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Abstract
Wemodel and study the patterns created through the interaction of collectivelymoving
self-propelled particles (SPPs) and elastically tethered obstacles. Simulations of an
individual-based model reveal at least three distinct large-scale patterns: travelling
bands, trails and moving clusters. This motivates the derivation of a macroscopic
partial differential equations model for the interactions between the self-propelled
particles and the obstacles, for which we assume large tether stiffness. The result is a
coupled system of nonlinear, non-local partial differential equations. Linear stability
analysis shows that patterning is expected if the interactions are strong enough and
allows for the predictions of pattern size from model parameters. The macroscopic
equations reveal that the obstacle interactions induce short-ranged SPP aggregation,
irrespective of whether obstacles and SPPs are attractive or repulsive.

Keywords Self-propelled particles · Hydrodynamic limit · Pattern formation ·
Stability analysis · Gradient flow · Non-local interactions

Mathematics Subject Classification 35Q70 · 82C05 · 82C22 · 82C70 · 92B25 ·
92C35 · 76S05

1 Introduction

This work is devoted to deriving and analysing a model of collectively moving self-
propelled particles that interact with a complex, heterogeneous environment. The field
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of collective dynamics studies what happens when a large number of agents, which
can be animals, people, micro-organisms, crystals, etc., interact with each other. A
particular focus is the emergence of large-scale order or patterns. Famous examples
include global alignment in crystals (de Gennes and Prost 1993), lane formation for
people (Feliciani and Nishinari 2016), waves and aggregation in bacteria (Shimkets
1990; Ben-Jacob et al. 2000), milling in schools of fish (Shaw 1978) or swarming in
birds (Cavagna et al. 2010). All these examples have in common that local, small-scale
interaction rules between individuals lead to global, large-scale patterns. These patterns
are typically hard or impossible to predict from the local interaction rules; hence,
their understanding requires the use of either extensive simulations or mathematical
analysis.

Combining Collective Dynamics and Environmental Effects In many systems, one
also needs to take into account the environment to be able to explain observed pat-
terns in collective phenomena (Chepizhko et al. 2013; Chepizhko and Peruani 2013;
Jabbarzadeh et al. 2014; Park et al. 2008). For cells moving through a tissue, this
environment often includes fibres and other components. For instance, it has been
observed that many cell types have a tendency to move up stiffness gradients, a phe-
nomenon termed durotaxis (Lo et al. 2000). In some of these instances, the effect on the
substrate is negligible or the environment forms confining barriers affecting organism
behaviour (Noselli et al. 2019). However, inmany applications the interactionmodifies
the environment (either permanently or transiently) in a way that affects subsequent
interactions. An example is the degradation of the extracellular matrix (ECM) caused
by migrating cells (Baricos et al. 1995), which affects the ECM structure and hence
future migration. In this work, we want to combine collectivity and environmental
interactions and study the resulting patterns. Known examples of patterns created
include travelling bands of large swarms of scavenging locust (Buhl et al. 2006; Topaz
et al. 2008), the formation of paths in grass-land by active walkers (Helbing et al. 1997;
Lam 1995) or aggregation of individuals (Bernoff and Topaz 2016). For metastasising
cancer cells, it was observed that the invasion success depends on whether they move
individually or as small clusters (Cheung and Ewald 2016).

Obstacles Can Emulate Complex Environments In this work, we focus on a particular
type of environment in which objects interact with moving particles. Example appli-
cations include pedestrians avoiding obstacles (Helbing et al. 2005) or animal herds
or fish swarms moving through vegetation. Our focus, however, lies on micro-scale
applications, such as pathogens moving through visco-elastic tissue (Celli et al. 2009;
Harman et al. 2012) or immune cells migrating through fibrous ECM (Baricos et al.
1995). The importance of the environment is particularly true for sperm dynamics,
where the surrounding fluid plays a key role in the emergence of collective motion.
For example, clustering and large-scale swirling was observed in simulations of col-
lectively moving sperm in Schoeller and Keaveny (2018) and Sokolov et al. (2007).
In Degond et al. (2019), a model was proposed that couples the Vicsek model for col-
lective dynamics with Stokes equations for a viscous fluid. However, sperm dynamics
takes place in a complex fluid, whose constitutive properties cannot be characterised
solely by a viscosity. In Tung et al. (2017), it was reported that sperm moving through
a visco-elastic fluid forms small clusters, a behaviour not observed in a purely viscous
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environment. To approximate the complex environment, the introduction of immersed
obstacles has been proposed (Kamal andKeaveny 2018;Majmudar et al. 2012;Wróbel
et al. 2016). For example, Kamal and Keaveny (2018) the authors propose a model in
which an undulatory swimmer swims in afluidfilledwith elastically tethered obstacles,
however effects of collective dynamics, i.e. multiple swimmers, were not investigated.
In this article, we present a model for collective motion in an environment filled with
spheres tethered to fixed points in space via linear springs, that play the role of obsta-
cles. We will study the impact of this obstacle-based environment on the collective
dynamics for a large number of self-propelled particles (SPPs).

Consequences for Aggregation Aggregation of populations of individual animals or
cells has been observed in many contexts and is usually attributed to individuals’
attraction (Parrish and Edelstein-Keshet 1999). A major finding of this work is that
an initially homogeneous elastic environment can lead to particle aggregation in the
absence of explicit attractive interactions between the particles themselves. Further-
more, we show that the obstacles can induce aggregation irrespective of whether they
repel or attract the particles. This poses the questionwhether past conclusions about the
cause of biological aggregation need to be reviewed: Some of the observed aggregative
effect might have been caused by so far under-appreciated environmental interactions,
rather than by direct interactions between individuals.

Individual versus Continuum Description From a modelling perspective, two approa-
ches are common (Mogilner and Manhart 2016). One can formulate a system of
individual-basedmodels (IBMs), also called agent-basedmodels, where the behaviour
of each individual is assumed to be governed by separate, often stochastic ordinary
differential equations. This approach has the advantage that the translation of mod-
elling assumptions of the individual level is relatively straight-forward. However, few
analytical tools are available to study IBMs and even if the system exhibits the desired
property, limited insight can be gained as to why it does so. On the other hand, one can
formulate a partial differential equation (PDE) model for the macroscopic quantities
of interest, e.g. the space and time-dependent density of agents. A rich mathematical
toolbox exists for the analysis of PDEs, which includes linear stability analysis, con-
structions of steady states as well as efficient simulation tools. Substantial progress has
been made to establish systematic links between IBMs and the corresponding PDEs
(Degond and Motsch 2008; Ha and Tadmor 2008). This allows to combine the advan-
tages of both methods: straight forward translation of biological assumptions into the
IBMand strong analytical tools for the PDEmodel. The self-organised hydrodynamics
(SOH) approach (Degond and Motsch 2008) used in this work has been successfully
applied, e.g. to fibre interactions (Peurichard 2016), bacterial swarms (Degond et al.
2018), sperm fertility (Creppy et al. 2016) or ant trail formation (Boissard et al. 2013).

Paper Structure In Sect. 2, we present the individual-based model, at whose basis lies
the famous (Vicsek et al. 1995) model. This model describes SPPs that align their ori-
entation with neighbouring particles, to which we add a short-ranged repulsion term.
The environment consists of obstacles which are tethered via linear springs to anchor
points fixed in space. SPPs and obstacles exert either repulsive or attractive forces on
each other. Simulations of the IBM reveal the richness of possible patterns for this
simple system, which includes clustering, trail formation and travelling bands, and
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Fig. 1 (Color figure online) Ingredients of the IBM. a Shown are the two types of agents of the IBM, the
SPPs (red) and the obstacles (blue). b Deterministic effects that affect each agent individually. SPPs self-
propel themselves and experience friction, obstacles are elastically tethered to their anchor points and also
experience friction. c Stochastic effects for the SPPs (orientation) and the obstacles (position). d Interactions
include SPP repulsion, SPP alignment and SPP–obstacle interactions

motivate the formulation of a macroscopic PDE model of the SPP–obstacle interac-
tions. The derivation of themacroscopicmodel, presented in Sect. 3, builds on the SOH
technique for the SPPs, but requires new techniques for the obstacles. We focus on a
particular asymptotic regime, where the obstacle tethering is strong, i.e. strong spring
stiffness. The derived macroscopic model for SPP–obstacle interactions is presented
and interpreted in Sect. 3.3 and the main theorem is proven in Sect. 3.4. We capitalise
on themacroscopicmodel by analysing pattern formation through linear stability anal-
ysis in Sect. 4.1. In Sect. 4.2, we use the macroscopic model to discover that obstacles
mediate an effective SPP interaction with biphasic behaviour. Finally in Sect. 5, we
perform simulations in one space dimension of the macroscopic and individual-based
model and compare the results to each other and the analytical results. In Sect. 6, we
examine consequences of our findings for biology and discuss further steps.

2 The Individual-BasedModel (IBM)

2.1 Formulation of the IBM

The following model describes self-propelled individuals interacting with obstacles.
Biologically, the particles in our model typically represent cells (such as cancer, sperm
or bacterial cells), but can also describe animals or people. We assume they align
and repel each other. Alignment might be an active behaviour (e.g. birds might try
and adjust their movement direction to each other), or a passive effect caused, e.g.
by the individuals’ shape (rod shaped bacteria might align upon collision (Peruani
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et al. 2006). Obstacles are elastically tethered to fixed anchor points. They mimic a
complex environment, which acts on and reacts to particles, e.g. by repulsion. They
can represent, e.g. a fibrous network which is relatively fixed in space, but whose
components can be pushed upon interaction, after which they relax back towards their
original position. Other applications could include plants such as trees or sea grass. In
the following, we mathematically formalise these assumptions.

The starting point for our investigation is an individual-basedmodel (IBM), inwhich
the dynamics of each component is described by individual equations coupled through
interaction terms. We couple the famous Vicsek model for collective movement of
self-propelled particles (SPPs) (Vicsek et al. 1995) with an environmental model,
described by elastically tethered obstacles. Our IBM is set in n-dimensional space,
where n = 1, 2 or 3. The two components and interactions are depicted schematically
in Fig. 1. Several applications of collective movement, in particular when applied to
cells, take place at the micro-scale. These regimes are typically friction dominated
with negligible inertia (also called over-damped regime). We therefore formulate our
model in this friction dominated regime.

