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It has been 12 years since Bishop et al. (2008) wrote the Invited Commentary “Aqua Incognita: the 15 

unknown headwaters”. They highlighted that “In most regions, the overwhelming majority of stream 16 

length lies beyond the frontiers of any systematic documentation and would have to be represented as 17 

a blank space on the assessment map. This means that for the majority of streams that support aquatic 18 

life, a systematic understanding is lacking on water quality, habitat, biota, specific discharge, or even 19 

how many kilometers of such streams are there. This blank space is so vast that it deserves a name to 20 

help us at least to remember that it is there. We propose calling it ‘Aqua Incognita’” (Bishop et al., 21 

2008; p. 1239). We continue to agree with this statement and the need to understand headwater 22 

streams better. In this commentary, we want to draw attention to a particular type of headwater 23 

stream that is even less frequently examined: headwater streams that flow intermittently, i.e., the 24 

Aqua Temporaria Incognita. Question 3 of the 23 unsolved problems in hydrology (Blöschl et al., 25 

2019) focuses on ephemeral dryland streams. We argue that this focus needs broadening to 26 

headwater temporary streams because they are ubiquitous in all climates. Headwater temporary 27 

streams feed larger perennial streams and are particularly sensitive to climate change and other 28 

human influences (Jaeger et al., 2014; Reynolds et al., 2015; Pumo et al., 2016). Their effective 29 

management and protection, therefore, requires an understanding of both natural and artificial 30 

causes of intermittence.  31 

Temporary streams are among the most hydrologically variable headwater systems (Wohl, 2017). 32 

They include intermittent streams that flow seasonally, ephemeral streams that only flow in 33 

response to rainfall or snowmelt events, and episodic streams that contain flowing water only during 34 
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extreme rainfall events (Buttle et al., 2012). The terms used for these non-perennial streams vary 35 

(Busch et al., 2020) and more classes can be defined to describe the occurrence of pools with 36 

standing water (Gallart et al., 2017). Here we use the term temporary stream to refer to all non-37 

perennial streams, but we acknowledge that the exact naming and definition of these water bodies 38 

can have important implications for their legal protection (Caruso, 2011; Nikolaidis et al., 2013; 39 

Magand et al., 2020). In Switzerland, for instance, streams that flow on average less than 347 days 40 

per year (over a 10 year period) are considered non-permanent streams and regulations for 41 

permanent streams, such as requirements for permits to discharge or withdraw water, might not 42 

apply.  43 

Bishop et al. (2008) argued that the majority of the total stream length needs to be represented as a 44 

blank space on assessment maps because they are not part of any systematic documentation. 45 

Temporary streams in headwater catchments are rarely included in assessments and often not even 46 

shown on maps. Levick et al. (2008) reported that 59% of the streams in the U.S. (excluding Alaska) 47 

are temporary, but their survey was based on 1:100,000 scale topographic maps and did not include 48 

stream segments shorter than 1.6 km, such that it excluded all temporary headwater streams. 49 

Analyses based on the 1:24,000 scale National Hydrography Dataset (NHDPlus) suggested that 42% 50 

of all stream segments in the upper Colorado river are first-order streams with intermittent flow and 51 

that temporary streams make up 73% of the total stream length (Caruso and Haynes, 2011). All 52 

studies that have actually mapped temporary streams in the field have shown that they are far more 53 

prevalent than indicated by the dashed blue lines on maps (Hansen, 2001; Fritz et al., 2013). For 54 

example, the Swiss national topographic map shows 0.68 km of streams in the 13 ha upper Studibach 55 

catchment but repeated field mapping has shown that there are at least 3.77 km of streams, of 56 

which 2.66 km (71%) did not have flowing water during the dry summer of 2018 (van Meerveld et al., 57 

2019). Similarly, field mapping of stream heads during wet conditions in the 68 km2 Krycklan 58 

catchment in northern Sweden showed that 76% of the fully expanded network was missing on the 59 

official map (Ågren et al., 2015). A lack of knowledge about the location and extent of temporary 60 

streams hampers their protection (Caruso, 2011; Caruso and Haynes, 2011). 61 

Temporary streams have high biodiversity and are home to many endemic species (Stanley et al., 62 

1997; Meyer et al., 2007; Stubbington et al., 2017); the dry riverbed is an egg bank for aquatic 63 

invertebrates and seed bank for aquatic plants (Brock et al., 2003; Steward et al., 2012). The onset 64 

and cessation of flow significantly affects the species assemblage (Pařil et al., 2019; Sarremejane et 65 

al., in press). Connectivity of previously disconnected stream segments increases streamflow (e.g., 66 

