
HAL Id: hal-03138331
https://hal.science/hal-03138331

Submitted on 11 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Magnetic Field Gradient-Based EKF for Velocity
Estimation in Indoor Navigation

Makia Zmitri, Hassen Fourati, Christophe Prieur

To cite this version:
Makia Zmitri, Hassen Fourati, Christophe Prieur. Magnetic Field Gradient-Based EKF for Velocity
Estimation in Indoor Navigation. Sensors, 2020, 20 (20), pp.1-17. �10.3390/s20205726�. �hal-03138331�

https://hal.science/hal-03138331
https://hal.archives-ouvertes.fr


Article

Magnetic Field Gradient-Based EKF for Velocity
Estimation in Indoor Navigation

Makia Zmitri 1 , Hassen Fourati 1* and Christophe Prieur 1

1 Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, F-38000 Grenoble, France;
* Correspondence: hassen.fourati@gipsa-lab.fr.

Version July 24, 2020 submitted to Sensors

Abstract: This paper proposes an advanced solution to improve the inertial velocity estimation of a1

rigid body, for indoor navigation, through implementing a magnetic field gradient-based Extended2

Kalman Filter (EKF). The proposed estimation scheme considers a set of data from a triad of inertial3

sensors (accelerometer and gyroscope), as well as a determined arrangement of magnetometers4

array. The inputs for the estimation scheme are the spatial derivatives of the magnetic field, from the5

magnetometers array, and the attitude, from the inertial sensors. As it was shown in the literature,6

there is a strong relation between the velocity and the measured magnetic field gradient. However,7

the latter usually suffers from high noises. Then, the novelty of the proposed EKF is to develop a8

specific equation to describe the dynamics of the magnetic field gradient. This contribution helps to9

filter, first, the magnetic field and its gradient and second, to better estimate the inertial velocity. Some10

numerical simulations that are based on an open source database show the targeted improvements.11

At the end of the paper, this approach is extended to position estimation in the case of a foot-mounted12

application and the results are very promising.13

Keywords: Indoor navigation; magnetic field gradient; spatial derivatives; inertial velocity estimation;14

Extended Kalman Filter.15

1. Introduction16

Nowadays, the interest in indoor positioning has been growing exponentially, as it represents17

a topic of research for many different applications, such as health [1], [2], sports [3], military [4], etc.18

A wide range of techniques has been investigated to tackle this problem. Some of them require a19

costly, heavy and pre-installed infrastructure to work (e.g. Wireless Local Area Network (WLAN)20

[5], Radio Frequency Identification (RFID) [6], etc.). Others rely on more traditional methods such21

as computer vision techniques [7], which can be inaccessible in certain situations (smoke in building22

for instance). The most common solution to the case where the conditions of intervention, and the23

availability of pre-installed equipment are unknown, is the use of low-cost Inertial Measurement24

Units (IMUs), composed of inertial and magnetic sensors. It represents a promising key to solve many25

problems in indoor positioning. Usually, the outputs of IMUs are used to calculate the velocity and26

position through an integration process, or to determine the orientation (attitude) [8] through a specific27

fusion. Nevertheless, because of sensors biases and noises, these integrations are biased, and then a28

drift is observed on velocity (integration of linear acceleration) and position (integration of velocity).29

Numerous techniques have been proposed in the literature to deal with this problem. Some of them30

depend on a foot-mounted dead reckoning method called Zero-Velocity Update Technique (ZUPT),31

like in [9] and [10], for example. This method allows to reduce the integration to small steps between32

phases where the foot is at rest on the ground (stance phase). The drift on velocity and position is thus33

reduced, especially for the accelerometer measurements integration, which allows a longer use before34

the system diverges too far away from the actual position. In that process, the better is the velocity,35
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the better is its integration to obtain an improved position. The inertial velocity is also important in36

other applications, that are not necessarily related to the position estimation. For instance, in [11],37

drifts in attitude estimation for human and animal motion evaluation are corrected by removing38

transient accelerations, using a mathematical derivation of velocity measurements coming from a39