Model Components We model the following two types of agents:

– Obstacles We consider a set of N mobile obstacles with positions Xi (t) ∈ R
n for

i = 1, 2, . . . , N and time t ≥ 0. Each obstacle is tethered to a fixed anchor point
Yi ∈ R

n through a Hookean spring with stiffness constant κ > 0 and experiences
friction with the environment with friction constant η > 0.

– SPPs We denote by Zk(t) ∈ R
n the positions of the k-the SPP at time t ≥ 0

for k = 1, 2, . . . , M . Each SPP has a body orientation αk(t) ∈ S
n−1 and a self-

propulsion speed u0 in direction αk . SPPs experience frictionwith the environment
with friction constant ζ > 0.

Interactions We consider the following interactions:

– SPP alignment We assume each SPP aligns its body orientation αk to the mean
orientation ᾱk of body directions of SPPs in its neighbourhood with radius rA.
This happens with an alignment frequency ν > 0 and is analogous to the famous
Vicsek model for collective swarming (Vicsek et al. 1995).

– SPP repulsion SPPs repel each other at short distances, which models size-
exclusion effects. Following Degond et al. (2015), we model this by an even
pushing potential ψ : R

n �→ R with typical spatial scale rR > 0. The force felt
between two SPPs positioned at Zi and Z j is then given by ∇ψ

(
Zi − Z j

)
.

– Obstacle–SPP interaction We assume the obstacles and SPPs exert a force on each
other, which depends on the distance between them. Similar to the SPP repulsion,
we describe this by an even interaction potential φ : R

n �→ Rwith typical scale rI ,
yielding the force ∇φ (Z − X) for a SPP at position Z and an obstacle at position
X . In general, we assume this force to be repulsive; however, we will discuss the
effect of an attractive force in Sect. 4.

Stochasticity We include two sources of uncertainty, both modelled by independent
Brownian motions: Stochastic effects in the obstacle position (with intensity do) as
well stochastic effects in the SPP orientation (intensity ds).
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Model Equations The effects described above can be modelled through the following
coupled, stochastic ODEs. Note that in the absence of obstacles, the equations reduce
to the time-continuous Vicsek model, described, e.g. in Vicsek et al. (1995). From
here on, we work with the non-dimensional variables (but keeping the same names as
introduced above), in particular we have chosen the domain size L as reference length
and L/u0 as reference time. The latter can be interpreted as the time it takes a freely
moving SPP to cross the domain. We then obtain:

dXi = − κ

η
(Xi − Yi ) dt − 1

η

1

M

M∑

k=1

∇φ (Xi − Zk) dt + √
2do dBi

t , (1a)

dZk =αk dt − 1

ζ

1

N

N∑

i=1

∇φ (Zk − Xi ) dt − 1

ζ

1

M

M∑

l �=k

∇ψ (Zk − Zl) dt, (1b)

dαk =Pα⊥
k

◦
[
νᾱk dt + √

2ds d B̃k
t

]
, (1c)

where the mean direction ᾱk is defined via the mean flux Jk by

ᾱk = Jk

|Jk | , where Jk =
M∑

j=1
|Zk−Z j |≤rA

α j . (2)

The tether positions Yi are given and do not change in time. The operator Pα⊥
k
in (1c) is

an orthogonal projection onto α⊥
k and ensures that if αk(0) ∈ S

n−1, then αk(t) ∈ S
n−1

for all time. Note that we have scaled the interaction terms by the number of SPPs or
obstacles to prepare for the kinetic limit of Sect. 3.1.

Remark 1 (Modelling choices) In an attempt to create a minimal model, we did not
include a number of effects. For example, as opposed to Degond et al. (2015), we
don’t model relaxation of the SPP orientation to the SPP velocity. Notice also that
we did include repulsion between SPPs, but not repulsion between the obstacles. The
former helps avoid collapse of the SPP density. For the obstacles on the other hand,
this seems to be less likely due to their tethering in space. Also, there is no coupling
to a surrounding fluid, which will be subject of future work.

2.2 Simulations of the 2D IBM

We simulate the IBM (1) in two space dimensions. In this work, instead of doing
a more thorough investigation, we want to showcase what types of patterns can be
created based on the environmental interactions, emphasising the need for a PDE-
based description.

Simulation Set-Up We simulate the IBM using N = 5000 SPPs and M = 5000
obstacles on a 2Dsquare domainB = [0, 1]×[0, 1]with periodic boundary conditions.
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Fig. 2 (Color figure online) IBM patterns. Depicted are snapshots for three different example patterns from
the IBM simulations: Moving clusters (a), trails (b) and travelling bands (c). The first two columns show
the SPPs (red arrows) and the obstacles (blue diamonds) in the full 2D simulation domain at two different
time points, black arrows mark the mean SPP direction. Insets in the second column show resulting SPP
positions for simulations without obstacles. The last two columns show enlargements of the black box in
the first columns. In the ‘SPP’ column, the obstacles are shown in grey and the SPPs as black arrows, colors
mark SPP neighbourhood density. In the ‘obstacles’ column, SPPs are shown in grey. The lines connect each
obstacle to their anchor point, color marks obstacle displacement. Videos can be found in the Supp. Mat

We distribute the fixed anchor points Yi using a uniform distribution onB and initialise
the obstacle positions with Xi (0) = Yi . Initial SPP positions Zk(0) and orientations
αk(0) = (cos(ϕk), sin(ϕk)) are both chosen at random with uniform distributions on
B for Zk(0) and on [0, 2π ] for ϕk . For the interaction potentials, we use kernels of the
following shape

φ(x) = 3AI

2r3I π
(rI − |x |)2H(rI − |x |), ψ(x) = 3AR

2r3Rπ
(rR − |x |)2H(rR − |x |),

where H(x) is the Heaviside function. These kernels are compactly supported on
balls with radius rI and rR , respectively, and chosen to yield a continuous pushing
force decreasing linearly. They are normalised such that the force mass is AI and
AR , respectively. For simplicity, we choose all interaction radii to be the same, i.e.
rI = rA = rR . We leave the following parameters constant: do = 0, η = 1, ds = 0.1,
AI = 1. We’re left with five parameters: κ , ζ , ν, rI and AR .

IBM Simulation Results Figure 2 shows examples of the different patterns produced
by different choices of parameters, and Fig. 3 shows some associated statistics. Cor-
responding videos can be found in Supp. Mat. The second row in Fig. 3 shows that
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in all three cases SPPs globally align, i.e. the variance in SPP direction decreases. We
call the observed patterns: Moving clusters (κ = 100, ζ = 1, ν = 10, rI = 0.05,
AR = 0.01), Trails (κ = 2.5, ζ = 10, ν = 100, rI = 0.15, AR = 0.002) and
Travelling bands (κ = 100, ζ = 40, ν = 10, rI = 0.05, AR = 0.002) and give a
short description of them.

Moving Clusters In this regime, tether stiffness and SPP–obstacle repulsion are
high. The SPPs form very high density groups moving through the obstacles, whose
displacement from the anchor points is relatively low. In Fig. 2a, we see how a larger
cluster is split into two due to the obstacles, suggesting that the cluster size is controlled
by the dynamics. This might also be the reason for the relatively large changes in mean
SPP density over time seen in Fig. 3. Nevertheless, this pattern seems to be stable.

Trails Here, SPP alignment is strong, with low tether stiffness. The SPPs form
stripes parallel to their movement direction, which at t = 10 seem to be very regularly
spaced. Within the stripes, the SPPs are close together and consequently push the
obstacles away from the trails, leading to large obstacle displacements. Interestingly,
the trails become unstable and by t = 60, the SPPs form moving groups. We see
this instability building up and the trails falling apart around t = 26 in Fig. 3b. The
enlargements in Fig. 2 indicate that the instability of the trails might stem from the fact
that the obstacles are not symmetrically displaced to the right and left of the moving
trails.

Travelling Bands In this pattern, the spring strength is high and obstacle displace-
ments are consequently small. SPPs now form bands normal to their direction of
movement. At t = 60, we see in Fig. 2 that there appears to be a typical spacing
between the bands. These patterns seem to be stable.

Obstacles Reinforce and Diversify Patterns To assess the influence of the environment
on the pattern formation, we compare to simulations of the model without obstacles,
i.e. pure Vicsek-type dynamics with small SPP repulsion. In the inset in the second
column in Fig. 2, we see that in all three examples there is no patterning in absence
of the obstacles. Figure 3 shows that the alignment behaviour seems unaltered by the
obstacles, however formoving clusters and trails the obstacles lead tomuch higher SPP
densities. It is known that for some specific ranges of parameters, clusters and bands
already appear in simulations of the Vicsekmodel alone (Vicsek et al. 1995). However,
in the presence of obstacles their qualitative behaviour is different: the environment
seems to reinforce such structures and the travelling bands appear to be regularly
spaced, which is not the case for bands in the Vicsek model alone. In addition, the
homogeneous phase (common to the Vicsek dynamics) appears to be less common
here. Finally, we observe that also a completely new pattern emerges: trails.

The Need for a PDE Description The three patterns found by simulating the IBM
show that the interactions between SPPs and obstacles can lead to a rich repertoire of
patterns such as clustering, trails and travelling bands. While the system is relatively
simple, the number of parameters (about 15)make it prohibitively expensive to explore
fully the complete parameter space: Total computation time with an 1.80GHz Intel
Core i7 CPU was on the order of magnitudes of hours for one simulation shown in
Fig. 2. Simulation time increases with the number of SPPs and obstacles, with larger
interaction radii as well as with larger forces produced by the dynamics (e.g., by
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Fig. 3 (Color figure online) IBM statistics. Shown are some statistics for the IBM patterns in Fig. 2 for
moving clusters (a), trails (b) and travelling bands (c). Solid and dashed lines mark averages for simulations
with and without obstacles, respectively, shaded areas and dotted lines corresponding averages ± standard
deviations. SPP densities are calculated for each SPP by calculating the density within a disc of radius
rA = rR and dividing by the mean density in the domain

clustering), which necessitates smaller time steps. The shown patterns were found by
rough and preliminary parameter scans and we expect that there exist in fact many
more patterns. For each example pattern, a number of questions arise:

– Clusters It seems that large clusters split, leading to an intrinsic cluster size. If that
is the case how is cluster size controlled and how is it determined from parameters?
What determines particle density inside clusters?

