving both covariates and imperfect maintenance in (10), (12), and
(23), we have the following result about the mean degradation paths.

Property 4. When Λ(t) = t, �i(sj ; i) = �i ⋅ �i(sj ;�i) for all j, and the same �i,k for all k are applied, the mean degradation
paths E[X̃i(t;St)] for the degradation path adjustment and time scale adjustment models are identical.

Basically, the validity of Properties 3 and 4 is built upon the linearity of the mean baseline paths in (2). If the baseline
processes’ mean paths are not linear, then Properties 3 and 4 would no longer hold. Moreover, the actual degradation paths under
the two models are not necessarily identical, though the associated mean degradation paths are the same. This is stemmed from
the influence of their distinct noise processes.
We then demonstrate and compare the two models through simulated degradation paths. For this purpose, we use the same

parameter values (unless specified otherwise) as in Sections 3 and 4, but simulate a new dataset for generating the degradation
paths. Figure 9 shows the baseline and adjusted degradation paths of three PCs with time-variant covariates. In this figure, we
specify two values for �, i.e., � = 1.0 and � = 1.2, to represent linear and non-linear mean baseline paths, respectively. The
dotted lines represent the baseline degradation paths, whereas the red and blue lines indicate the adjusted degradation paths with
covariates, under the degradation path adjustment and time scale adjustment models, respectively. One can see that the adjusted
degradation paths under the two models are quite close when the mean baseline path is linear (i.e., � = 1.0) and the uncertainty
level is low (i.e., for PCs 1 and 2); moreover, the gap between the two paths tends to enlarge as time goes by.
We further demonstrate the overall degradation paths of the three PCs with time-variant covariates and imperfect maintenance

effects (see Figure 10 for ARD1 and ARA1 models; Figure 11 for ARD∞ and ARA∞). In addition to �, we specify two
values for the maintenance efficiency �i,k, i.e., �i,k = 0.25 and �i,k = 0.75, to indicate small and large maintenance efficiencies,
respectively. One can observe that the overall degradation paths under the ARD1 and ARA1 models (as well as the ARD∞ and
ARA∞ models) are close when the mean baseline path is linear, the uncertainty level is low, and the maintenance efficiency �i,k
is small.
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FIGURE 9 Baseline and adjusted degradation paths of three PCs with time-variant covariates for � = 1.0 and � = 1.2,
respectively.

6 CONCLUDING REMARKS

Degradation and maintenance modeling of complex industrial systems often faces important features such as multiple depen-
dent PCs, time-variant covariates, and imperfect maintenance interventions. This article developed two types of multivariate
degradation models subject to time-variant (precisely, piece-wise constant) covariates and imperfect maintenance effects. A
multivariate Wiener process was first constructed from multiple univariate Wiener processes sharing a common noise. Then,
the degradation path adjustment and time scale adjustment models were developed to unify the modeling of covariates and
imperfect maintenance. In particular, two imperfect maintenance models—reduction of degradation level and reduction of vir-
tual age, of both memory one and infinite memory, were proposed. We showed that the proposed models contain some models
as special cases; under certain conditions, the proposed two models can generate identical mean degradation paths. However, a
drawback of the time scale adjustment model is that when the degradation process is non-monotone, like the Wiener process,
the degradation level after maintenance might be even higher than that before maintenance, especially when the variability of
the degradation process is high.
Nevertheless, the modeling frameworks developed in this article represent an initial step towards multivariate degradation

modeling with time-variant covariates and imperfect maintenance effects. A lot of research work can be done in the next steps,
which are briefly discussed below.

(i) Stochastic properties. The stochastic properties of the proposed models, e.g., higher order moments, ergodicity, and
asymptotic behaviors, would be of interest and need further research. For example, what are the asymptotic behaviors of
the proposed models when t → ∞. In addition to the simple comparisons in Section 5, in-depth stochastic comparisons
of the two modeling frameworks as in Mercier and Castro7 would be another interesting research topic.

