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Abstract. Machine learning has proven increasingly essential in many
fields but a lot obstacles still hinder its use by non-experts. The lack of
trust in the results obtained is foremost among them, and has inspired
several explanatory approaches in the literature. These approaches pro-
vide a great insight on the predictions of a model, but at a cost of a long
computation time. In this paper, we aim to further improve the detection
of relevant attributes influencing a prediction, on the strength of feature
selection methods.

Keywords: Data analysis - Machine learning - Prediction explanation.

1 Introduction

One of the main limits to the use of machine learning solutions is the ”black
box” problem inherent to an opaque model, producing results without insight of
how they were produced. As an answer to this problem, several methods exist to
explain a predictive model, in a global way [1]. A problem arise when a domain
expert user (for instance a biologist) has to study the behavior of particular
dataset instances over a predictive model (for instance in the context of cohort
study). In this case, a global explanation is not enough to give the information
needed by the study. In this direction, previous studies offer the possibility of
explaining single instance prediction, over a model, as in [14] and [3]. One major
problem of these contributions is the high complexity of the proposed algorithms
(O(n?)). Because of this computational weight, explaining each instance over a
predictive model can be very time consuming, especially if the dataset has a
large number of attributes.

Our work fits the general ambition to help a domain expert user to get
involved in data analysis operations, especially in learning tasks. On this way,
obtaining explanations for predictive models, in a reasonable time, is essential.
In a previous work [5], we proved the feasibility of lowering the computation
time of existing solutions, with a very limited loss of explanation accuracy while
saving a high computation time. In this paper, we continue this work to find
better approximations of these solution, through the exploration of new ways to
find groups of attributes.

The paper is organized as follows. Section 2 explores previous works already
done in the domain of prediction explanation. In particular, the identification of
attributes having a significant influence on a model is fundamental. To that end,



2 G. Ferrettini et al.

the automated discovery of groups of linked attributes is an important challenge
to overcome. Notably, we rely on attribute grouping methods from the literature,
notably inspired by the feature selection methods. Then, Section 3 describes the
base methods used to generate predictions explanation. The extension of our
work [5] is proposed in Section 4 to find faster methods of explanation. This is
achieved through new way to find groups of attributes for the coalitional method
described in Section 3. Experiments are presented in Section 5, showing the
interest of our methods in terms of computation time and their limited impacts
in terms of loss of accuracy, significantly improving the results of [5]. Finally,
Section 6 concludes the paper by giving new perspective of works, including the
new possibilities opened by our results.

2 Related works

Explaining the influence of each attribute (of a dataset) on the output of a pre-
dictive model has been explored largely. An example of the works pertaining to
global attribute importance on a model is available in [1]. The most recent meth-
ods are based on swapping the values of attributes in a dataset and analysing
which swap affects the most the predictions trained by a model. The more mod-
ifying the attributes values affects the predictions, the most this attribute is
considered important for the model, as a whole. Many ways of explaining single
predictions have been explored but these methods often struggle between being
too simplistic, or too complex to be interpreted by a human, notwithstanding the
problem of computation time, which can become problematic for more advanced
user assistance systems. The possible applications of prediction explanations are
investigated by [11]. According to their paper, the interest for explaining a pre-
dictive model is threefold. It can help to (1) understand, (2) judge the quality
and (3) choose a model. A great number of works pertaining to prediction ex-
planation led to [8], which theorized a category of explanation methods, named
additive methods, and produced a review of the different methods developed in
this category, such as [4] and [13]. These methods provides, for a given predic-
tion, a weight to each attribute of the dataset, representing its influence on a
model, locally. Different additive methods exist to calculate relevant weights but
the end result is always this vector of weights. This vector is easy to interpret,
even for someone without expertise on machine learning. Yet, these methods
have a major deterrent: their computation time makes them difficult to use for
the average user. That is why [8] explores methods to generate explanations
faster, but at the cost of very restricting hypotheses, as the independence of
each attribute of the dataset, or the linearity of the model, which is not always
the case. Thus, we are aiming for a simplification to reduce computational time
of methods like [14], but applicable in a more generic way than [8]. In this work,
we want to facilitate the generation of prediction explanation, without having
to restrict ourselves to a given set of models. This paper is the continuity of [5]
in which we already established possible methods of simplification. One of these
methods relies on the automatic detection of groups of attributes. In this paper,
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we aim to identify and compare additional methods detecting groups, in order
to compare their influence on the efficiency of the simplification method.