– TrailsThe observed trails appear to be a transient, unstable pattern. Is the instability
due to the asymmetry in obstacle displacement and what causes it? Can other
parameters produce stable trails?

– Travelling bands Is there a set band wavelength and if yes, what determines it?
When are these patterns stable?

All these questions suggest that a continuous, PDE-based description of the sys-
tem is crucial to understanding the observed patterns, as well as to discover others. A
PDE-description has several advantages: Patterns such as travelling bands can be con-
structed explicitly and a stability analysis can performed. Further the PDE description
is inherently an averaging process reducing the number of parameters. Lastly, since
instead of numerically solving thousands of coupledODEs, one has to solve only a few
PDEs, simulations become much more efficient. The next section is therefore devoted
to the derivation of the PDE-based description of the SPP–obstacle model.
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3 Derivation of theMacro-model

In this section, we derive a macroscopic PDE-based model for the SPPs and the
obstacles. The IBM model in (1) serves as the starting point. The derivation is a two-
step process: First we formally derive a kinetic description for both the SPPs and the
obstacles by taking a mean-field limit. In the second step, we use a hydrodynamic
scaling for the SPPs and derive equations for the SPP density and orientation. For
this step, we use previous work (Degond and Motsch 2008; Degond et al. 2015). For
the obstacles, we focus on a particular parameter regime and assume to have low
obstacle noise and strong obstacle spring stiffness. The main technical difficulty and
newderivation strategy lie in this last step. Figure 4 summarises the different derivation
steps. Throughout the document, the domains of integrations are understood to mean
the whole domain, unless specified otherwise.

3.1 TheMean-Field Limit

We start by defining g(x, α, t), the distribution of the SPPs at position x ∈ R
n , time

t ≥ 0 with direction of the self-propelled velocity α ∈ S
n−1 and let f (x, y, t) be the

distribution of obstacles with position x ∈ R
n , tethered at y ∈ R

n at time t ≥ 0.
We consider the empirical distribution associated with the dynamics of the SPPs

and tethered obstacles given by system (1).

gM (x, α, t) = 1

M

M∑

k=1

δZk (t)(x) ⊗ δαk (t)(α) ,

f N (x, y, t) = 1

N

N∑

i=1

δXi (t)(x) ⊗ δYi (t)(y), (3)

where δA denotes the Dirac delta in R
n (for A = Xi , Yi , Zk) or in S

n−1 (for A = αk)
concentrated at A.

Lemma 1 (Kinetic Model) Formally, as N , M → ∞, f N → f and gM → g, where
the distributions f (x, y, t) and g(x, α, t) fulfil the following Kolmogorov–Fokker–
Planck equations
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∂t f + ∇x · (W f
) = doΔx f , (4a)

∂t g + ∇x · (Ug
) + ∇α ·

(
Pα⊥

[
νᾱg

]
g

)
= dsΔαg, (4b)

where

ᾱg(x, t) = Jg(x, t)

|Jg(x, t)| with Jg(x, t) =
∫

|x−z|≤rA

α g(z, α, t) dz dα. (5)

For the (space and time dependent) velocities, we have

W = −κ

η
(x − y) − 1

η
∇x ρ̄g(x, t),

U = α − 1

ζ
∇x ρ̄ f (x, t) − 1

ζ
∇x ρ̆g(x, t), (6)

where we have introduced the densities of obstacles and SPPs

ρg(x, t) =
∫

g(x, α, t) dα, ρ f (x, t) =
∫

f (x, y, t) dy, (7)

as well as an abbreviation for densities convoluted with kernels

ρ̄(x, t) := (φ ∗ ρ)(x, t), ρ̆(x, t) := (ψ ∗ ρ)(x, t).

Further f fulfils ∫
f (x, y, t) dx = ρA(y), (8)

where ρA(y) is a given, time-independent function of obstacle anchor positions.

Proof The limit is purely formal and uses standard techniques. We observe that f N

and gM fulfil the equations for all N and M and then pass to the limit. ��
Remark 2 Note that since f and g are probabilities, they also fulfil

∫
f (x, y, t) dx dy =

∫
g(x, α, t) dx dα ≡ 1,

and consequently

∫
ρA(y) dy = 1.

Interpretation At this point, we have a system of coupled kinetic equations for the
obstacle distribution f (x, y, t) and the SPP distribution g(x, α, t). The interactions
between the obstacles and the SPPs lead to the terms of the form∇x ρ̄ in the speedsW
andU in (6). An easy way to understand these terms is by assuming that the interaction
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force is of repulsive nature and purely local, in which case ∇x ρ̄ = ∇xρ. We then see
that the interaction force moves obstacles and SPPs in the opposite direction of the
gradient of each other. The convolution with φ accounts for the potential non-locality
of this interaction, which will be crucial later on. The remaining terms in W and U
show the influence of the tethers and the self-propulsion for obstacles and the SPPs,
respectively. In U , we also see the influence of SPP repulsion. The term involving ∇α

in (4b) reflects the effect of SPP alignment. The terms on the right-hand side of (4) are
results of the stochasticity in the obstacle position (for f ) and in the SPP orientation
(for g).

3.2 Scaling Assumptions

To derive the macroscopic equations for the SPP–obstacle interactions, we make a
number of scaling assumptions for both the SPPs and the obstacles.

Scaling Assumptions for the SPPs Following previous work Degond and Motsch
(2008), Degond et al. (2015), we introduce a small parameter ε and specify the rel-
ative order of the various terms. We mostly follow Degond et al. (2015), with a few
small differences: Firstly we assume the effect of alignment to be purely local, i.e.
rA = O(ε), as has been done e.g. in Degond and Motsch (2008). Alternatively one
could choose a weakly non-local scaling rA = O(

√
ε), which would lead to an addi-

tional viscous term in the SPP orientation equation (13b) below. As in Degond et al.
(2015), we also assume the SPP self-repulsion to be purely local, i.e. rR = O(ε) and
assume that

∫
ψ(x) dx =: μ < ∞.

However, we do not make any smallness assumption with regard to the SPP–obstacle
interaction scale rI . This is because we are interested in studying the effect of the
non-locality of this interaction. Otherwise we proceed as in Degond et al. (2015), i.e.
assuming the alignment frequency ν and orientational diffusion ds to be of order 1/ε,
and their ratio to be of order one.

Scaling Assumptions for the Obstacles From (6), we see that it is only the macroscopic
obstacle densityρ f (x, t) that enters the SPP equation. Unfortunately, we cannot obtain
a closed system for the macroscopic obstacle density ρ f (x, t) of f by integrating (4a).
Instead we make assumptions about the time scales of the obstacle dynamics. From
now on, we also assume to have a constant anchor density, i.e. ρA ≡ 1 is constant in
space and time. We note that the results can be generalised to non-uniform ρA. We
introduce the following quantities

γ = η/κ, δ = doγ.

For the derivation, we will assume both γ and δ to be small. For γ , this means that the
obstacle spring relaxation time scale is small compared to the SPP domain crossing
time. We will sometimes refer to this assumption as ‘stiff obstacles’, since it can be
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realised with a large spring constant κ . For δ, smallness means that the obstacle spring
relaxation time scale is small compared to the obstacle diffusion time scale, which we
refer to as ‘low obstacle noise’. Next we rewrite (4a) as

∂t f + ∇x · (ṽ(x, t) f ) = 1

γ
Ay( f ), (9)

where we have defined the ‘external’ velocity as

ṽ(x, t) = −1

η
∇x ρ̄g(x, t) (10)

and the operator Ay by

Ay( f ) := ∇x · [(x − y) f + δ∇x f ] . (11)

We can rewrite the operator as

Ay( f ) = δ∇x ·
[

Mδ(x − y)∇x

(
f

Mδ(x − y)

)]
,

where Mδ(z) is a Gaussianwith variance δ centred around 0, whosemass is normalised
to one, i.e.

Mδ(z) = 1

Zδ

e− |z|2
2δ , Zδ = (2πδ)n/2. (12)

The above also shows that Mδ(x − y) is in the kernel of Ay .

Remark 3 Note that the rescaling of the diffusion term δ = doγ ensures the oper-
ator Ay is a Fokker–Planck-type operator. Without it, we would obtain Ay( f ) =
∇x · [(x − y) f ], whose kernel contains Dirac deltas, making the analysis much more
tedious. Eventually, however, we are interested in the small noise limit. This, of course
raises several questions, which are beyond the scope of this work, e.g. does the order
of the limits γ → 0 and δ → 0 matter?

3.3 TheMacroscopic SPP–Obstacle Equation

Using the scaling and notation above, we now state the main result of this section,
which we prove in Sect. 3.4.

Theorem 1 (SPP–ObstacleMacromodel) Let ρA ≡ 1 be constant and f (x, y, t) fulfill
(9) with γ � 1 and δ � 1. Further let gε(x, α, t) be the solution of (4b) using the
scaling involving ε described above and let g0(x, α, t) be its (formal) limit as ε → 0.
Then it holds that

g0(x, α, t) = ρg(x, t)N�g(x,t)(α),
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where N� is the von Mises–Fisher distribution defined by

N�(α) = 1

Kd
e

�·α
d , Kd =

∫
e

�·α
d dα, d = ds

ν
, for � ∈ S

n−1.