Global Positioning System (GPS) receiver. In the case where GPS measurements are unavailable, or40

inaccurate, the precision of this proposed approach is degraded. In [12], it is discussed that velocity41

sensors attached to swimming animals are potentially inaccurate. An evaluation is then conducted42

with an ellipsoidal micro-turbine that is used to measure the through water speed of a dolphin, by43

being attached to its body using an array of suction cups. The obtained speed measurements suffer44

from few drawbacks, such as the inability to track the speed of the disturbed flow when it drops below45

the turbine stall speed (U ≈ 0.25m/s). Other works used the velocity, obtained from a GPS receiver46

only in the case of outdoor navigation, as an important feature for the classification and prediction of47

transportation modes [13], [14].48

1.1. Context49

The main problem under investigation is the velocity estimation in indoor navigation by means50

of inertial and magnetic sensors. As known, the presence of magnetic perturbations in indoor51

environments can be very large [15], due to all metals used in buildings (door frames, aluminum52

windows, etc.) and potentially to the strong electric currents propagating close-by. Now, one might53

think that these disturbances can only represent a constraint for indoor positioning. However,54

these perturbations are not in fact a random noise. On the contrary, they are well structured by55

physics equations, for instance, Maxwell’s equations [16]. The latter represent the propagation of56

electromagnetic phenomena. Therefore, it is considered that rich information lies in these disturbances.57

In [17], authors use measurements from an array of 3-axis magnetometers to derive a maximum58

likelihood estimator. This is in order to determine the displacement of a body through a spatially59

varying magnetic field. Another recent approach that requires the use of only a 3-axis magnetometer’s60

array, a 3-axis accelerometer and a 3-axis gyroscope, has been firstly introduced in [18], [19]. The61

proposed technique takes advantage of the magnetic field disturbances, that are observed indoors,62

to estimate the inertial velocity. This preserves the main advantages of purely inertial technology:63

no prior mapping or other information are required. Based on this idea, but with different dynamic64

models, other authors have shown in [20], [21], efficient velocity and position estimation results. In65

fact, they proved that as long as the magnetic field gradient is non-singular, the velocity is observable66

and there exists a converging non-linear observer that reconstructs it. In these works, the magnetic67

field gradient is considered as a measured input for the state-space model and the observer. However,68

this gradient is usually noisy and is subject to singularities. This influences negatively the observability69

of the proposed models, which leads to estimation errors. Contrarily, in [19], the authors considered70

that the magnetic field gradient is not available, instead, the gradient is moved to the state vector and71

is estimated by an observer. Nevertheless, the gradient’s dynamics are modeled by a white noise,72

which is a questionable choice to the best of authors knowledge, and can influence the estimation of73

velocity.74

1.2. Contribution75

This paper presents a solution to improve the inertial velocity estimation. The proposed approach76

takes advantage of magnetic disturbances, by using a set of spatially distributed magnetometers to77

monitor the magnetic field and its spatial derivatives (gradient and its first derivative). The considered78

state-space model in this work also includes a new magnetic field gradient equation, derived to describe79

its dynamic. An EKF is proposed to better estimate the inertial velocity in a magnetically disturbed80

environment, from a 3-axis magnetometer’s array, a 3-axis gyroscope and a 3-axis accelerometer. The81

novelty in the proposed approach is the development of this specific equation to describe the dynamics82

of magnetic field gradient. This contribution helps better filter the magnetic field and its gradient.83
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Moreover, it improves the estimation of inertial velocity. The inputs for the estimation scheme are the84

spatial derivatives of the magnetic field, from the magnetometer’s array, and a determined attitude via85

a gradient descent algorithm, from a triad of inertial and magnetic sensors. A notable improvement86

on the velocity estimation is shown compared to when the noisy magnetic field gradient is measured87

and used as an input for the EKF. At the end of the paper, we examine the effect of such velocity88

improvement on the position estimation in the case of a foot-mounted application aided by ZUPT and89

the results are very promising.90

This paper is organized as follows. In Section 2 some preliminaries and notations are introduced91

and the principle of magneto-inertial navigation problem is stated, then the magnetic field gradient92

dynamic equation is established. An EKF is designed in Section 3, where the gradient equation is93

added, to tackle measurement noises and to estimate not only the velocity but also the magnetic field94

and its gradient. The EKF is fed with a determined quaternion, given by an attitude estimation block.95