The selection of relevant attributes to be grouped can take inspiration from
the works in the field of feature selection [2] [16]. In particular, the methods
proposed in a dimensional reduction goal seem to reach our scope. Indeed, these
methods have to automatically detect interactions between attributes for reduc-
ing a potential high dimensionality in a dataset. Thus, two main approaches,
feature extraction (mainly the principal component analysis) and filter methods
(which measure the relevance of features by their correlations) can be considered.
The fact that the principal component analysis (PCA) and the filter methods
rely only on information provided by a dataset (independent of the model used
in an analysis) is a great advantage for our work, in contrast with techniques
such as SVM-RFE [10] or FS-P [9], based on a specific model. Indeed, different
predictive models can classify differently a same instance. Thus, an explanation
on this instance can be different, from one model to another, and cannot depend
of a selection of influence attributes made by a unique predictive model, such as
SVM. The PCA is a largely recognised method to provide new features from sets
of correlated attributes. The Correlation-based feature selection (CFS) methods
[6] are promising candidates. In particular, the use of a multicollinearity measure
by a variance inflation factor (VIF), can provide sets of attributes having linear
correlations between them. This avoids calculating collinearity between pairs of
attributes, using the Pearson’s measure, for example. However, the VIF measure
is unable to compute non linear correlations, on the contrary of the Spearman
correlation factor. Even if this factor only works between pairs of attributes, the
capacity to detect non linear correlations makes it a good candidate.

3 Prediction explanation

In this section, we present the basis of our current work : the methods used
to generate prediction explanations. First, we introduce our baseline, the com-
plete explanation, and then we present our simplification of this baseline, the
coalitional explanation.

3.1 Complete explanation

The baseline of our work takes inspiration from the work of [14]. This influence
calculation method is based on the computation of attribute influences for all
possible subgroups. This framework is close to the situation of a game called
”coalitions” , where each group of attributes can have an influence on the model
prediction. The influence of an attribute is measured according to its importance
in each coalition. We can then refer to the coalition games as defined by Shapley
in [12]: A coalitional game of N players is defined as a function mapping subsets
of players to gains g : 2V +— R. The parallel can easily be drawn with our
situation, where we wish to assess the influence of a given attribute in every
possible coalition of attributes. We then look at not only the influence of the
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attribute, but also its use in all subsets of attributes. We thus define the complete
influence of an attribute a;, € A on the classification of an instance z for the
class C :

Io(@) = Y pAA)* (nff asay (@) —inff () (1)
A'CA\a,

With p(A’, A) a penalty function accounting for the size of the subset A’.
Indeed, if an attribute changes a lot the result of a classifier, in a large group of
attributes, it can be considered as very important for the prediction compared to
the other ones. On the opposite, an attribute changing the result of a classifier,
when this classifier is based on a small set of attributes, cannot be considered
to have an influence as decisive as the first one. The Shapley value [12] is a
promising candidate, and defines this penalty as:

gy AT (4 - 14 - 1)
pA',4) = o @

The base influence in ffC 4(x), defined in [14], is the difference between the
prediction without prior information, and the prediction with every attribute in
the group of attributes A :

inffa(x) = f(za) - [(2) 3)

This complete influence of an attribute now takes into consideration its im-
portance among all the possible attribute configurations, which is closer to the
original intuition behind attribute influence. However, because we ambition to
explain a single instance on a model, the complete influence can be extremely
computationally expensive: ()(2" * I(n, z)), with n the number of attributes, x
the number of instances in the dataset and I(n, z) the complexity of training the
model to be explained It is then not practical to use the complete influence and
it becomes necessary to seek a more efficient way. However, the complete influ-
ence can be considered as an excellent baseline [14]. Thus, our new explanation
approaches can be evaluated by measuring how they deviate from the complete
influence.