Note that Kd is a normalisation constant and is independent of �. Further the macro-
scopic SPP density ρg(x, t) and the macroscopic SPP orientation �g(x, t) fulfil

∂tρg + ∇x · (
Uρg

) = 0, (13a)

ρg∂t�g + ρg (V · ∇x ) �g + d P�⊥
g
∇xρg = 0, (13b)

U = c1�g − 1

ζ
∇x ρ̄ f − μ

ζ
∇xρg, V = c2�g − 1

ζ
∇x ρ̄ f − μ

ζ
∇xρg, (13c)

The constants c1 > 0 and c2 > 0 depend only on d = ds/ν and are defined as
in Degond et al. (2015). The macroscopic obstacle density ρ f (x, t) is given by

ρ f (x, t) = 1 − γ

δη

[
ρ̄g(x) − [

M2δ ∗ ρ̄g
]
(x)

]

− γ 2

η
∂tΔx ρ̄g + γ 2

η2
N (ρ̄g) + O(γ 2δ) + +O(γ 3), (14)

where the nonlinear term N is defined by

N (ρ̄g) = 1

2

[
(Δx ρ̄g)

2 − H(ρ̄g) : H(ρ̄g)
]

,

where H(ρ̄g) denotes the Hessian of the function ρ̄g, i.e. {H(ρ̄g)}i, j = ∂i∂ j ρ̄g, and
given two n by n matrices A and B, their scalar product is defined as A : B =∑n

i, j=1 Ai, j Bi, j .

Equations (13a) and (13b) give the evolution for the particle density ρg and mean
orientation�g , respectively.Without the term∇x ρ̄ f appearing inU andV in Eq. (13c),
these equations correspond to the so-called Self-Organised Hydrodynamics with
Repulsion (SOHR) and their derivation can be found in Degond et al. (2015). The
additional terms in Eq. (13c) account for the influence of the obstacles density ρ f .

The equation for the obstacle density, expanded in the small variables δ and γ , is
given in (14). It is important to note that the obstacle density given in (14) can in
principle become negative, which is not physically meaningful. This is a consequence
of the assumption that γ is small and indicates that the validity of the model will
be limited to certain parameter regimes. We see that for infinitely strong springs, i.e.
γ → 0, ρ f (x, t) ≡ ρA ≡ 1, i.e. obstacles remain exactly at their anchor points and
since those are assumed to be uniformly distributed, the obstacles have no effect on
the SPPs (∇x ρ̄ f ≡ 0). For small, but finite γ the feedback from the SPPs leads to
non-uniform obstacles.
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Influence of Obstacle Noise The influence of the obstacle noise δ is contained in the
order γ term in (14). We note that

− 1

δη

[
ρ̄g(x) − (

M2δ ∗ ρ̄g
)
(x)

]
→ 1

η
Δx ρ̄g(x) as δ → 0.

We see that the noise adds an additional form of non-locality. Whether the obstacle
density is reduced or increased depends on whether ρ̄g , the convoluted SPP density
at x is smaller or larger than the ‘blurred’, convoluted SPP density ρ̄g , where the
amount of blurring depends on the obstacle noise. In the absence of obstacle noise,
(14) simplifies to

ρ f (x, t) = 1 + γ

η
Δx ρ̄g(x) − γ 2

η
∂tΔx ρ̄g + γ 2

η2
N (ρ̄g) + O(

γ 3). (15)

SPP Dynamics Deform Obstacle Volume Elements In the absence of obstacle noise,
we can rewrite (15) as

ρ f (x) = det JY − γ 2

η
∂tΔx ρ̄g + O(

γ 3), (16)

where JY is the Jacobian of the map

Y (x, t) = x + γ

η
∇x ρ̄g(x, t).

The map Y can be interpreted as an estimate of the anchor position of an obstacle at
position x moved under the influence of the SPP density. Then the determinant of the
Jacobian reflects the deformation of a volume element of obstacles due to the SPPs.
Note that for n = 3 det JY contains also order γ 3 terms, for n = 2 only order γ 2 terms
and lower.

Higher-Order Terms Account for SPP Movement Finally, we comment on the time
derivative appearing in (14). The time derivative leads to a form of delay, i.e. the
obstacles retain a memory of where SPPs were. This can be seen by Taylor expanding
the SPP density in time using the time scale of obstacle relaxation γ . Then the linear
terms in (15) can be written as

γ

η
Δx

(
ρ̄g − γ ∂t ρ̄g

) = γ

η
Δx ρ̄g(x, t − γ ) + O(

γ 2).

Finally in preparation for the analytical and numerical investigation of Sects. 4 and 5,
we state the following:

Corollary 1 (1D equations.) Let the assumptions of Theorem. 1 hold. Then for n = 1,
the equations for the SPP density ρg(x, t) and the obstacle density ρ f (x, t) with x ∈ R

and t ≥ 0 are given by
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∂tρg + c1∂xρg = 1

ζ
∂x

(
μρg∂xρg + ρg∂x ρ̄ f

)
, (17)

where we have assumed all particles move to the right. The obstacle density up to
order γ 2 is given by

ρ f (x, t) = 1 − γ

δη

[
ρ̄g(x) − [

M2δ ∗ ρ̄g
]
(x)

]
− γ 2

η
∂t∂

2
x ρ̄g. (18)

For δ → 0 and using only terms up to order γ , (18) simplifies to

ρ f (x, t) = 1 + γ

η
∂2x ρ̄g. (19)

3.4 Proof of Theorem 1

For the coarse-graining of the kinetic SPP equation (4b), we refer to previous work
(Degond and Motsch 2008; Degond et al. 2015). We note that the obstacle density
enters the SPP equation solely through its macroscopic density ρ f (x, t) via the inter-
action operator ∇x ρ̄ f , which has a structure analogous to the SPP self-repulsion term,
hence analogous techniques can be applied.

To derive an expression for the obstacle density ρ f (x, t), we formulate and prove
the following Theorem:

Theorem 2 Let ρA ≡ 1 and f (x, y, t) fulfil (9) with Ay( f ) defined in (11). Let γ � 1
and expand f (x, y, t) as

f (x, y, t) = f0(x, y, t) + γ f1(x, y, t) + γ 2 f2(x, y, t) + O(γ 3). (20)

Then the macroscopic densities defined by

ρ fi (x, t) =
∫

fi (x, y, t) dy (21)

satisfy

ρ f0(x) = 1

ρ f1(x) = −div(ṽ) − δ
1

2
Δxdiv(ṽ) + O(δ2),

ρ f2(x) = 1

2
∇x · [

ṽ div(ṽ) − (ṽ · ∇x )ṽ
] + ∂tdiv(ṽ) + O(δ), (22)

as δ → 0. We use the notation div = ∇x · for the divergence of a vector field.
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Proof In the following,we drop the t-dependence ofmost terms to increase readability.
We obtain the following equations for the three highest orders of γ

Ay( f0) = 0, (23a)

Ay( f1) = ∂t f0 + ∇x · (ṽ(x) f0), (23b)

Ay( f2) = ∂t f1 + ∇x · (ṽ(x) f1). (23c)

Let us note that (23a), (23b), and (23c) can be recast as follows: Given a function h
find ψ (in a suitable functional space) such that

Ay(ψ) = h . (24)

Due to the conservation of mass property ofAy , i.e.
∫ Ay dx = 0, a necessary condi-

tion to warranty the existence of a solution of (24) is
∫

h dx = 0. It can be shown that
the operatorAy has compact resolvent on a suitable functional space and its kernel is
generated by Mδ(x − y), given in (12). The most important properties of the Gaussian
Mδ , that we will use repeatedly are

∫
Mδ(z) dz = 1,

∫
zMδ(z) dz = 0, ∇z Mδ(z) = − z

δ
Mδ(z).

Hence, we can obtain a complete characterisation of the solutions of (24) via the
Fredholm alternative, namely, for any function h such that

∫
h dx = 0 there exists

a unique solution ψ up to an element of the kernel of Ay . For a proof of this result,
consult (Aceves-Sanchez et al. 2019).

Let us start by considering (23a), we search for a solution f0 such that∫
f0(x, y) dx = 1; hence, according to the results obtained for (24), the unique solu-

tion is given as

f0(x, y) = Mδ(x − y), (25)

where Mδ is defined in (12). For the remaining two equations, we require the following
scaling condition to hold, which ensures that the average mass is one,

∫
fi (x, y, t) dx = 0, i = 1, 2. (26)

Step 1: Rescaling Next we define the functions h1(σ, y, t) and h2(σ, y, t) as

f1(x, y, t) = 1√
δ

Mδ(x − y) h1

(
x − y√

δ
, y, t

)
,

f2(x, y, t) = 1

δ
Mδ(x − y) h2

(
x − y√

δ
, y, t

)
.
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This turns (23b) and (23c) into equations for h1(σ, y, t) and h2(σ, y, t). Defining B
as the operator

B(h) = Δσ h − σ · ∇σ h, (27)

we obtain, after tedious but straightforward computations, the following relationships

B(h1) = √
δ div(ṽ)|y+√

δσ − σ · ṽ|y+√
δσ ,

B(h2) = √
δ
(
∂t h1 + h1 div(ṽ)|y+√

δσ

)
+ ṽ|y+√

δσ · (∇σ h1 − σ · h1). (28)

There are several advantages to this scaling: Firstly, the operator B is the generator
of the Ornstein–Uhlenbeck stochastic process (a consequence of using σ = (x −
y)/

√
δ) and we can use its well-known properties directly without having to scale

by δ. Secondly, we have removed the Gaussian Mδ from the equation (it cancelled).
Finally, additionally scaling f1 and f2 by 1/

√
δ and 1/δ, respectively, turns out to be

the correct choice when calculating the densities.
Before we proceed to the next step, we need to collect a number of properties of B,
all of which are well known and stated in “Appendix A.2”.

Step 2: Expansion in terms of the obstacle noise δ. The next step involves expansion
of the right-hand sides of (28), h1 and h2 with respect to δ, i.e.

h1(σ, y, t) = h0
1(σ, y, t) + √

δh1
1(σ, y, t) + δh2

1(σ, y, t) + O(δ3/2),

h2(σ, y, t) = h0
2(σ, y, t) + √

δh1
2(σ, y, t) + δh2

2(σ, y, t) + O(δ3/2).

This yields as equations for h0
1, h1

1 and h2
1

B(
h0
1

) = −ṽkσk,

B(
h1
1

) = ∂i ṽi − σkσi∂k ṽi ,

B(
h2
1

) = σk∂ki ṽi − 1

2
σkσiσ j∂i j ṽk .