In Section 4, the ZUPT-aided position estimation is detailed, based on the previous velocity estimation,96

in the context of foot-mounted inertial navigation. Section 5 presents a scenario test based on an open97

source database [22] representing a foot-mounted navigation scheme. The obtained results in this case98

are displayed. While in Section 6, some conclusions and potential future works are stated.99

2. Problem formulation100

The problem under consideration is how to improve the inertial velocity estimation using only101

Micro Electro Mechanical Systems (MEMS) inertial sensors, composed of a 3-axis accelerometer and a102

3-axis gyroscope, as well as a spatially distributed 3-axis magnetometer’s array. A new state-space103

model is proposed and its contribution is demonstrated through an EKF-based approach. In the end104

of the paper, the obtained results of the improved velocity estimation are extended to the position105

estimation in a foot-mounted framework.106

2.1. Notation107

To address the problem cited above, two frames are used:108

• a local inertial frame <n fixed to the Earth and its associated orthonormal basis Bn = (~in,~jn,~kn);109

• a body frame <b attached to the moving rigid body and its associated orthonormal basis Bb =110

(~ib,~jb,~kb).111

Variables expressed in <n (resp. <b) are marked by the subscript n (resp. b).
Let Rb←n ∈ SO(3) be the rotation matrix between the two frames, from <n to <b. For the sake of
simplicity, in the rest of the paper the notation Rb←n is omitted and is replaced by R. This matrix can
be expressed in terms of quaternion as follows

R =

 2(q2
0 + q2

1)− 1 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) 2(q2
0 + q2

2)− 1 2(q0q1 + q2q3)

2(q0q2 + q1q3) 2(q2q3 − q0q1) 2(q2
0 + q2

3)− 1

 (1)

The unit quaternion, denoted by q, is a hypercomplex number of rank 4 such that,

q = [q0 q>vect]
> (2)

where q0 is the scalar part and qvect = [q1 q2 q3]
> is the vector part of quaternion. The reader is112

invited to refer to [23] for more details about quaternion algebra.113

The rigid body under consideration can simultaneously translate and rotate in 3D space, and its114

displacement is represented with the position vector Mn = [xn yn zn]> ∈ R3×1 in <n. Then115

vn = dMn
dt = [vnx vny vnz]> ∈ R3×1 the inertial velocity vector, to be estimated in <n, and an = dvn

dt =116

[anx any anz]> ∈ R3×1 the acceleration vector. Vectors vn and an can also be expressed in <b by simply117

multiplying them by R.118
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Since inertial and magnetic sensors are used in this framework, then the following variables are119

considered:120

• The angular velocity ω
b
n = [ωx ωy ωz]> ∈ R3×1, of <b with respect to <n, measured by a 3-axis

gyroscope. The corresponding skew-symmetric matrix is defined such as

[ω
b
n×] =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (3)

• The acceleration ab = [abx aby abz]
> ∈ R3×1 of <b, measured by a 3-axis accelerometer;121

• The magnetic field Bb = [Bbx Bby Bbz]
> ∈ R3×1, measured in <b by a 3-axis magnetometer,122

which depends on time and space;123

• The Jacobian matrix ∇Bb ∈ R3×3, which represents the magnetic field gradient, measured on a124

fixed point Pb = [xbp ybp zbp]
> ∈ R3×1 and defined by125

∇Bb(Pb(t)) =
∂Bb(Pb(t))

∂Pb(t)
(4)

2.2. Magnetic field and its gradient126

A rigid body located inside a magnetically disturbed area is considered, which is a situation that
is often observed indoors [15]. The disturbances on the magnetic field are useful information in this
work. According to Maxwell’s equations [16], the dynamic of the magnetic field measured in <b obeys
to the following equation1

dBb
dt

= −ω
b
n × Bb +∇Bbvb (5)