(ii) Statistical inference. The complexity of the two modeling frameworks poses challenges for statistical inference. Parameter
estimation of the degradation path adjustment model is relatively simple, since the degradation increments between any
two successive PM actions follow a multivariate normal distribution (see Property 1 and related discussions). The log-
likelihood function can then be formulated using dataset of degradation increments, and various methods, like Bayesian
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FIGURE 10 Overall degradation paths of three PCs involving time-variant covariates and imperfect PM effects (ARD1 and
ARA1).

Markov chain Monte Carlo, can be employed to solve the problem.14,15 However, parameter estimation of the time scale
adjustment model is rather complicated, since the incorporation of covariates and imperfect maintenance alters the depen-
dency structure among individual degradation processes (see Property 2 and related discussions). Additional difficulty
arises when the PCs are not always measured at the same time. In addition to the point estimation, interval estimation
is usually of more interest in practice, since it quantifies uncertainties in the estimation; the generalized pivots concept
in Hong et al.36 might be helpful for interval estimation. Effective statistical tests should also be developed for model
discrimination and selection purposes.64

(iii) Reliability analysis. In accordance with the convention, the failure of a multivariate degrading system can be defined upon
threshold i for each PC i, i = 1, 2,… , n. Specifically, the system is considered to be failed if any of the n PCs exceeds
the corresponding failure threshold i. The probability of system failure at time t thus becomes

F (t) = 1 − Pr{X̃1(t;St) < 1,… , X̃n(t;St) < n}. (25)

According to (25), F (t) can be evaluated by integrating X̃i(t;St) over (0,i) for all i = 1, 2,… , n.36,25 Again, this is
relatively easy for the degradation path adjustment model, but not for the other one. As the closed-form expression of F (t)
(or R(t) = 1 − F (t)) is difficult to obtain, the semiparametric and nonparametric approximation methods in Palayangoda
and Ng22 might be helpful.

(iv) Maintenance planning.Condition-based inspection andmaintenance planning for multivariate degrading systems remains
under-explored.11,12 It is of academic and practical interests to determine the optimal condition-based inspection plan
and imperfect PM strategy (maintenance thresholds and degrees) to balance the inspection cost, PM cost, and failure
cost; the dependency among individual degradation processes should be well incorporated in this problem. In particular,
Markov decision process can be employed to formulate the maintenance planning problem and dynamic programming
can be adopted to solve the problem, as in Liu et al.45 In view of the problem complexity, approximation and simulation
techniques might be helpful.
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FIGURE 11 Overall degradation paths of the three PCs involving time-variant covariates and imperfect PM effects (ARD∞
and ARA∞).

Nevertheless, we hope that this article opens up opportunities for future research in the development of multivariate degrada-
tion models wherein the mechanisms of imperfect maintenance and the characteristics of operating/environmental factors play
a key role.
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APPENDIX

Proof of Property 1. From (10) and (12), we know that ΔX̃i = X̃i(t + Δt;St+Δt) − X̃i(t;St) = Xi(t + Δt;St+Δt) −Xi(t;St) for
any tk ≤ t < t + Δt < tk+1, where Xi(t;St) is given by (8). Then, it is clear that E[ΔX̃i] = Δdi, Var(ΔX̃i) = (�20 + �

2
i )ΔΛ, and

Cov(ΔX̃i,ΔX̃i′ ) = �20ΔΛ for i ≠ i′ .

Proof of Property 2. The mean and variance of ΔX̃(i) are straightforward to derive. For the covariance, we have

Cov
(

ΔX̃(i),ΔX̃(i′ )

)

= Cov
(

X̃(i)(t + Δt;St+Δt) − X̃(i)(t;St), X̃(i′ )(t + Δt;St+Δt) − X̃(i′ )(t;St)
)

= Cov
(

X̃(i)(t + Δt;St+Δt), X̃(i′ )(t + Δt;St+Δt)
)

− Cov
(

X̃(i)(t + Δt;St+Δt), X̃(i′ )(t;St)
)

− Cov
(

X̃(i)(t;St), X̃(i′ )(t + Δt;St+Δt)
)

+ Cov
(

X̃(i)(t;St), X̃(i′ )(t;St)
)

.