Note that we have used the Einstein’s summation convention and that now ṽ and its
derivatives are all evaluated at (y, t). Here partial derivatives are understood to act
on the spatial variable, i.e. ∂i ṽ := ∂

∂ yi
ṽ(y, t). The advantage of this procedure is the

following: Now the right-hand sides are low-order polynomials in σ and since B only
acts on σ , the equations can be solved explicitly by rewriting the right-hand sides
in terms of the Hermite basis and using P2 of Lemma 4 in “Appendix A.2”. This
procedure yields the explicit solutions
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h0
1(σ, y, t) = ṽiHei ,

h1
1(σ, y, t) = 1

2
∂k ṽ jHek+e j ,

h2
1(σ, y, t) = 1

2

[
∂i i ṽk Hek + 1

3
∂i j ṽk Hek+ei +e j

]
, (29)

whereH are the tensor Hermite polynomials defined in Lemma 4 in “Appendix A.2”.
Note that ṽ and all its derivatives are evaluated at (y, t) and H at σ .
As equations for h0

2 and h1
2, we obtain

B(h0
2) = ṽ ·

(
∇σ h0

1 − σh0
1

)
,

B(h1
2) = ∂t h

0
1 + ∂i ṽi h0

1 + (σk∂k ṽ) ·
(
∇σ h0

1 − σh0
1

)
+ ṽ ·

(
∇σ h1

1 − σh1
1

)
.

As above ṽ and its derivatives are all evaluated at (y, t). Using the solutions for h0
1,

h1
1 and h2

1 given in (29), we can solve the equations for h0
2 and h1

2 in the same fashion,
yielding the explicit expressions

h0
2(σ, y, t) = 1

2
ṽk ṽ jHek+e j ,

h1
2(σ, y, t) = (−∂t ṽk + ṽi∂i ṽk) Hek + 1

2
ṽi∂k ṽ j Hek+ei +e j . (30)

Note that the solutions fulfil the scaling condition (26) since it holds that

∫
M1(σ )h j

i (σ, y, t) dσ = 0, i = 1, 2, j = 0, 1, 2. (31)

Step 3: Calculating the macroscopic moments of the obstacle density With the prepa-
ration of the two steps above, the calculation of the obstacle densities

ρ fi (x, t) =
∫

fi (x, y, t) dy,

and consequently its contribution to the SPP equation becomes relatively simple.
The procedure and calculations are described in “Appendix A.3”. This yields (22) as
claimed. ��
Explicit Solution for f1 The above outlined procedure works for any given external
velocity ṽ(x, t), i.e. it allows to include other influences as well. For example, in future
workwe plan to use the derivation strategy to include the description of a fluid inwhich
the obstacles and SPPs are immersed in. However, for this model, we can use the fact
that ṽ(x, t) is in fact a conservative vector field. This allows to solve the first-order
equation (23b) for f1(x, y, t) directly. This is covered in the following lemma, where
the t dependence has been suppressed for notational convenience.
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Lemma 2 Let ṽ(x) be a conservative vector field, i.e. there exists a scalar function
V (x), such that ∇x V = ṽ, then we can write the solution to (23b) as

f1(x, y) = Mδ(x − y)
1

δ
[V (x) − (Mδ ∗ V ) (y)]

Proof By direct calculation, we see that

(x − y) f1 + δ∇x f1 = Mδ(x − y)ṽ(x),

which shows that f1 is indeed a solution to (23b). Finally, we have to verify the
normalisation condition (26)

∫
f1(x, y) dx = 1

δ

∫
Mδ(x − y) [V (x) − (Mδ ∗ V ) (y)] dx

= 1

δ

[∫
Mδ(x − y)V (x) dx − (Mδ ∗ V ) (y)

]
= 0,

which finishes the proof. ��
The above Lemma is applicable for this model of SPP–obstacle interactions since

we have that

ṽ(x, t) = −1

η
∇x ρ̄g(x, t),

i.e. we can use Lemma 2 with V (x, t) = − 1
η
ρ̄g(x, t). We consequently find

f1(x, y, t) = −Mδ(x − y)
1

δη

[
ρ̄g(x, t) − (Mδ ∗ ρ̄g)(y, t)

]
.

From this, we can calculate

ρ f1(x, t) = − 1

δη

[
ρ̄g(x) − (

M2δ ∗ ρ̄g
)
(x)

]
. (32)

Remark 4 Note that since

− 1

δη

[
ρ̄g(x) − (

M2δ ∗ ρ̄g
)
(x)

]
= 1

η

[
Δx ρ̄g(x) + δ

2
Δ2

x ρ̄g

]
+ O(δ2),

we see that this is consistent with (22), but contains more information about theO(δ2)

term.

The Macroscopic Obstacle Density Collecting the results of Theorem 2 and Lemma 2
and using the definition of ṽ given in (10), we find that the maximum order of approx-
imation of the obstacle density we can now write is given in (14) as claimed. This
finishes the proof of Theorem 1. ��
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4 Analytical Insights from the 1DMacromodel.

In this section, we analyse the macroscopic model derived in Sect. 3 further to gain
insights into the SPP–obstacle interactions. In particular, we use linear stability anal-
ysis to understand the onset of patterning and investigate how obstacles induce an
effective SPP interaction.

4.1 Linear Stability Analysis

In this section, we investigate pattern formation for the SPP–obstacle model. We work
in one space dimension, i.e. we focus on the SPP density ρg(x, t) and the obstacle
density ρ f (x, t) for x ∈ R or and t ≥ 0, whose dynamics are given by (17) and (18).

Consider the steady-state solution ρg(x, t) = ρ0 > 0. Small perturbations of this
solutions (called again ρg) then fulfil the linearised equation

∂tρg + c1∂xρg = ρ0

ζ

(
μ∂2x ρg + ∂2x ρ̄ f

)
, (33)

where ρ f is still given by (18).
The following propositions examine the growth or decay behaviour of perturbations

of the constant steady state in dependence on their angular frequency and the resulting
linear stability of the constant steady state. We consider the equation on the whole
space x ∈ R and posed on an interval with periodic boundary conditions.

Proposition 1 (Linear stability) Consider (33) coupled to (18) posed (a) on x ∈ R

and (b) on x ∈ [0, 1] with periodic boundary conditions.
(i) The system permits solutions of the form ρg(x, t) = ρeikx+αt , with ρ �= 0, α ∈ C

and k ∈ R (case a) or k ∈ 2πZ (case b) where α and k fulfil the following dispersion
relation

α(k) = −i
kc1

1 + γ 2 ρ0
ηζ

k2φ̂2
k

+ ρ0

ζ
k2

γ
ηδ

(
1 − e−δk2

)
φ̂2

k − μ

1 + γ 2 ρ0
ηζ

k2φ̂2
k

, (34)

where φ̂k is the Fourier transform (case a) or Fourier coefficient (case b) of the kernel
φ, defined by

φ̂k =
∫

e−ikxφ(x) dx,

where the integration domain is understood to be R (case a) or [0, 1] (case b).
(ii) The constant steady state ρg(x, t) = ρ0 is linearly stable iff

max
k∈K

1

δ

(
1 − e−δk2

)
φ̂2

k <
μη

γ
, (35)

where K = R (case a) or K = 2πZ (case b).
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Proof We show the proof for case a, case b can be shown analogously. (i) Substituting
the ansatzρg(x, t) = ρekix+αt into (33) is equivalent to applying the Fourier transform
to the whole equation. We use the following properties of the Fourier transform

f̂ ∗ g = f̂ ĝ, ∂̂x f = ik f̂ , M̂δ = e− δ
2 k2 ,

and obtain an equation for ρ̂g(k, t) = ∫
e−ki xρg(x, t) dx .

∂t ρ̂g = −ikc1ρ̂g − ρ0

ζ
k2

(
μρ̂g + φ̂k ρ̂ f

)
.

For the Fourier transform of ρ f , we obtain

ρ̂ f (k, t) = δ̃(k) − γ

η

(
1 − e−δk2

)
φ̂k ρ̂g + γ 2

η
k2φ̂k∂t ρ̂g,

where δ̃(k) is the Dirac delta. Substituting ρ̂ f into the equation for ρ̂g gives

∂t ρ̂g(k, t) = α(k)ρ̂g(k, t),

with α(k) given in (34) as claimed.
(ii) We note that the decay or growth behaviour is determined by the sign of the real
part of α(k). Since the denominator will always be positive, it is sufficient to examine
the numerator. This gives the result. ��
Corollary 2 Let ρ f be given only up to order γ and let δ → 0. Then the real part of
α(k) in Proposition 1 becomes

�α(k) = ρ0

ζ
k2

(
γ

η
(kφ̂k)

2 − μ

)
.

Interpretation We interpret the results of Proposition 1(ii) as indication under what
conditions patterning is expected.We start by observing that in the absence of obstacle
noise, δ → 0, the linear stability condition (35) simplifies to

max
k

(kφ̂k)
2 <

μη

γ
.

Since 1
δ

(
1 − e−δk2

)
≤ k2, we observe that the obstacle noise δ > 0 has a stabilising

effect. The constant on the right-hand side is critical for (in)stability. We see that
SPP self-repulsion, strong obstacle springs and high obstacle friction stabilise the
system. The order γ 2 approximation of the obstacle density leads to the additional
terms in the denominator. It does not influence whether the constant steady-state
destabilises; however, it decreases the growth or decay rate of the perturbations. The
main determinant for pattern formation is the SPP–obstacle interaction kernel φ and
the decay behaviour of its Fourier transform or coefficients. In case of purely local
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interactions, φ̂k is constant andwe see that thewe have destabilisation for all parameter
values, since for large frequencies the real part of α will always become positive. This
emphasises the importance of the non-locality of the SPP–obstacle interactions. Next
we look at a specific case.

Example 1 We assume δ → 0 and further consider the obstacle density only up to
order γ . We work on x ∈ [0, 1] with periodic boundary conditions. Further we let
the microscopic SPP–obstacle interaction kernel φ be compactly supported on the
interval [−rI , rI ] and yield a pushing force that decreases linearly with distance and
is continuous at rI , i.e.