This equation ensures that vb is observable and can be estimated, provided that ∇Bb is non-singular
(see [18] for observability proof). Under this assumption, the velocity can be estimated using ∇Bb,
which enhances the performance of any inertial navigation system, as it has been demonstrated
in [19]. However, one of the major remaining difficulties, is to reliably measure ∇Bb. For this
purpose, a spatially distributed magnetometer’s array is considered. This array provides magnetic
field measurements that are usually noisy, then, when computing spatial derivatives, this noise can get
larger. It follows that ∇Bb is also corrupted by noise. This noise can degrade the velocity estimation
especially when ∇Bb has low values (more precise simulations on the matter are in [20]). A way to
tackle this problem is to filter∇Bb. To do so, an equation representing its dynamic should be proposed.
For that, the temporal derivative of ∇Bn in <n is introduced such as,

d∇Bn

dt
=

d∇Bn

dMn

dMn

dt
= Tnvn (6)

where Tn ∈ R3×3×3 is a tensor representing the first spatial derivative of ∇Bn in <n and can be
represented as follows:

Tn =
d∇Bn

dMn
=

 ∇α11 ∇α12 ∇α13

∇α21 ∇α22 ∇α23

∇α31 ∇α32 ∇α33

 (7)

and ∇αij = [
∂αij
∂xm

∂αij
∂ym

∂αij
∂zm

]1≤i,j≤3, with αij representing the elements of ∇Bn.

1 × is the cross product of two vectors in R3.
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The temporal derivative d∇Bn
dt can also be written such as

d∇Bn
dt =

d(R>∇BbR)
dt

=
dR>

dt
∇BbR + R>

d∇Bb
dt

R + R>∇Bb
dR
dt

= R>[ω
b
n×]∇BbR + R>

d∇Bb
dt

R + R>∇Bb(−[ω
b
n×]R) (8)

From (6) and (8) the following equality is obtained

R>
d∇Bb

dt
R = Tnvn + R>∇Bb[ω

b
n×]R− R>[ω

b
n×]∇BbR (9)

By multiplying both sides of (9) by R and R> respectively, the following equation is deduced,

d∇Bb
dt

= Tbvb +∇Bb[ω
b
n×]− [ω

b
n×]∇Bb (10)

where Tb is the first spatial derivative of ∇Bb, with the same form as (7), represented in <b. The reader127

can check [24] for more information on how Tb is measured.128

In Section 3, the dynamic model, specific to the studied problem, is expanded by including (10), and129

an EKF is designed to filter ∇Bb to improve the velocity estimation.130

3. Inertial velocity, magnetic field and magnetic field gradient estimation131

This section is focused mainly on the inertial velocity estimation, by using an IMU and an array132

of spatially distributed magnetometers. A block diagram of the proposed approach is shown in Fig. 1.133

The main novelty resides on the blue block, which represents a magnetic field gradient-based EKF134

for estimating not only the inertial velocity v̂n, but also the magnetic field B̂b, and its gradient ‘∇Bb.135

This EKF is fed with an estimated quaternion q̂, given by the green block, that depicts a gradient136

descent attitude estimation algorithm [25]. The two blocks are explained in details in the following137

sub-sections.

Figure 1. Overall diagram for estimation
138

3.1. Magnetic field gradient-based EKF139

A magnetic field gradient-based EKF is proposed based on a 3-axis magnetometer’s array, a 3-axis
gyroscope and a 3-axis accelerometer. The continuous-time dynamic model used to establish the EKF
can be written such as 

dvn

dt
= R(q̂)>ab − g

dBb
dt

= −ω
b
n × Bb +∇BbR(q̂)vn

d∇Bb
dt

= TbR(q̂)vn +∇Bb[ω
b
n×]− [ω

b
n×]∇Bb

(11)
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The state vector for this dynamic state-space model is x = [vn Bb ∇Bb]
> ∈ R11×1, the input vector is

u = [q̂ ω
b
n ab Tb]

