
HAL Id: hal-03138279
https://hal.science/hal-03138279

Submitted on 11 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluation of prioritized deep system identification on a
path following task

Antoine Mahé, Antoine Richard, Stéphanie Aravecchia, Matthieu Geist,
Cedric Pradalier

To cite this version:
Antoine Mahé, Antoine Richard, Stéphanie Aravecchia, Matthieu Geist, Cedric Pradalier. Evaluation
of prioritized deep system identification on a path following task. Journal of Intelligent & Robotic
Systems , 2021, �10.1007/s10846-021-01341-1�. �hal-03138279�

https://hal.science/hal-03138279
https://hal.archives-ouvertes.fr


JINT-D-20-00540R1

Evaluation of prioritized deep system identification on a path following
task

Antoine Mahé* · Antoine Richard* · Stéphanie Aravecchia · Matthieu Geist ·
Cédric Pradalier

Received: 02/07/2020 / Accepted: 05/02/2021

Abstract This paper revisits system identification and shows
how new paradigms from machine learning can be used to
improve it in the case of non-linear systems modeling from
noisy and unbalanced dataset. We show that using impor-
tance sampling schemes in system identification can provide
a significant performance boost in modeling, which is help-
ful to a predictive controller. The performance of the ap-
proach is first evaluated on simulated data of a Unmanned
Surface Vehicle (USV). Our approach consistently outper-
forms baseline approaches on this dataset. Moreover we demon-
strate the benefits of this identification methodology in a
control setting. We use the model of the USV in a Model
Predictive Path Integral (MPPI) controller to perform a track
following task. We discuss the influence of the controller
parameters and show that the prioritized model outperform
standard methods. Finally, we apply the MPPI on a real sys-
tem using the know-how developed here.

This work is done under the Grande Region rObotique aerienNE
(GRoNe) project, funded by a European Union Grant thought the
FEDER INTERREG VA initiative and the french “Grand Est” Région.

A.Mahé*
CentraleSupélec, Université de Lorraine, CNRS, LORIA, France
E-mail: antoine-robin.mahe@centralesupelec.fr

A. Richard*
Georgia Institute of Technology, Atlanta, Georgia 30332–0250
E-mail: arichard@georgiatech-metz.fr

S. Aravecchia
UMI2958 GT-CNRS, France
E-mail: stephanie.aravecchia@georgiatech-metz.fr

M. Geist
Google Research, Brain team
E-mail: mfgeist@google.com

C. Pradalier
UMI2958 GT-CNRS, France
E-mail: cedric.pradalier@georgiatech-metz.fr

*These authors contributed equally

Keywords System identification · Machine learning ·
Importance sampling

1 Introduction

Inspection tasks are more and more reliant on autonomous
robotic systems. Precision agriculture, building inspection
and river monitoring are such tasks that benefit greatly from
the improvement of unmanned vehicles [32,14]. However,
most robotic applications require an expert to accomplish
the missions of the system. This dependency is often a limi-
tation: in situations where communications are limited such
as underwater exploration or underground mines monitor-
ing, autonomy becomes a requirement.

In order to provide this much needed autonomy, control
algorithms are continuously being developed and improved
upon. One controller commonly used in this context is the
Model Predictive Control (MPC). It relies on a model of the
system for optimizing a cost function over a receding hori-
zon. This family of controllers has been successfully used in
a variety of applications [25,33], and is now widely adopted
in the industry [26].

By definition, MPCs require a model of the system’s dy-
namics to be able to control it, and plan its movement. This
modeling of the robotic system is still an active area of re-
search. The well known Auto Regressive Moving Average
(ARMA) algorithm is the de facto method to perform sys-
tem identification. Its light computational cost and simplic-
ity made ARMA the way to go for black-box modeling.

Yet, recent development in machine learning have pushed
the search for new modeling schemes able to more easily
cope with complex non-linear systems. Moreover, the ability
of Neural-Networks (NNs) to learn over time [30] offers in-
teresting possibilities, increasing the relevance of deep learn-



2 Antoine Mahé* et al.

ing for system identification. Unfortunately, this approach
suffers from its computational cost and its data inefficiency.

While recent advances in hardware and well optimized
frameworks addressed the high computational cost require-
ment, the lack of per-sample efficiency of the NNs-based
methods remains a major problem when dealing with robo-
tic system [27]. Indeed, collecting data is often a tedious and
costly process that tends to produce unbalanced datasets. On
robots, it is particularly hard to explore exhaustively the state
and action spaces, as the robot may not be stable and explor-
ing these state could results in damaging the robot. Also, if
the dynamics of the robot is learned from commands sent
by an operator, the robot may only explore a subspace of
the state-action space, leading to a biased and incomplete
dataset.