3.2 Coalitional explanation

A more efficient strategy is to only identify the groups of correlated attributes,
as proposed in our previous work [5]. This strategy avoids having to calculate
all possible subgroups of influence. We then obtain a coalitionnal influence of an
attribute a; € g, € G :

simpleZ (x) = Y plg's9) * (inff yuay (@) — inffy(x)) (4)
g9’'Cg\a;

Given the fact we can set a maximum cardinal ¢ for our subgroups, the
complexity is, in the worst case, O(2°* 2 xl(n, x)) = O(n*l(n,z)). This method
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calculates less groups than the complete influence, but tries to make up for
it by only grouping the attributes actually related to each other. In order to
determine which attribute groups are relevant to consider, we need to use an
automatic attribute groups construction method.

4 Coalition computing methods

We propose, in this section, different ways to compute attribute coalitions and
study their effects on the efficiency of the coalitionnal influence. We base our
first algorithm on the work of [7]. The other algorithms are based on the variance
inflation factor (VIF) and the principal component analysis (PCA) of a dataset.
For each algorithm, we implement a parameter which control the size of the
subgroups that are generated. A higher value of this parameter generates larger
groups whereas a smaller value produces smaller groups.

4.1 Model-based coalition

In this method, the attribute groups are created by using the model itself to
detect interacting attributes. In this approach, no correlation is detected, but
only an interaction in the sense of the model usage of the attributes. This is done
by randomizing the values of the dataset, and studying the evolution of the model
predictions. It consists in measuring the differences of predictions on the whole
dataset before and after the randomization. When attributes are considered to
be part of the same group, their values are swapped together with the values
of another instance, classified by the model as the same class as the starting
instance. Each attribute outside of the group has its value swapped completely
randomly. Once this have been done, the new instances are classified by the
model. The ratio of differences between the old and the new classification is
called the fidelity. A higher fidelity meaning a lower variation of the predictions.
At each iteration, the attribute which removal lowers the less the fidelity is
removed, until it is not possible to keep the fidelity above a fixed threshold.
Then the group is considered as fixed. This attribute grouping algorithm has
been developed in [7] and is detailed in Algorithm 1.

4.2 Principal component analysis based coalition

The objective of a principal component analysis is to transform correlated at-
tributes into new attributes linearly uncorrelated between them. Our reasoning,
for this approach, is to consider the set of correlated attributes (summarized by
the new attribute of the PCA) as a group of influence.

Given a dataset D = (A, X) composed of a set of n attributes A = {a1, ...,an},
and a set of instances X where z € X,z = {x1,...,2,}Vi € [Ll.n],z; € a;.

We can apply a principal component analysis which produces a new dataset
D' = (A", X’) such as A’ = {al,...,al,} with each new attribute being a linear
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Algorithm 1 Model-based coalition extraction

Input: Sensitivity parameter § > 0, the number of attributes m, and a fidelity function
fid(). Two auxiliary functions L(X) = U, x{{i}} and F(X) = L(Uycx Y), which
produces sets of singletons (e.g. L({1,2,3}) = F({{1,2},{3}} = {{1}, {2}, {3}})

Output: o a coalition of attributes

o+ {}
R+ {m} > R contains a group to test for
A+~ {} > A contains the removed attributes

A« fid(L([m])) + ¢
while R # {}orA # {} do
if A={}and fid{R}UF(o)) < A then
> if we are already below A before removing any attribute assign the
remaining attributes to singleton groups
o+ ocJL(R)
R« {}
Ae{)
else
> Find an attribute j whose removal from R decreases the fidelity least
j < argmaz;er fid {{R\{j}} Ui} LAY U F(0)
if |R| = 1 or fid({{R\{j}} U{{j}} U{A} U F(0)) then
> If the fidelity drops below A add the group of attributes to the results
and look for the next group of attributes
o+ o J{R}
R+ A
Ae{)
else
> If the fidelity stays above A continue removing the grouping R
R« R\{j}
A« AU
end if
end if
end while
return o

composition of the previous attributes : Vi,a, € A’,3 {a1,...,an} € R, a, =
a1 *a1 + ... +Qp +ap.