> ∈ R17×1, and the output (measurement) vector is y = [Bb ∇Bb]
> ∈ R8×1. Recall

that 7 elements of Tb are sufficient to calculate all the tensor’s components [24]. The matrix R(q̂) is
defined in (1), where q̂ is the estimated quaternion. Note that the term vb in (5) and (10) is replaced by
R(q̂)vn since the inertial velocity needs to be estimated in <n rather than in <b.
The magnetic field measurements are usually noisy, then, when extracting higher order derivatives
(in this case ∇Bb), this noise can get more important, due to the different approximations taken
into account in some numerical computations. It follows that ∇Bb is also affected by noise. This
can cause unbounded velocity estimation errors especially when ∇Bb has low values (more precise
simulations on the matter are in [20]). For this reason, filtering ∇Bb instead of using it directly as an
input, corrupted with noise, in the EKF, improves the velocity estimation. As Tb, defined in (10), is
measurable, it is possible to add ∇Bb to x. A first schema of the magnetic field gradient-based EKF
was presented in [24]. The estimation approach was based on two EKFs, in cascade, as displayed in
Fig. 2. The primary EKF used the third equation in (11) as a dynamic model while the main EKF used
the first and second equations in (11).

Figure 2. Magnetic field gradient-based EKFs [24]

To go further in this paper, we propose to simplify the estimation architecture in Fig. 2, by using the
compact dynamic model (11). The general schema of estimation is presented in Fig. 3, where a single
EKF is rather used.

Figure 3. Magnetic field gradient-based EKF

The two models for process and measurements in Fig. 3 can be represented by the following general
nonlinear form:

x[k] = f (x[k− 1], u[k], ν[k])

y[k] =h(x[k], u[k], η[k])
(12)

where x[k] is the state vector at time step k, y[k] is the measurement vector, u[k] is the input, f (.) is a140

nonlinear function that represents the state-space model, h(.) is a nonlinear function that represents141

the measurement model, and ν[k] and η[k] are the process and measurement noises, respectively, and142

are assumed to be zero-mean, white, Gaussian and uncorrelated. Note that in order to determine143

f (.) and h(.), a discretization procedure that transforms the continuous-time equations in Fig. 3 into144

a discrete-time model must be undertaken. The Runge-Kutta 4th order method [26] is used for the145

discretization.146
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3.2. Quaternion estimation147

The kinematic equation describing the variation of rigid body’s attitude in term of quaternion,
can be defined from angular velocity measurements given by a 3-axis gyroscope such as,

dq
dt

=
1
2
[ωq×]q =

1
2


0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

 q (13)

where ωq = [0 ω
b
n>]> ∈ R4×1, the quaternion form of angular velocity, and [ωq×] is its148

skew-symmetric matrix. However, the gyroscope has a long-term drift which is due to noise and149

bias. So, by simply integrating (13), a drift can be observed on quaternion. The most common150

solution for such problem is to use a data fusion approach that merges measurements coming from151

gyroscopes, accelerometers, and magnetometers. The main methods are based on Kalman filters152

(KFs) [27], Extended Kalman filters (EKFs) [28], complementary filters [29], [25], [30], or observers [31].153

Nevertheless, one should keep in mind the problem of magnetic disturbances in indoor navigation.154

These perturbations are known to affect the precision of most attitude determination techniques, which155

calls for approaches that investigate this case, such as in [28], [31] and [25].156

In [25], authors proposed a new algorithm that uses inertial and magnetic measurements to157

provide a precise attitude estimation through incorporating magnetic distortion and gyroscope158

drift compensations. The main idea is to use a 3-axis accelerometer and a 3-axis magnetometer159

measurements in an analytically derived and optimized gradient descent algorithm, in order to160

compute the direction of gyroscope measurement error as a quaternion derivative. This algorithm161

is computationally inexpensive, as it requires 277 scalar arithmetic operations each update step, it162

is efficient at low sampling rates and it has only two adjustable parameters defined by observable163

system characteristics. Moreover, it eliminates the need for the reference direction of Earth’s magnetic164

field to be predefined. Then, in what follows, this algorithm is implemented (green block in Fig. 1) to165

determine q̂.166

4. Position estimation in the context of foot-mounted inertial navigation167

In this section, we examine the effect of such velocity estimation improvement on the position168

one, with a focus on a foot-mounted navigation framework. The proposed algorithm is a combination169

between the magnetic field gradient-based EKF and ZUPT. The general schema of estimation is170

presented in Fig. 4. The right red block represents the zero-velocity detector, denoted d. In the case171

where d = 1, a zero-velocity update (left red block) is applied on the estimated inertial velocity v̂n172

resulting from the blue block. The updated velocity ÷vnZupt is fed to the yellow block for integration, in173

order to obtain the position M̂n. The red blocks are described in the following subsections.174