For i ≤ i′ , we have !̃(i)(t;St) ≤ !̃(i′ )(t;St), and Λ(!̃(i)(t;St)) ≤ Λ(!̃(i′ )(t;St)) as Λ(⋅) is an increasing function. Then, the
fourth term in the equation above can be further derived as

Cov
(

X̃(i)(t;St), X̃(i′ )(t;St)
)

= �20Cov
(

B(0)(Λ(!̃(i)(t;St))), B(0)(Λ(!̃(i′ )(t;St)))
)

= �20Λ(!̃(i)(t;St)).
The second equality holds because for a standard Brownian motion B(⋅), we have Cov(B(s), B(t)) = s if s ≤ t.
Likewise, we can easily obtain Cov

(

X̃(i)(t;St), X̃(i′ )(t+Δt;St+Δt)
)

= �20Λ(!̃(i)(t;St)). Moreover, if the order of !̃(i)(t;St)well
preserves over [t, t+Δt], i.e., !̃(i)(t+Δt;St+Δt) < !̃(i′ )(t+Δt;St+Δt) for i < i

′ , thenCov
(

X̃(i)(t+Δt;St+Δt), X̃(i′ )(t+Δt;St+Δt)
)

=
�20Λ(!̃(i)(t + Δt;St+Δt)). However, for Cov

(

X̃(i)(t + Δt;St+Δt), X̃(i′ )(t;St)
)

, we need to consider the following two cases:

(i) If !̃(i)(t + Δt;St+Δt) ≤ !̃(i′ )(t;St) then Cov
(

X̃(i)(t + Δt;St+Δt), X̃(i′ )(t;St)
)

= �20Λ(!̃(i)(t + Δt;St+Δt));

(ii) If !̃(i)(t + Δt;St+Δt) > !̃(i′ )(t;St) then Cov
(

X̃(i)(t + Δt;St+Δt), X̃(i′ )(t;St)
)

= �20Λ(!̃(i′ )(t;St)).

In the former case, Cov(ΔX̃(i),ΔX̃(i′ )) = 0, whereas in the latter case, Cov(ΔX̃(i),ΔX̃(i′ )) = �20[Λ(!̃(i)(t + Δt;St+Δt)) −
Λ(!̃(i′ )(t;St))]. This completes the proof.

Proof of Property 3. From (8), we know that when Λ(t) = t, the mean of Xi(t;St) in the degradation path adjustment model is
E[Xi(t;St)] = di(t;St) = �i(sj ; i)(t− �j−1) +

∑j−1
l=1 �i(sl; i)(�l − �l−1) for any t ∈ [�j−1, �j). Similarly, in the time scale adjust-

ment model, the mean ofXi(t;St) in (18) is given by E[Xi(t;St)] = �i!i(t;St) = �i�i(sj ;�i)(t−�j−1)+
∑j
l=2 �i�i(sl−1;�i)(�l−1−

�l−2) for any t ∈ [�j−1, �j). It is clear that when Λ(t) = t and �i(sj ; i) = �i ⋅ �i(sj ;�i) for all j, we have di(t;St) = �i!i(t;St)
and thus the two expressions of E[Xi(t;St)] are identical.

Proof of Property 4. We first examine theARD1 andARA1 models. Recall that di,k = di(tk;Stk). According to (10), it is known
that the mean of X̃i(t;St) in the degradation path adjustment model is E[X̃i(t;St)] =

∑k
l=1(1− �i,l)(di,l − di,l−1) + di(t;St) − di,k

for any t ∈ [tk, tk+1); in the time scale adjustment model, the mean of X̃i(t;St) in (23) is given by E[X̃i(t;St)] =
∑k
l=1(1 −

�i,l)�i(!i,l − !i,l−1) + �i(!i(t;St) − !i,k) for any t ∈ [tk, tk+1). In Property 3, we know that di(t;St) = �i!i(t;St) for any
t ∈ [tk, tk+1). Combining the condition that the same �i,k for all k are applied, the expressions of E[X̃i(t;St)] for the ARD1 and
ARA1 models are exactly the same.
The case for the ARD∞ and ARA∞ models is very similar and thus omitted.
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