Godsey and Kirchner, 2014; Jensen et al., 2017; Pate et al., 2020). Sediment and organic material that 67 

has collected in the dry river bed is flushed during the onset of flow, leading to high sediment and 68 
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nutrient fluxes (Hladyz et al., 2011; Fortesa et al., 2021) and high rates of biogeochemical 69 

transformations and ecosystem respiration (Acuña et al., 2005; Romaní et al., 2006; von Schiller et 70 

al., 2017; Hale and Godsey, 2019). The expansion of the flowing stream network during wet periods, 71 

furthermore, leads to a more direct connection between the hillslopes and the stream, resulting in 72 

shorter travel times (van Meerveld et al., 2019) and the potential bypassing of riparian buffer strips 73 

(Wigington et al., 2005).  74 

Even though it is the repeated presence and absence of flowing water that shapes temporary stream 75 

ecosystems and the onset and duration of flow in headwater temporary streams affect water 76 

quantity and quality in downstream perennial streams, there are very limited hydrological data for 77 

temporary streams. Temporary streams are generally not included in stream monitoring networks, 78 

and where present, they are sometimes only operated seasonally as the dry period is not considered 79 

interesting for water management (Peters et al., 2012). Even in experimental headwater catchments, 80 

gauging stations are usually placed at the point of perennial flow. As a result, temporary streams are 81 

largely underrepresented in hydrological studies and monitoring networks (Benstead and Leigh, 82 

2012; Snelder et al., 2013; Godsey and Kirchner, 2014). The lack of gauging of temporary streams has 83 

to be kept in mind when datasets are compiled to determine the abundance and variation in 84 

temporary stream dynamics. The catalogue of temporary streams in Europe collected as part of the 85 

SMIRES initiative (Sauquet et al., 2020) highlights the high variation in their hydrological response. 86 

Still, systematic analyses of the spatial patterns in the onset and cessation of flow or trends therein 87 

are difficult due to the lack of data (Tramblay et al., in press). For example, only 7% of the U.K. 88 

benchmark network of near-natural catchments that are considered suitable for the analysis of 89 

trends in streamflow are non-perennial (Harrigan et al., 2018).Only 10% of the more than 4000 90 

gauging stations in France with daily discharge data available in the national HYDRO database 91 

(http://www.hydro.eaufrance.fr) are likely naturally intermittent (Figure 1b). The fraction was 92 

highest (22%) for gauging stations with a catchment area ≤10 km2. The ONDE (Observatoire National 93 

des Etiages) network was designed by the French Biodiversity Agency, https://ofb.gouv.fr/) to 94 

complement the hydrometric network and reports the hydrological state (flowing water, standing 95 

water in isolated pools, dry streambed) for 3350 tributary streams at least five times per year (once 96 

per month between May and October). Most sites (85%) are located on streams with a catchment 97 

area ≤100 km2 and 20% of the sites have a catchment area ≤10 km2 (Figure 1a). For almost half (49%) 98 

of the sites, there was at least one observation of no flow prior to January 2020 (Figure 1a).  99 

https://ofb.gouv.fr/
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100 
Figure 1. Frequency distribution of the number of sites in the ONDE network (a) and the number of French 101 

gauging stations available in the HYDRO database (b) as a function of catchment area. The sites for which at 102 

least once no flowing water (i.e., dry streambed or standing water in isolated pools) was observed and stations 103 

on potential intermittent streams are indicated by the filled area. For the gauging stations (b), all stations that 104 

include an occurrence of zero flow are shown with a dashed line (all data until 01.01.2020).  105 

 106 

Hydrometric challenges in measuring very low flows may mean that the stream is considered to be 107 

flowing, even though it is dry (or vice versa). Furthermore, the reported zero flows often reflect a 108 

data issue rather than a real measurement of zero flow (Zimmer et al., 2020). This means that data 109 

on zero flows cannot be used without looking at their quality codes. For example, analysis of the data 110 

in the aforementioned French HYDRO database showed that a notable proportion of the 730 gauging 111 

stations for which an occurrence of zero flow was reported, are unlikely to be temporary streams 112 

(Figure 1b). This (admittedly fairly subjective) assessment involved data screening of no-flow 113 

occurrence (seasonality of null values, consistency with historical droughts, etc.), recession curves 114 