4.1. Zero-velocity detector175

The objective of a zero-velocity detector is to decide whether, during a time epoch that consists of
W ∈ N observations (i.e. window size) between the time instants l and l + W − 1, the IMU is moving
or stationary, given the measurements ab and ω

b
n . At each sample, this detector, denoted d, can have

one of the two values: d = 1, which corresponds to the stance phase (the entire period during which
the foot is on the ground) or d = 0, which represents the swing phase (the entire period during which
the foot is in the air for limb advancement). Mathematically, this detection process can be seen as a
binary hypothesis testing problem, where the detector indicates that the IMU is stationary (i.e. d = 1)
if,

Ts(ab, ω
b
n ) ≤ γ (14)
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Figure 4. ZUPT-aided position estimation

with Ts(ab, ω
b
n ), the test statistics of the detector and γ, the detection threshold.

The test statistics can have multiple forms depending on the chosen detector. In related works, different
detectors have been evaluated [10] from the ones depending only on accelerometer data (such as
Acceleration Moving Variance Detector and Acceleration Magnitude Detector), to those that are angular
rate-based (Angular Rate Energy Detector), or even pressure measurements [32]. In this paper, the
Stance Hypothesis Optimal Detector (SHOE) [33] is chosen, as it represents a combination between
acceleration and angular rate-based detectors, and has proven to outperform other detectors in the
literature for its robustness to changes in gait speed as well as its high positional accuracy. Concretely,
SHOE computes Ts(ab, ω

b
n ) in the following way,

Ts(ab, ω
b
n ) =

1
W

l+W−1

∑
k=l

(
1
σ2

a
||ab,k − g

āb,l

||āb,l ||
||2 + 1

σ2
ω
||ωk

b
n ||2) (15)

where W is the window size (the number of sensor readings), σ2
a , σ2

ω are the variances of the acceleration176

and angular rate measurements, āb,l denotes the mean over W samples, and g is the gravity.177

4.2. ZUPT178

If the detector d has declared the stationary case (i.e. d = 1), v̂n should give a zero-velocity179

estimate. However, due to diverse errors, it most likely will not. This motivates the use of ZUPT, as it180

corrects these drifts, which greatly improves the velocity estimation, as it was shown in the literature. If181

d = 1 at time k, the actual value of inertial velocity is assumed to be known, and then its estimate v̂n is182

reset to zero. This is actually done inside the EKF, in a way where the velocity estimate v̂n is constantly183

corrected. In Fig. 4, the ZUPT-based velocity estimate is represented with ÷vnZupt. Consequently, by184

updating the velocity estimate, a better position estimation should be obtained after integrating ÷vnZupt185

(yellow box in Fig. 4).186

5. Simulations and results187

In this section, the performance of the proposed magnetic field gradient-based EKF is displayed.188

The improvements on inertial velocity estimation are highlighted when ∇Bb is filtered. In the end,189

we examine the effect of such improvement on the position in a foot-mounted navigation framework190

aided by ZUPT.191
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5.1. Groundwork for simulations192

One of the most common problems in pedestrian navigation, is the knowledge of ground truth,193

as it enables to compare proposed algorithms and contributions with references. In [22], authors194

simulate a trajectory (position and attitude), that is based on a real human walk pattern. A synthetic195

noiseless IMU data is provided. A set of signals from a spatially distributed magnetometers array is196

also considered (one signal is given by [22] and the others are simulated accordingly). The reader can197

refer to this website: https://lopsi.weebly.com/downloads.html, to download one of the proposed198

data sets corresponding to ground truth trajectories, and to have more details about the different199

chosen parameters. In this simulation, a closed 3-loop trajectory in rectangular path of 12× 7m is used200

to represent the ground truth. Then, an additive random zero-mean white Gaussian noise is added as201

detailed in Table 1.