φ(x) =
⎧
⎨

⎩
C 3

2rI

(
1 − |x |

rI

)2
if |x | < rI

0 else.

In this case, we can calculate the Fourier coefficients explicitly and obtain

φ̂k = 6C
rI k − sin (rI k)

(rI k)3
.

The function

F(k) = (kφ̂k)
2 =

(
6C

rI

)2 (
rI k − sin (rI k)

(rI k)2

)2

attains its maximum at k = π/rI and we hence find that if

(
6C

πrI

)2

<
μη

γ
.

then the spatially constant steady state is linearly stable. The converse is in general not
true, since π/rI will typically not be in 2πZ. In the case of destabilisation, we expect
the pattern size P to be related to the maximum of �α(k), given in Corollary 2. We
observe that F(k) → 0 for k → ∞ and hence �α(k) < 0 for k sufficiently large.
This means high-frequency perturbations will be damped by the diffusion-like SPP
self-repulsion term. Since�α(0) = 0, there will typically be a well-definedmaximum
attained at some k = 2πlmax with lmax ∈ Z. We then expect that P defined by

P = 1

lmax

will be a good indication of the expected pattern size. We numerically investigate
whether this holds also far away from the constant steady state and for the IBM in
Sect. 5.2.
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Fig. 5 (Color figure online)Micro–macro-interactions. Shownare themicroscopic SPP–obstacle interaction
force φ′(x) and the resulting macroscopic interaction force W ′(x) for a 1D example, where φ(x) defined as
in Example 1, for (a) C = 1, i.e. repulsive and (b) C = −1, i.e. attractive. The schematic below illustrates
the underlying interactions, where red and blue arrows mark the effect of the SPPs on the obstacles and
vice versa, respectively. Grey arrows show the net effect the group of SPPs in the center has on other SPPs

4.2 Obstacle–Induced SPP Interaction

In this section, we show how properties of the interactions between SPPs and obstacles
on the micro-level inform the properties on the macro level and find some interesting
connections to equations for granular flow, porous media and aggregation equations.
We focus on the simplest case, where we assume the obstacle noise to be zero and
consider the obstacle equation only until order γ . Further we work in one space
dimension where many calculations can be done explicitly. Then the system of interest
for the SPP density ρg(x, t) and the obstacle density ρ f (x, t) for x ∈ R and t ≥ 0 is
given by (17) coupled to (19).

A Non-local Equation with Gradient Flow Structure If we substitute ρ f given in (19)
into the equation for ρg given in (17), we obtain

∂tρg + c1∂xρg = 1

ζ
∂x

[
ρg∂x

(
μρg + γ

η
φ′ ∗ φ′ ∗ ρg

)]
, (36)

We now see that we have a nonlinear, non-local model with a gradient flow structure.
These types of equations appear in awide range of contexts ranging fromgranular flow,
porous media and biological aggregation (Otto 2001; Topaz et al. 2006; Toscani 2000)
and their properties are subject of intense study (Ambrosio et al. 2008; Benedetto et al.
1998; Carrillo et al. 2003). The term stemming from the SPP self-repulsion is often
written as μρ = H ′(ρ), where H(ρ) = μ

2 ρ2 is the SPP density of internal energy of
the system. For the term stemming from the SPP–obstacle interaction, we can define
the interaction kernel

W (x) = (φ′ ∗ φ′)(x). (37)

Note that while φ is the microscopic interaction potential between SPPs and obstacles,
W can be interpreted as macroscopic obstacle–induced SPP interaction potential.
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Bi-phasic Effect at the SPP Level We now infer properties of W (the macro-interaction
potential) from properties of φ (the micro-interaction potential). Note that φ′ > 0 or
W ′ > 0 indicate forces to the left and φ′ < 0 or W ′ < 0 indicate forces to the right.

Lemma 3 (Obstacle–induced SPP interactions) Let φ(x) be an even potential. Then
φ′ is odd and we can define a function ϕ on [0,∞) by

φ′(x) = ϕ(|x |) sign(x), (38)

using the convention that sign(0) = 0 and defining ϕ(0) := limx→0+ ϕ(x). Let ϕ(0) �=
0 and ϕ be continuous with bounded first derivative on [0,∞). We further assume that
ϕ has compact support on [0, rI ] for some rI > 0, and that ϕ and ϕ′ have constant
but opposite sign on their support. Let W be defined as in (37). Then the following
holds:

(i) W is an even potential continuous on R and continuously differentiable on R\{0}.
W has compact support on [−2rI , 2rI ].

(ii) W is an attractive potential for short distances, i.e. W ′(x) > 0 for x > 0, x
small.

(iii) W is a repulsive potential on (rI , 2rI ), i.e. W ′(x) < 0 for x ∈ (rI , 2rI ).

Proof (i): Since W is the convolution of two compactly supported, bounded functions,
W is continuous. Using the definition of W and that φ′ is odd, we calculate

W (−x) =
∫

φ′(y)φ′(−x − y) dy

=
∫

φ′(−y)φ′(−x + y) dy =
∫

φ′(y)φ′(x − y) dy = W (x).

Using (38), we calculate φ′′(x) = ϕ′(|x |)+2ϕ(0)δ(x), where δ is the Dirac delta. We
therefore obtain

W ′(x) = (φ′′ ∗ φ′)(x)

=2 ϕ(|x |)ϕ(0)sign(x) +
∫

ϕ′(|z|)ϕ(|x − z|)sign(x − z) dz. (39)

The second term is continuous in x , since it is the convolution of two compactly
supported functions, both bounded, in particular it is zero if evaluated at x = 0 due to
symmetry. The first term is continuous on R\{0} hence the same is true for W ′. That
W is compactly supported on [−2rI , 2rI ] is a consequence of the support of φ′.
(ii): Using (39), we find that

lim
x→0+ W ′(x) = 2(ϕ(0))2 > 0,

which together with the results of (i) shows that W ′(x) > 0 for small, but positive x .
This shows that W is an attractive potential for small distances.

123



  129 Page 26 of 39 P. Aceves-Sanchez et al.

(iii): Let x ∈ (rI , 2rI ). Using (39), we find that

W ′(x) =
∫ rI

x−rI

ϕ′(z)ϕ(x − z) dz. (40)

By assumption, the product of ϕ′ and ϕ is negative, which shows that W is an repulsive
potential at distances between rI and 2rI . This finishes the proof. ��
Example 2 (Micro–macro-potentials) We illustrate the results of the above Lemma
with two examples of SPP–obstacle potentials. Using the notation introduced in (38),
we consider for r ∈ [0,∞)

ϕ1(r) = C
3

r2I

(
1 − r

rI

)
H(rI − r), ϕ2(r) = C

1

2r2I
e−r/rI ,

where H is the Heaviside function, rI > 0. ±C > 0 corresponding to attractive
and repulsive SPP–obstacle interactions, respectively. The function ϕ1 corresponds to
the potential of Example 1, which is compactly supported and covered by Lemma 3,
while ϕ2 corresponds to a kernel without compact support. Figure 5a and b shows the
resulting obstacle–induced SPP forces W ′

1 for ϕ1 forC = −1 andC = 1, respectively.
For ϕ2, we can see the bi-phasic behaviour directly by calculating

W ′
2(x) = 1

4r5I
e
− |x |

rI (2rI − |x |) sign(x),

showing that W2 is an attractive potential for |x | < 2rI and repulsive otherwise. Note
that for both examples the sign of C doesn’t affect the shape of W ′.

Lemma 3 and Example 2 show that the SPP–obstacle interactions will have a short-
ranged attractive effect on SPP level, irrespective of whether themicro-interaction was
attractive or repulsive. This can be understood intuitively, see Fig. 5: If the SPPs and
obstacles repel each other, the obstacles that have been repelled by a group of SPPs
will in turn repel other SPPs and therefore lead to further aggregation of the SPPs
(Fig. 5a). On the other hand, if the SPPs attract the obstacles, the obstacles attracted
by a group of SPPs will attract even more SPPs, again leading to an aggregation effect
on the SPP level (Fig. 5b). Further Lemma 3 shows that if the SPP–obstacle interaction
force (whether attractive or repulsive) is falling with distance, we see that in addition
to the short-ranged attraction, we have a long-ranged repulsion at the SPP level as
well. The second example in Example 2 suggests that this property is not limited to
compactly supported functions and that Lemma 3 can be generalised to a bigger class
to kernels.

These observations already give a good intuition to understand the phenomena
observed in Sect. 2.2. For both the moving clusters and the travelling bands, the
1D equations (along the global alignment direction) would correspond to moving
aggregates of SPPs. Both the moving clusters and the travelling bands seem to have
controlled size, in particular we observed that a cluster that is too big is split into
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two. The above observations now give an explanation for the observed behaviour: The
SPP–obstacle interaction leads to short-ranged SPP attraction and hence aggregation,
however, due to the two sources of repulsion (SPP self-repulsion and obstacle–induced
repulsion), clusters cannot grow too large. Nextwe perform1D simulations to compare
the macro-model with the IBM.

5 Numerical Results in 1D

In this section, we numerically solve the 1D macro-model for SPP–obstacle interac-
tions and compare the results to both 1D IBM simulations and the analytical results
of Sect. 4. Simulation details can be found in “Appendix A.1”.

5.1 Comparing SOH and IBM Simulations

The Macro-SPP Obstacle Model Produces Travelling Clusters We simulate (17) cou-
pled to (19) in 1D using periodic boundary conditions on x ∈ [0, 1] and the following
parameter choices: η = 1, c1 = 1, ζ = 8, γ = 2× 10−3 and μ = 5× 10−4. We use a
linear microscopic interaction force, i.e. the interaction kernel as defined Example 1
with rI = 0.18 and C = 0.25. As initial conditions, we use a perturbed uniform SPP
density. Figure 6a shows that, indeed, moving clusters of SPPs develop, with stretches
of zero density between them. The clusters seem to be relatively evenly spread. The
corresponding obstacle density is minimal where the SPP density is maximal. After
the clusters have been established, we inspect the space–time plot for one time unit
Fig. 6b, which shows that they appear to be stably moving travelling waves of about
speed one.