(changes in discharge before and after the sequence of null values, etc.), additional information from 115 

nearby ONDE sites, and information from the hydrometric services (personal communication). For 116 

publicly available datasets knowledge about specific practices is needed before the discharge data 117 

can be used to compute statistics on no-flow events. For example, Environment Canada used to 118 

denote flows smaller than 1 l s-1 as zero (Peters et al., 2012). We, therefore, recommend that 119 

especially for stations in temperate climates, where intermittence is not frequently observed, a label 120 

“temporary stream” should be added to the metadata of gauging stations to avoid any ambiguity. 121 

Nevertheless, this status needs to be updated regularly, particularly after droughts.  122 

For many applications (e.g., understanding ecological processes and biogeochemical cycling) it is 123 

crucial to know whether there is flowing water, or pools with standing water, or if the streambed is 124 
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dry (Gallart et al., 2012; Bonada et al., 2020). Gauging stations are designed to measure flow, not to 125 

provide information on the presence of pools. Pools of standing water are common and provide 126 

important refugia during dry periods (e.g., Marshall et al., 2016). At 39% of the sites in the ONDE 127 

network pools were observed at least once. For comparison, dry streambeds were observed at least 128 

once for 34% of the sites.  129 

In light of the difficulties in gauging temporary streams, the costs associated with establishing and 130 

maintaining gauging stations, and the extremely high spatial variation in the occurrence of flow along 131 

the channel, new approaches to obtain data on the state of temporary streams are being tested. 132 

While field mapping provides the most detailed spatial data (Wigington et al., 2005; Malard et al., 133 

2006; Doering et al., 2007; Godsey and Kirchner, 2014; Jensen et al., 2017; Sefton et al., 2019), it is 134 

difficult to do in headwater catchments during rainfall events because conditions can change quickly. 135 

Some studies have used drones with cameras for the mapping (Spence and Mengistu, 2016; Borg 136 

Galea et al., 2019; Calsamiglia et al., 2020) but this is difficult for very small headwater streams, 137 

where vegetation is dense, or during intense rainfall events. Other studies have used low-cost 138 

electrical resistance (Blasch et al., 2002; Goulsbra et al., 2009; Bhamjee and Lindsay, 2011; Sherrod et 139 

al., 2012; Chapin et al., 2014; Paillex et al., 2020) or temperature (Ronan et al., 1998; Constantz, 140 

2008) sensors to determine the onset and cessation of flow. The sensor networks developed by 141 

Bhamjee et al. (2016) and Assendelft and van Meerveld (2019) even allow differentiation of standing 142 

water (pools) and flowing water. Even though the initial tests of these sensors are promising, their 143 

use has yet to become commonplace, likely due to the need to invest in sensor development and 144 

maintenance. Aerial photographs, images from Google Street View and interviews with inhabitants 145 

have been used determine the medium-term state of temporary streams in populated areas (Gallart 146 

et al., 2017). Physical and biological indicators can also be used to determine the duration of the 147 

flowing state for temporary streams (Fritz et al., 2020).  148 

Crowdsourcing or citizen science is an alternative approach to obtaining data on the state of 149 

temporary streams (Kampf et al., 2018). Visual observations at a range of locations can lead to data 150 

with a relatively high temporal resolution (Figure 2) or to obtain detailed maps of the presence of 151 

flow along rivers (Turner and Richter, 2011; Allen et al., 2019). Although initial analyses suggest high 152 

interrater agreement (Seibert et al., 2019), the accuracy and usefulness of these data still need to be 153 

determined. Furthermore, the involvement of the public is a challenge, particularly for national or 154 

international projects for which it is more difficult to organize local outreach events to raise 155 

awareness of the project and the importance of temporary stream observations. The involvement of 156 

the public can be a challenge as dry streams are valued less than flowing streams (Armstrong et al., 157 

2012) and because small streams are often overlooked. Citizen science helps to increase public 158 
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awareness on environmental issues, and short-term, large-scale projects are particularly well-suited 159 

for this (Pocock et al., 2013). To obtain repeated data from many sites, it is useful to engage 160 

environmental management agencies. When they include the quick citizen science-based approaches 161 

in their regular monitoring, a large number of additional data points can be collected. For example, 162 

the French authority SR3A in charge of water management for tributaries to the Rhone River used 163 

the CrowdWater approach (www.crowdwater.ch) to map the presence of flow in temporary streams 164 

(Figure 3). Together with the data from the ONDE network, these observations contributed to real-165 

time monitoring of the state of the rivers and supported water restriction measures. Similarly, in the 166 

UK, 1050 observations were submitted for 145 spots between January 2019 and July 2020 using the 167 