Each new instance is associated with an instance of the previous dataset.
Vo' = {z},..,a,,} € X, Nz e X, Vie[l,..,m3I ay,..,a, € R" x, =a; xx1 +
e oy + 2.

Given this set of factors ay, ..., a,, for each attribute, we consider each factor
as an evaluation of the importance of the attributes in the group. We can then
constitute a coalition of attributes by exploiting the groups formed by the most
important factors. This gives us the algorithm 2. For the sake of simplicity, we
consider each a’ € A’ as a vector of its a; factors.
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Algorithm 2 PCA-based coalition extraction

Input: a threshold ¢ and the set of attributes A’ of the PCA
Output: o a coalition of attributes

o+ {}

for all ' € A’ do > for each attribute generated by the PCA
g+ {} > g, a new possible group
amaz < mazx(a’ = a1, ...,an) > find the most important factor

for all o;; € a’ do
if a; > a maz * (1 —t) then
add a; to g > the attribute is included in the group if close to the max
end if
end for
add g to o
end for
return o

4.3 Variance Inflation Factor based coalition

The variance inflation factor (VIF) is an estimation of the multicollinearity of
the attributes of the dataset in regard to a given target attribute.

Given a dataset D = (A, X), the VIF value of a € A is calculated by running
a standard linear regression with a as the target for the prediction. Then, given
R the coefficient of determination of the linear regression, we have:

VIF L 5
(@)= 0 (5)

It is commonly accepted that a variance inflation factor superior to 10 in-
dicates a strong multicollinearity of the attribute with other attributes of the
dataset. Moreover, when an attribute is removed from the dataset, the VIF of
the attributes multicollinear with it decrease. Then, we can automatically detect
groups of attributes by calculating the VIF of each attribute (considered as a
target) of the dataset, and then comparing them with a new VIF calculation with
an attribute removed. For this purpose, we consider two possible approaches:

— Considering as a priority the calculation of strongly multicollinear groups of
attributes: Those are groups of attributes with a dependency to one another.
In the context of this approach, attributes whose VIF varies strongly when
an attribute is removed from the dataset will be considered as part of the
group.

— Considering as a priority the calculation of weakly or non multicollinear
groups of attributes: Given the fact that correlated attributes tend to bring
the same information to the model, it may be preferable to prioritize groups
for which the addition or removal of an attribute will change greatly the
information brought by the group.

These two approaches are named VIF coalition and reverse VIF coalition,
respectively. This gives us the algorithm 3, for the VIF coalition. The reverse
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Algorithm 3 VIF-based coalition extraction

Input: a threshold ¢, the set of attributes of the dataset A and a function VIF(A)
calculating the array of all the VIF of all the subsets of a set of attributes
Output: o a coalition of attributes
o {}
oldvifs < VIF(A) > calculating the initial VIF's of the attributes
for all a € A do
g {}
add a to g
newvifs < VIF(A/a)
for all ' € A do
if newvifs(a') < oldvifs(a’) * (0.4 +t) then
add a’ to g
end if
end for
add g to o
end for
return o

VIF coalition can be obtained simply by replacing the condition for adding
an attribute to a group by if newvifs(a’) > oldvifs(a’) * (1 — ¢ % 0.05). This
supplementary ratio of 0.05 have been obtained by preleminary experiments,
which showed that just keeping the 1 — ¢ factor led to a generation of all the
possible subgroups, which defeat the principle of an approximation.

4.4 Spearman correlation based coalition

A limit of the variance inflation factor is the sole consideration of multicolin-
earity, while a correlation between attributes might not be linear. This problem
is addressed through the Spearman correlation coefficient, which takes into ac-
count non linear correlations. Spearman being not multicollinear, the calculation
of the correlation between attributes has to be done by pairs. Thus, the method
consists in generating the matrix of all the correlations of each pair, and then
deciding which attributes are part of a group. For this method, we have the same
two possibilities as for the VIF method: we can either prioritize the calculation
of strongly correlated attributes, or on the contrary, prioritize groups of non
correlated attributes. These two approaches are named respectively Spearman
coalition and reverse Spearman coalition.