The Macro-SPP Obstacle Model Agrees with the IBM Next we compare to 1D IBM
simulations of (1). Note that in 1D, we can disregard the orientation equation and
assume all particles self-propel to the right. We use the same parameters as for the
macro-model with N = M = 100 and a self-repulsion kernel yielding a linear force,
dropping with distance of width rR = 0.02. As initial conditions, we use equally
spaced anchor points and randomly positioned SPPs. Figure 6c shows the obstacles,
their tether points and the SPPs at time t = 30. We calculate the corresponding SPP
and obstacle densities from the particle positions. To that end we create a smoothed
version of the empirical distribution defined analogous to (3), where the Dirac delta
distributions have been replaced by 1D-Gaussians with variance 1 × 10−4. Note that
choice of the variance is delicate, since it has to be small enough to be able to resolve the
patterns and big enough to lead tomeaningful averaging. The result is shown in Fig. 6d.
A comparison between the simulated SPP and obstacle densities for the macro-model
and IBM shows remarkable good agreement both qualitatively and quantitatively.

Higher-Order Approximations Lead to a Delay Effect Themacro-modelwas simulated
using an order γ approximation for the obstacles. To assess the effect of the order
γ 2 terms without solving the full system, we proceed as follows: We substitute the
measured IBM SPP density depicted in Fig. 6d into (18) (with δ = 0) to calculate the

123



  129 Page 28 of 39 P. Aceves-Sanchez et al.

0 1

0 1
0

2

4

6

8

0 1

0.6

0.8

1

t=5

t=30-31SPP density

0
0.2

0.4
0.6

0.8
1

30

30.2

30.4

30.6

30.8

31

0

5

10

x

t

0 1
0

2

4

6

8

0 1

0.6

0.8

1

t=30

x

0 1
0

2

4

6

8

0 1

0.6

0.8

1

SPP density
measured from IBM

obstacles density
measured from IBM

obstacles density
calculated (order γ)

obstacles density
calculated (order γ2)

obstacle

anchor
self-propelled particle

0 1
0

2

4

6

8

0 1

0.6

0.8

1

t=0

S
PP

 d
en

si
ty

ob
st

ac
le

 d
en

si
ty

Self-propelled particles

Obstacles

Approximate
 density

Macro Simulation

IBM Simulation
t=30

t=30

A

B

C D

Fig. 6 (Color figure online) Simulations of the 1D macro-model and IBM. a, d Depicted are snapshots of
numerical solutions showing the SPP (red, upper rows) and obstacle (blue, lower rows) densities, as well
as their (constant) means (dashed black). a, b Simulations of the macro-model (17), (19). b Space–time
plot during one time unit of the continuation of the simulation in (a). c, d Simulations of the 1D IBM.
c Particle x-positions of the SPPs (red arrows with black dots) and obstacles (coloured circles, colour
indicated displacement), y-positions are arbitrary. d Approximated and calculated IBM particle densities
of the simulation in c, see text for details

obstacle density as predicted by the model. We calculate both the order γ and order
γ 2 approximations. For the latter, we need the time derivative of the SPP density,
which we approximate by calculating the SPP density at the previous time step and
using a forward finite difference approximation. The resulting densities are shown in
Fig. 6d. We observe that measured and calculated obstacle densities agree remarkably
well. Inspecting the inset in Fig. 6d, we see that the order γ approximation predicts
the obstacle density minima to be precisely at the SPP density maxima; however,
both the order γ 2 approximation and the actual measured IBM obstacle density have
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Fig. 7 (Color figure online) Simulations of the 1D macro model. a, b Depicted are snapshots of numerical
solutions to (17), (19) showing the SPP (red, upper rows) and obstacle (blue, lower rows) densities, as
well as their (constant) means (dashed black). Insets show initial condition, schematic depicts nature of
microscopic interaction, red arrows indicate movement direction of the densities. Schematics in lower row:
see Fig. 5

their local minima shifted backwards with respect to the SPP direction, yielding a
better fit between the measured and calculated order γ 2 densities that those of the
order γ approximation. This demonstrates that the derived obstacle equation allows
to calculate the obstacle density for a given SPP density. It also shows that the higher-
order approximation in γ is necessary if one wants to account for effects of SPP
movement.

5.2 Testing Analytical Insights

Attractive and Repulsive Interactions Lead to the Same SPP Behaviour In the next
numerical experiment, shown in Fig. 7 we use as initial condition a centrally placed
Gaussian and inspect the moving steady state density for a repulsive (A) and an attrac-
tive (B) microscopic interaction force. We see that in both cases the resulting SPP
density is the same, forming a travelling wave with a stable shape. This shape consists
of a large cluster and two smaller clusters to its left and right. However, the obstacle
density differs in the two cases: For an attractive potential we have obstacles clusters
coinciding with the SPP clusters, whilst for the repulsive potential SPP clusters cre-
ate regions of low obstacle density. The lower row compares this with the intuitive
explanation of the previous section (see Fig. 5).
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Linear Stability Analysis Predicts Macro and IBM Patterns In Sect. 4.1, we performed
a linear stability analysis for the 1Dmacro-equation. In Example 1, we determined the
criteria for pattern formation and how to predict pattern size for a specific interaction
potential shape. Now we compare these predictions to simulations of both the 1D
macro-equations (17), (19) and the 1D IBM simulations by varying the size of the
support of the interaction kernel rI . We use the same kernels and number of particles
as above and the following parameters: η = 1, c1 = 1, ζ = 8, γ = 2 × 10−3 and
μ = 6.7×10−3,C = 0.17.We start with a randomly perturbed constant initial density
for the macro-model and regularly spaced anchors and randomly placed SPPs for the
IBM. We compare the predicted number of peaks as calculated in Example 1 (and
defined as the reciprocal of the pattern size) to the observed number of peaks at time
t = 30. The result is shown in Fig. 8.We find that the analytical predictions of Sect. 4.1
agree very well with the macro model. The agreement with the IBM simulations is
good as long as the macro-model gives physically meaningful (i.e. positive) obstacle
densities (examples 1, 2, 3 in Fig. 8), but breaks down otherwise (example 4 in Fig. 8).
This shows both that the macro-model can be used to gain insights into the IBM, but
also that it is limited to certain parameter regimes.

6 Discussion

Summary In this work, we formulated an IBM model of the interaction of self-
propelled, collectively moving SPPs with elastically tethered obstacles. Despite the
seemingly simplicity of the interactions, we found that the system can self-organise
into a big variety of patterns, including travelling bands, (transiently stable) trails and
size-controlled clusters. To investigate these patterns further, we derived macroscopic
equations for the obstacle and SPP densities and the SPP orientation. The asymptotic
regime of interest assumed γ to be small, i.e. fast obstacle spring relaxation (strong
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obstacle springs). The resulting continuum equations are nonlinear and contain a non-
local interaction term. Linear stability analysis allowed to estimate pattern size from
model parameters and showedwhich effects promote pattern formation (e.g. obstacle–
SPP interaction) and which stabilise the unpatterned state (e.g. SPP self-repulsion).
We found that, surprisingly, SPP dynamics are independent of whether obstacles and
SPPs repel or attract each other. In particular, in Sect. 4 we discovered that the macro-
scopic SPPequation has gradient flowstructurewith a bi-phasic (short-range attractive,
long-range repulsive) non-local obstacle–induced interaction kernel.

Biological ImplicationsSPPs representmoving individuals such as animals, pathogens,
bacteria, sperm, cancer or other cells. The elastically tethered obstacles mimic a com-
plex environment, which acts on and reacts to SPPs, e.g. by repulsion. They represent,
e.g. a fibrous network which is relatively fixed in space, but whose components can
be pushed upon SPP interaction, after which they relax back to their original posi-
tions. Simulations revealed several patterns, such as moving clusters, where tightly
packed groups of cells move together. This is a commonly observed phenomena, e.g.
for groups of cancer cells invading a tissue. The key observation is that the model does
not include any explicit SPP attraction, making the formation of high density patterns
surprising. The subsequent analysis of the macromodel (derived in Theorem 1) gives a
quantitative explanation for the observed behaviour: We found that both attractive and
repulsive microscopic interactions between SPPs and obstacles cause a short-range
attractive macroscopic effect on the SPP level, which leads to clustering. Clustering of
organisms is ubiquitous in nature and is often attributed to direct attraction between the
individuals. However, our results suggest that the apparent attraction could be indirect
and is in fact mediated by the environment. In other words, it is possible the individu-
als feel no attraction towards each other, but will still form tight clusters. This finding
is highly relevant to understanding cell clustering or swarm formation. The analysis
in Proposition 1 allows to assess the formation and size of patterns (such as moving
clusters or travelling bands), without the need to simulate. A key finding is that the
interaction strength between SPPs and obstacles has to be large compared to the SPP
self-repulsion and the tethering strength in order to create patterns. This means that,
e.g. cell clustering, could be promoted by a more elastic environment. An important
biological implication is that one can influence cell aggregation by modifying only
the environment.

Future Work The 1D model examined in Sects. 4 and 5 cannot describe trail patterns
and does not allow to distinguish between clusters and travelling bands. In the future,
we plan to extend both the simulations and the analysis of the continuum model to
two- and three-space dimensions. In particular, we expect new insights about pattern
directionality from a linear stability analysis in higher dimensions. Our derivation
relied heavily on the assumptions of smallness of γ . Mathematically this limitation
manifests in the fact that the obstacle density can become negative, at which point the
model becomes invalid. In the future, we would like to derive macroscopic models
that are and remain well-posed for any parameter combination. This will require a
different closure method of the kinetic equations. Our current model seems to be able
to capture several of the observed phenomena at the IBMmodel, such as the travelling
bands or the clusters, however, for example the trail formation pattern will most likely
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require an extension of the current techniques. We also plan further analysis of the
continuummodel, capitalising on its gradient-flow structure. Strong analytical results,
such as energy dissipation estimates, exist for these type of equations, which suggests
that it is possible, at least for certain cases, to construct steady states and assess their
stability in a rigorous manner. Obvious extensions include 1D simulations of the SPP–
obstacle model using anO(γ 2) approximation of the obstacle density or including the
positional noise.