Table 1. Standard deviations of considered noises from datasheet of MTi module (Xsens) [34]

Noise standard deviation
Accelerometer [ms−2] 0.012
Gyroscope [rads−1] 0.0087
Magnetometers [G] 0.03

202

5.2. Main results203

5.2.1. Attitude estimation results204

To determine the body attitude in quaternion, Madgwick’s gradient descent algorithm [25] is205

used, as it has been proven robust to magnetic disturbances. The constant β = 0.008 (divergence206

rate) is fixed through a trial and error scheme and by taking into account gyroscope measurements207

error. The estimated quaternion q̂ is used to calculate the rotation matrix R(q̂) through (1). This matrix208

is important in velocity estimation as it is used in the model in Fig. 3. The estimated quaternion is209

converted into Euler angles as shown in Fig. 5.

Figure 5. Euler angles estimation through Madgwick filter [25]
210

The estimated Euler angles converge in less than 20s despite initializing the EKF with values that are211

different from the true ones. Moreover, the filter is robust against the high standard deviation noise212

added to magnetic measurements. However, some jumps are seen on the yaw estimation when the213

https://lopsi.weebly.com/downloads.html
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angle reaches 180°, which is explained by the fact that quaternion cannot represent a rotation exceeding214

180° in any direction. This affects position reconstruction along the z-axis.215

5.2.2. Magnetic field gradient-based EKF results216

As proposed earlier in this paper, ∇Bb should be filtered from noise, in the purpose of better217

estimating the inertial velocity. Fig. 6 displays the estimation results for the first element α11 of ∇Bb.218

The estimated gradient (in blue dashed line) is close to the theoretical one (in red solid line) even219

though the initialization values are different from the ground-truth ones.
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Figure 6. Estimation of the first element α11 of ∇Bb
220

Let ηα11 represent the noise of the first element α11 of ∇Bb. In Fig. 7, the Power Spectral Density221

(PSD) [35] of this noise is presented, before and after filtering ∇Bb with the proposed EKF. This metric222

represents the square of Fourier transformation module, divided by the spectral bandwidth. It basically223

describes how the power of a signal is distributed over frequency, which is an interesting criterion to224

evaluate the noise compensation.
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Figure 7. α11 noise PSD with and without filtering ∇Bb
225

Fig. 7 shows that in case ∇Bb is filtered (by adding (10) to (11)), the noise power of its elements226

(e.g. α11 in this case), represented in blue dashed line, is inferior than the one of when the filtering227

process is not applied (when ∇Bb is not in the state vector), represented in red solid line, and it228

decreases continuously along the frequency range. The mean of noise PSD error between both cases is229
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around ≈ −29.77 dB, which justifies the effectiveness of the proposed approach. Another way that230

is used to quantify noise in a signal is by computing the Signal to Noise Ratio (SNR) [35], which is231

the ratio of the power of true signal α11 to the power of its noise ηα11 . The SNR of α11 increases from232

SNRwithout = −9.46 dB when ∇Bb is not filtered, to SNRwith = −0.42 dB, when it is done. This proves233

again that ∇Bb noise is greatly reduced with the proposed model and filter.234

The advantage of this filtering process is also observed during the velocity estimation, as shown in235

Fig. 8, where the x axis component of the inertial velocity is plotted. The velocity estimate ”vnx (green236

solid line) given by the proposed approach is closer to the ground truth velocity (red solid line) than237

when ∇Bb is used as a noisy input (blue solid line).
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Figure 8. Estimation of vnx with and without filtering ∇Bb
238

As indicated in Table 2, the RMSE between the estimated velocity v̂n and the true one vn is 0.37 ms−1
239

for the case where the proposed approach is not applied, versus 0.27 ms−1 when it is done. This240

improvement is beneficial in some applications that require measuring the velocity with a certain241

precision. The performance of the magnetic field gradient-based EKF is also compared to the first work242

[24] and better results are shown in terms of velocity RMSE. This improvement is obtained thanks to243

the better tuning of the state and measurement noise covariance matrices of the proposed EKF. From244

Table 2, it can be seen that the main contribution of this work resides on the yellow colored line, where245

the smallest value of RMSE compared to the other approaches is observed.