Given a dataset D = (A, X), with A = {ay, ..., a,} the correlation matrix C
is obtained by computing the spearman correlation coefficient of each attribute
couple : C(1,2) = corr(ay,as). Thus C is symmetrical and have 1 as the value
of its whole diagonal. For each line i of the matrix C, we consider as grouped
with a; the attributes strongly (or weakly) correlated with a;, for the Spearman
coalition (or the reverse Spearman coalition).

The algorithm 4 details the Spearman coalition method. In order to perform
the reverse Spearman coalition method can be obtained by replacing the condi-
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Algorithm 4 Spearman-based coalition extraction

Input: athreshold ¢, the set of attributes of the dataset A and a function spearman(A)
calculating the matrix of all the absolute spearman correlation coefficient of all the
subsets of a set of attributes. a maz and min functions which returns the maximum
and minimum of a matrix line.

Output: o a coalition of attributes
o {)
corrmat < spearman(A) > calculating the correlation matrix
for all a € A do

g« {}
for all ' € A do
if corrmat(a,a’) > maz(corrmat(a)) * (1 — t) and maz(corrmat(a)) > 0.1
then
> If the most correlated attribute have a coefficient less than 0.1, we
consider a as a singleton
add a’ to g
end if
end for
add g to o
end for
return o

tion for adding an attribute to a group by corrmat(a,a’) < min(corrmat(a)) +
max(corrmat(a)) * t and min(corrmat(a)) < 0.5. This allows to add the least
correlated attributes up to a threshold : if the minimum is superior to 0.5, we
consider the attribute as too correlated to the others and consider it as a single-
ton.

5 Evaluating the coalition computation methods

In this section we aim to evaluate the performances of each coalition calculation
method, considering their precision when compared to the complete influence,
and their computational time. We also give an overview of the group character-
isation for each coalition method.

5.1 Experimental protocol

Our experiments are run on the OSIRIM! cluster. This cluster is equipped with
4 AMD Opteron 6262HE processors with 16 x 1,6 Ghz cores, for a total of 64
cores, and 10 x 512 GB of RAM. Our tests are realized from the data available on
the Openml platform [15]. We select the biggest collection of datasets? on which
classification tasks have been run. We also consider six classification tasks: naive
Bayes, nearest neighbors, J34 decision tree, J34 random forest, bagging naive

! http://osirim.irit.fr/site/en
2 Available in https://www.openml.org/s/107 /tasks
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Bayes and support vector machine. Due to the heavy computational cost of the
complete influence (considered as the reference of our experiments), we select
the datasets having at most nine attributes. Thus, a collection of 324 datasets is
obtained. Considering the six types of workflows, we have a total of 1944 runs. For
each of those runs, we generate each type of influence proposed in this paper, for
each instance of the 324 datasets: the complete influence for the baseline, along
with the coalitional influence. The coalitional influences are generated using the
different group generation methods described in Section 4, which are based on
an «a €]0,0.5] parameter (small values of « resulting in smaller subgroups, and
high values in bigger ones). We generate the possible subgroups with 5 different
values of a to study the influence of subgroup size. To compare the different
explanation methods, we consider the explanation results as a vector of attribute
influences noted Z(x) = [i1, ..., i) with n the number of attributes in the dataset.
Thus, each of the attributes ay is given an influence i, € [0, 1] by the method
T :Vk € [l.n],ip = I, (x), with = an instance of the dataset. We then define
a difference between two vectors of influences 4,j as the normalised euclidian

distance:
li.1) = 5= 30 V=70 ()
k=1

Considering this formula, we define an error score based on the difference between
an explanation method and the complete influence method. Given an instance
r, an explanation method Z(z), and the complete influence method Z¢(z):

err(Z,z) = d(I(:L’),IC(x)) (7)

For each instance of each dataset, we generate the error score of every method,
allowing us to compare their performances across the different collected datasets
. Each error score is the distance of one of the coalitional methods from the
complete method. Thus, lesser error is indicative of a more precise estimation of
the complete method.