The current model describes interactions between SPPs and obstacles. In many
instances, however, all components are immersed in a fluid. Past work has already
studied how to derive and analyse SPP–fluid interactions (Degond et al. 2019). There
exist models for how fluid properties are affected if it contains immersed objects.
A famous example is the Oldroyd-B model, describing the visco-elasticity of fluids
filled with spring dumbbells (Oldroyd 1950). We plan to use our derivation strategy to
derive equations for fluids filled with tethered obstacles and study how fluid properties
such as viscosity are affected. An additional level of complexity we plan to tackle, is
to combine all three components, the fluid, the obstacles and the SPPs. In this case a
natural question appears: How big are the obstacles compared to the SPPs. The flexible
techniques developed in this work will allow to answer this question by performing
the coarse-graining at different levels.

Applying the findings to biological systems, such as sperm movement, will require
careful parametrisation of the model. An advantage of the IBM formulation is that
model parameters are relatively easy to obtain from experiments: Diffusion constant
can be estimated using the Stokes–Einstein formula and interaction radii can be linked
to object sizes.Other keyproperties, such as how forces behavewith respect to distance,
could bemeasured by observing howan individual SPP reacts to an individual obstacle.
The model then allows to predict the result of the dynamics of large groups of SPPs
and obstacles.

Supplementary Material

IBM Simulation Videos The three supplementary videos

– moving_clusters.avi
– trails.avi
– travelling_bands.avi

show the dynamics in time of the 2D IBM simulations depicted in Fig. 2. SPPs are
shown in red, obstacles in blue.

Acknowledgements SMA is supported by the Vienna Science and Technology Fund (WWTF) with a
Vienna Research Groups for Young Investigators, Grant VRG17-014. PD acknowledges support by the
Royal Society and the Wolfson Foundation through a Royal Society Wolfson Research Merit Award No.
WM130048 and by the National Science Foundation (NSF) under Grant No. RNMS11-07444 (KI-Net).
PD is on leave from CNRS, Institut de Mathématiques de Toulouse, France. PD, EEK, PAS, SMA and
AM acknowledge support from Engineering and Physical Sciences Research Council (EPSRC) Grant
EP/P013651/1. PAS, SMA and AM acknowledge that part of the work was done at Imperial College
London. PD, PAS and SMA also acknowledge support from EPSRC Grant EP/M006883/1.

123



Large-Scale Dynamics of Self-propelled Particles Moving… Page 33 of 39   129 

Data Availability No new data were collected in the course of this research.

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Appendix

A.1 Simulation Details

IBM Simulations of Sect. 2.2 We simulate the IBM model (1) in two space dimen-
sions using MATLAB with a timestep of Δt = 10−3. Model parameters are listed
in Sect. 2.2. Numerically we use the circle method described in Motsch and Navoret
(2011).
Macro-model Simulations in 1D of Sect. 5:We simulation themacroscopicmodel (17),
(19) in one space dimension using MATLAB with spatial and temporal timesteps of
Δx = 3 × 10−3, Δt = 10−2. The method used is described in Carrillo et al. (2015).

A.2 Properties of the OperatorB Defined in (27)

It is a well-known fact that the operator B defined in (27) is the generator of the
Ornstein–Uhlenbeck stochastic process (see Pavliotis 2014). For an extensive study
of this operator, we refer the reader to Achleitner et al. (2015), Risken (1996), or Reed
and Simon (1978). In the following result, we collect a few properties needed in this
paper.

Lemma 4 (Properties ofB)Let the operatorB be defined by (27) and let i = (i1, i2, i3)
be a multi-index. We define

Hi (σ ) = Hi1(σ1)Hi2(σ2)Hi3(σ3),

where

Hj (s) = (−1) j e
s2
2

d j

ds j
e− s2

2 .
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Note that Hj (s) are the (probabilistic) Hermite polynomials. Let us consider the
following L2-weighted space

X :=
{

f ∈ L2(R3) :
∫

R3
f 2M1 dσ < ∞

}
,

where M1 is defined in (12) taking δ = 1. For any two functions f and g in X, we
define their weighted inner product by

〈 f , g〉X :=
∫

R3
f (σ )g(σ )M1(σ ) dσ.

We then have the following properties:

P1. 〈Hi ,H j 〉X = i !δi j , where δi j is the Kronecker delta for multi-indices.
P2. B(Hi ) = −|i |Hi .
P3. The set {Hi }i is a complete orthogonal basis of the L2-weighted space X.
P4. HeiHek = Hei +ek + δikH0.
P5. HeiHe j +ek = Hei +e j +ek + δikHe j + δi jHek .

We have used the notation i ! = i1!i2!i3! and |i | = i1 + i2 + i3. Note that P1 shows
that Hi are orthogonal with respect to the inner product 〈·, ·〉X and P2 states that Hi
are eigenfunctions with eigenvalue −|i |. In the product rules P4 and P5, ei denotes
the i-th unit vector in R

3.

A.3 Calculation of the Obstacle Density

In this section, we detail the calculations of 0-th order moment of f , ρ f , in terms of
expansions with respect to γ and δ. As outlined in the main text, we will perform the
following steps:

1. Perform the change of variables
√

δσ = x − y. This changes the integrand to be
proportional to M1(σ )hi (σ, x − √

δσ, t) for ρ fi .
2. Next we Taylor expand hi (σ, x − √

δσ, t) around δ = 0 using the expansions of
above.

3. Then we calculate the contributions using the scaling condition (31), the orthogo-
nality of the Hermite polynomials (P1) and the product rule (P4) of Lemma 4.

The following result will be helpful for the subsequent calculations.

Lemma 5 Let hk
1 and hk

2, for k = 0, 1, . . ., be the solutions of the above expansion
and let their representations w.r.t the basis of Hermite polynomials be given by

hk
1 =

∑

i

ak
i Hi (σ ), hk

2 =
∑

i

bk
iHi (σ ),
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where i is a multiindex and ak
i and bk

i are functions of y and t. Then it holds that

ak
i ≡ 0 for |i | mod 2 = k mod 2, or |i | > k + 1

bk
i ≡ 0 for |i | mod 2 �= k mod 2, or |i | > k + 2

Proof This can be shown by induction. For the initial case, we use the explicit solutions
given in (29) and (30). ��
Notation: In the following, if no further argument is given, functions are evaluated
at (σ, x, t) and ∂i := ∂

∂xi
. We use the Einstein summation convention. In general, we

often suppress the dependence on time t .

Remark 5 In the following, we often use Lemma 5 in combination with the fact that
odd-order moments of M1 are zero.

Preparation for Step 2 in the above procedure: Taylor expand hr (σ, x − √
δσ, t),

hr (σ, x − √
δσ ) =h0

r − √
δσk∂kh0

r + √
δh1

r

+ δ

2
σiσ j∂i j h

0
r − δσi∂i h

1
r + δh2

r + O(δ3/2), (41)

where r = 1, 2. We start with the 0-th order density ρ f0 :

ρ f0(x, t) =
∫

f0(x, y) dy =
∫

Mδ(x − y) dy = 1

For the first order density ρ f1 , we use the reformulation in terms of h1:

ρ f1(x, t) =
∫

f1(x, y) dy = 1√
δ

∫
Mδ(x − y)h1

(
x − y√

δ
, y

)
dy

= 1√
δ

∫
M1(σ )h1

(
σ, x − √

δσ
)
dσ

= 〈1,−σk∂kh0
1〉 + O(δ)

In the second line, we have used Step 1, the change of variables. In the third line, we
have used (41) for r = 1 together with the fact that the order δ−1/2 term and the order
1 term involving h1

1 are zero due to the normalisation condition (31). For the order√
δ-terms we used Remark 5 to show it is zero.

Hence we are left with one term. We use (29) and calculate

〈1,−σk∂kh0
1〉 = −∂k ṽi 〈Hek ,Hei 〉 = −∂k ṽk,

where we have used P1 of Lemma 4, i.e. 〈Hek ,Hei 〉 = δki . This shows that indeed

ρ f1(x, t) = −∂k ṽk + O(δ)
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and finishes the calculations for ρ f1 . The calculations for the order δ term are similar
and omitted here.
We continue in similar fashion with the second order density ρ f2 : We use the refor-
mulation in terms of h2 and get

ρ f2(x, t) =
∫

f2(x, y) dy = 1

δ

∫
Mδ(x − y)h2

(
x − y√

δ
, y

)
dy

= 1

δ

∫
M1(σ )h2

(
σ, x − √

δσ
)
dσ.

If we now inspect (41) for r = 2, we find that, as above the scaling condition (31)
leads to the δ−1 order term involving h0

2, the δ−1/2-order term involving h1
2 and the

order one term involving h2
2 being zero. For the remaining δ−1/2-order term we refer

to Remark 5 and hence it is also 0. For the remaining order one terms we calculate

A1 := 1

2

∫
M1(σ )σiσ j∂i j h

0
2 dσ = 1

4
∂i j (ṽk ṽl)

∫
M1(σ )σiσ jHek+el dσ

= 1

4
∂i j (ṽk ṽl)〈Hei +e j ,Hek+el 〉 ,

A2 := −
∫

M1(σ )σi∂i h
1
2 dσ = ∂i (∂t ṽk − ṽ j∂ j ṽk)

∫
M1(σ )σiHek dσ

= ∂i (∂t ṽk − ṽ j∂ j ṽk)〈Hei ,Hek 〉 ,

where we have used P1 and P4 of Lemma 4. We continue

A1 = 1

2
∂i j (ṽi ṽ j ) ,

A2 = ∂i (∂t ṽi − ṽ j∂ j ṽi ) ,

where we used the identity

〈Hei +e j ,Hek+el 〉 = δikδ jl + δilδ jk

for A1. Finally we calculate

ρ f2(x, t) = A1 + A2 + O(δ) =
{
∂t∂i ṽi + 1

2
∂i

[
ṽi∂ j ṽ j − ṽ j∂ j ṽi

]} + O(δ).

Note the fact that the remaining term is O(δ) and not O(
√

δ) is again thanks to
Remark 5 and does not require explicit knowledge of the shape of h3

2.
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