Table 2. RMSE of the velocity estimation

vn RMSE [ms−1]
Without filtering ∇Bb 0.37
With filtering ∇Bb in a primary EKF [24] 0.29
With filtering ∇Bb 0.27

246

5.2.3. Application: Extending to position estimation247

One possible application that highlights the importance of the decrease on the velocity estimation248

error, is the position reconstruction through an integration of v̂n (without ZUPT). The impact can be249

seen by plotting the 2D representation of the estimated trajectory. A noticeable drift compensation is250

observed when ∇Bb is filtered. Indeed, the slightest improvement in velocity estimation can largely251

affect the reconstruction of trajectory, as less errors are generated, and thus less of their accumulation252

during the integration process. Table 3 presents the RMSE between the estimated position and the253

ground truth for the three studied approaches. As the case for velocity, the best results are achieved254
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Figure 9. 2D trajectory reconstruction with and without filtering ∇Bb

when ∇Bb is filtered with the proposed EKF. This is clearly expected as the position is obtained from255

integrating the estimated velocity v̂n.

Table 3. RMSE of the position estimation

Mn RMSE [m]
Without filtering ∇Bb 31.60
With filtering ∇Bb in a primary EKF [24] 25.18
With filtering ∇Bb 20.88

256

Now despite the previously mentioned contribution in inertial velocity estimation, the obtained error257

results are still considered high if position reconstruction needs to be done, which is observed in258

Table 3. In fact, whether its computed with or without the proposed model, v̂n still suffers from some259

errors, which are due to the different uncertainties considered in the simulation scenario, i.e. the260

approximations taken into account to extract the spatial derivatives (Tb for instance), the linearization261

process of the EKF, the tuning of the process and measurements covariances, etc. These errors lead262

to drifts if position needs to be reconstructed, which is seen in Fig. 9. Note also that a noise with a263

large standard deviation is applied on magnetometers measurements, in order to better highlight264

the contribution of filtering ∇Bb. Nevertheless, better velocity estimation results can be obtained265

in case the values of the different noises are lowered, which improves consequently the position266

reconstruction.267

5.2.4. Zero-velocity update results268

For the different reasons stated above, the proposed magnetic field gradient-based EKF is269

combined with ZUPT (the red blocks in Fig. 4), and the same comparisons are done on the position270

reconstruction as the ones in Fig. 9. The pertinence of this approach on the velocity estimation in the271

case of foot-mounted applications is discussed in Section 4. By correcting the velocity estimate v̂n272

with ZUPT, better position estimation results are obtained, and drifts on all 3-axis are almost entirely273

removed. In fact, Fig. 10 shows that even when adding ZUPT, the proposed approach (with filtering274

∇Bb), still outperforms the case of when the filtering is not applied (use ∇Bb as a noisy input). Note275

that the starting and arrival points for the ground truth trajectory are the same (red dot). It is observed276

that the arrival point of the green plot is closer to the ground truth one than the blue plot, which277

highlights the contribution of filtering ∇Bb. It can also been seen from the points coordinates that the278

drift on the z axis is greatly reduced in the case of filtering ∇Bb. In Table 4, a comparison between279

position RMSEs is displayed when ZUPT is added, which shows how the latter is reduced when ∇Bb280
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Figure 10. Trajectory reconstruction aided by ZUPT with and without filtering ∇Bb

is filtered. The obtained distance error with the proposed EKF after adding ZUPT also decreases from281

1.22% of the total traveled distance to 0.41% with the proposed approach, which proves again the282

importance of filtering ∇Bb.

Table 4. Results of ZUPT-aided position estimation

Mn RMSE [m] Distance error [%]
Without filtering ∇Bb + ZUPT 0.26 1.22
Filtering ∇Bb in a primary EKF+ZUPT 0.14 0.88
With filtering ∇Bb + ZUPT 0.11 0.41

283

6. Conclusion and future work284

In this paper, the inertial velocity estimation was improved using a magnetic field gradient-based285

EKF. This was done by reducing noise from the magnetic field gradient, thanks to a newly introduced286

equation that better describes its dynamic. The proposed approach was then combined with ZUPT in287

order to estimate position in a foot-mounted application. Applying this approach on real experimental288

data is definitely the next step. Tuning the EKF covariance matrices with artificial intelligence-based289

approaches is also a topic that will be considered in future works.290
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