5.2 Calculation time and Error scores

number of attributes 1] 2 3 4 5 6 7| 8 9
Mean number of instances 1020 1529 3728 1171 2370 1748 983 2414 409

Table 1: mean number of instances for datasets with a given number of attributes

Figures 1 and 2 give the performance and computational time in miliseconds
of each coalitional method, respectively (for different values of their threshold
parameter).

For readability, Table 1 details the mean number of instances for each number
of attributes. This can have an impact on computation time, and explains the
variations of Figure 1. This figure includes the computation time for generating
the groups of attributes and for explaining each instance of the dataset. The
decrease of the computation time for the case of 9 attributes is explained by the
important decrease in the mean number of instances. This makes each retraining
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Fig.1: Calculation time of each coalitional method versus the number of at-
tributes in the dataset

faster to do, even if there are potentially twice more subgroups to take into
account.

Figure 2 depicts the mean error score, aggregating the error score (Equation
7) of each explanation method for each of our 324 datasets. In this figure, the
closer the curve is to 0, the closer it is to the complete influence method.

As we can see, in an overall analysis, the VIF method seems to be the
worst, with a poor performance and a long computational time. This can be
explained by the fact that the attributes of the generated group are correlated
to one another, which mean that the information brought by these groups and
subgroups is very redundant. We can suppose a lot of groups are calculated (see
Section 5.3 for more details), but they often bring nearly the same information
each. Spearman has a far better computation time than VIF, but still has a
poor performance overall, probably for the same reasons. As an example, PCA
has a better performance but a computation time very similar to Spearman.
RevSpearman has an overall better performance than part of other methods,
but this performance is paid by the longest computation time, without reaching
the best performance. This can be explained by the group calculation method,
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Fig. 2: Error score between each coalitional method and the complete influence,
versus the number of attributes in the dataset

which does not take into account the possible correlation of two attributes which
are both not correlated with the original attribute of the group (no transitivity).
This lead, as for VIF and Spearman, to the calculation of redundant information,
which increases the computation time without improving much the performance.
The PCA, RevVIF, and Model methods each seem to have their strong and weak
points. The RevVIF is clearly more precise than the other two, but at a cost of
greatly increased computation time. Instead of focusing on the correlated groups,
the RevVIF method relies on the least correlated, thus a greater diversity of
information is taken into account. While the Model and PCA methods are less
exhaustive in their approaches, they seem to have a far lower computational
time, the evolution of computation time against the number of attributes being
far less steep than for RevVIF.

5.3 Group characterisation

Figures 3 and 4 compare the average number and average size of the groups of
attributes generated by each coalitional method, respectively (for the two ends
alpha = 0.01 and 0.4).

We can note that RevVIF, RevSpearman and VIF are the three methods
generating the highest average group sizes, compared to the other methods. This
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Fig. 3: Group characterisation with alpha = 0.01
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Fig. 4: Group characterisation with alpha = 0.4

phenomenon can explain why these methods minimize best the error scores as
discussed in Section 5.2. Indeed, the larger the groups are, the more exhaustive
they are in terms of coalition influence that can correctly explain an instance
with respect to a predictive model. More surprisingly, the high average number
of groups seem not to induce a good error score. For example, the RevSpearman
method generate, for the two alpha thresholds, the lowest number of groups, for
most of the cases, whereas its error rate is one of the best. This can be explained
by the generation of a lot of small groups (singletons or couples), rather than a
few large ones. After all, the complete influence is the equivalent of the coalitional
influence using a single group containing all the attributes.

6 Conclusion and perspectives

In this paper, we proposed a comparative study between several attribute group-
ing methods (inspired by the feature selection field) in an objective of individual
prediction explanation. Our tests, conducted with 324 real datasets, show that
RevVIF, PCA and Model methods are all of interest. RevVIF is preferable for
datasets with few attributes, while PCA and Model should fare better for a
large set of attributes. Then, a new interesting perspective would be to study
the evolution of computation times with larger datasets. The main problem here
is it becomes impossible to compute the Complete influence for large datasets.
Thus, it is impossible to monitor the performance of our different methods with
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this baseline. To address this problem, a possible way could be to run a general
attribute importance study for large datasets, first, and use this information to
calculate the influence of the most important attributes during the individual
explanation generation.
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