CrowdWater app, mostly on chalk streams in the south-east of England. These observations 168 

complement surveys conducted by the Environment Agency. Knowledge of the patterns of 169 

intermittence for these groundwater-fed streams helps the agency to identify the impacts of 170 

abstractions and other stressors, track droughts, and inform ecological flow requirements.   171 

 172 

http://www.crowdwater.ch/
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 173 

Figure 2. Examples of eight-month time series of observations of the hydrological state of temporary streams 174 

made with the CrowdWater app for a site in Portugal (a) and a site in Switzerland (b). Note that the two Figures 175 

show a different period. Source: https://www.spotteron.com/crowdwater/spots/89106 (a) and 176 

https://www.spotteron.com/crowdwater/spots/245853 (b). 177 

 178 
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 179 

Figure 3. The number of observations made with the CrowdWater app (Seibert et al., 2019) for temporary 180 

streams (colored circles,) by August 9, 2020, as well as the locations of the gauging stations (black triangles) 181 

and the ONDE sites (grey squares). The inset shows the location of the area in France and the Rhone river. 182 

Background elevation data from https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1-0-and-derived-183 

products. The stream network was obtained from http://www.sandre.eaufrance.fr/. 184 

 185 

Hydrological models (Williamson et al., 2015; Ward et al., 2018; Yu et al., 2018; Gutiérrez-Jurado et 186 

al., 2019), topographic data (Prancevic and Kirchner, 2019) and statistical approaches (Snelder et al., 187 

2013; Russell et al., 2015; González-Ferreras and Barquín, 2017; Beaufort et al., 2019; Jaeger et al., 2019; 188 

Konrad and Rumsey, 2019; Durighetto et al., 2020) have been used to predict where streams are 189 

temporary and can be used to determine where additional data on the state of temporary streams 190 

may be most useful. However, to train and validate these models, more observations of the state of 191 

temporary streams and stream network dynamics are needed. Data on the presence or absence of 192 

flowing water in different tributaries or the total flowing stream length can be used to calibrate 193 

hydrological models (Stoll and Weiler, 2010) or to validate the simulations of the stream network 194 

from physically-based coupled surface-subsurface flow models. The comparison of observations and 195 

simulations is less direct for conceptual (i.e., bucket-type) models, but observations can be used  196 

indirectly in model calibration or validation because they provide information on storage dynamics. 197 
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The basic approach, in this case, is to compare the average or typical stream conditions to the 198 

dynamics of the simulated (groundwater) storage. 199 

Previous model studies have focused on climate change and other human impacts on flow 200 

intermittence, particularly for Mediterranean catchments (Jaeger et al., 2014; Reynolds et al., 2015; 201 

Pumo et al., 2016; Querner et al., 2016; Tzoraki et al., 2016; De Girolamo et al., 2017) or globally 202 

(e.g., Döll and Schmied, 2012). They predict a shift from perennial to intermittent flow regimes and 203 

an increased duration of the dry state, which will impact freshwater ecosystems (e.g., Cipriani et al., 204 

2014; Jaeger et al., 2014). Observations of trends in flow persistence in headwater streams can 205 

provide important information and an early warning of how the dynamics of larger streams may 206 

change due to climate or land-use change because even small changes can cause them to switch 207 

from being perennial to temporary.  208 

We add our call for more studies on temporary streams to those of similar commentaries (Larned et 209 

al., 2010; Datry et al., 2011; Kampf et al., 2018; Shanafield et al., 2020). In particular, we call on 210 

hydrologists and citizens to observe, sense and report the hydrological state of the aqua temporaria 211 

incognita. These data will improve our understanding of these unique streams and the impacts of 212 

climate and land use change and water management on them, both directly and through the testing 213 

and refinement of hydrological models. Without these data, it is as if we are trying to complete a 214 

puzzle on how headwater catchments function and how water affects ecological processes, while the 215 

majority of the puzzle pieces are hidden under the carpet. Recent studies provide some information 216 

on how many of the pieces are hidden, but our knowledge is so limited that we do not even know 217 

what is printed on them. This makes it impossible to complete the puzzle of our landscape and how it 218 

functions. Developing that understanding will not only expand our knowledge about temporary 219 

streams but will also entail a fundamental rethinking of how water is connected to landscapes. That 220 

is because the current understanding of high flows, when much of the water leaves the landscape, 221 

has not included a large component of the land-water interface during and after these high flows - 222 

aqua temporaria incognita. 223 

 224 
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