This problem can also be commonly found in image
classification and Reinforcement Learning (RL). Alas, as
system identification is a regression task, most of the com-
mon methods from the computer vision fields are inappli-
cable as they rely on the classes to re-balance the datasets.
Nonetheless, recent work in the field of RL [28] suggests to
focus the NNs training on the samples that are most useful
to their convergence. [28,11,3] showed that using prioritiza-
tion schemes, NNs are capable of learning from highly un-
balanced datasets on both RL tasks and image classification
tasks. In this paper, we study if these schemes are also ap-
plicable to the field of system identification. To evaluate the
performance gain brought by those schemes, we will apply
them in an MPC on a track-following task.

In this study, we use the MPPI [31] controller. This con-
troller can work with any dynamic model and has been shown
to work well [29,30] coupled to NNs on robotic systems.

This paper is an extension of work originally presented
in the 19th International Conference on Advanced Robotics
[22]. As in the original version, this paper explores two dif-
ferent sampling strategy: the Prioritized Experience Replay
(PER) [28] and the upper-bound gradient prioritization [12].
In this extended version, a more thorough study of the im-
portance sampling scheme is presented, along with their ap-
plication on an MPC task that was not present in [22]. Fur-
thermore, we study the impact of different parameters of the
MPPI and show how they influence the robustness of the
control algorithm across the different learning schemes. Fi-
nally, we apply the MPPI to a real system.

2 Related work

For a long time ARMA [17] has been the way to go for most
black-box system identification. This computationally inex-
pensive modeling method allows to perform efficient grid-
searches over its parameters (orders of the numerator and
denominator of the transfer function). Hence, it can easily be

tuned to yield high quality results. However, its application
is limited to linear systems. This limitation is troublesome
as most robotic problems rely on non-linear systems. Yet,
an increasingly popular method to fit non-linear functions
is deep NNs. Over the last decade, Deep Learning has had
tremendous success in numerous fields, ranging from com-
puter vision to Natural Language Processing. Naturally, it
also caught the interest of researchers in control and system
identification.

Recent attempts at black-box system identification us-
ing deep learning showed great results, on both linear and
non-linear systems [10,34,7]. These works rely on archi-
tectures such as Multi Layer Perceptron (MLP) and Long
Short-Term Memory (LSTM) networks [8]. Unfortunately,
training these networks requires a massive amount of data.
While this is usually acceptable in many applications, it is
particularly problematic in the field of control and robotics
where acquiring a large balanced1 dataset is difficult [27].
If the dataset is unbalanced, then the training is saturated
with frequently occurring samples while the most interest-
ing data points are less represented and have less impact on
the learning process. All in all, properly learning hard cases
is hindered by the overwhelming representation of the sim-
plest cases in the data.

Despite this drawback, the NNs capacity to keep im-
proving over new data by training continuously has been
used to alleviate this problem [30]. However, this implies
that we keep training the network on very well-known situa-
tions while new pieces of information are only seen once in
a while.

To address these problems, prior works performed im-
portance sampling in NN-based model identification [21].
This work relies on the PER [28] algorithm, which demon-
strated great results in RL. This method is used in the Dou-
ble DQN algorithm [16] and has recently been extended to
support distributed architectures [9].

The PER method uses the error made by the model on
examples to estimate how important those example are. Then
it samples the original dataset to emphasis on the examples
where the model makes mistakes. The model is then trained
again on that new prioritized dataset.

When using PER, one needs to tune two parameters:
α , and β . They allow for a fine control over the prioriti-
zation, which is particularly interesting as it offers to put a
low amount of prioritization at the beginning of the train-
ing to grasp the general dynamic of the model, and then to
increase the prioritization as the training reaches its end to
maximize the learning of hard cases. However the tuning
of these parameters is not easy and requires expensive grid
searches.

1 In this case, balance refers to a uniform exploration of the state-
action space.



Evaluation of prioritized deep system identification on a path following task 3

While this method shows great results, it is costly as it
relies on the error of the network on each sample to compute
the sampling distribution. If this distribution is not updated
frequently enough, then the PER will loose in efficiency as
it may over-sample already known samples. If it is updated
too frequently it becomes prohibitively expensive.

More recently, a similar study has been conducted on a
classification task. In particular, [11] shows that the loss of
the network on a given sample could be used as an indica-
tor of the sample’s importance. However, [12] outlines that
using the loss as an indicator of a sample’s importance can
result in degraded learning performances in some cases. For-
tunately, they show an interesting mechanism that alleviates
both the tedious parameter tuning present in the prioritized
experience replay and the need to update the samples im-
portance based on the most recent network parameters. In
their experiments, the loss is no longer used as an estimate
of a sample importance. Instead, they rely on an estimation
of the gradient norm. This method has been tested and com-
pared with the PER in a prior work [22]. The main draw-
back of this method, is that unlike the PER it does not offer
a mean to control the prioritization precisely. Instead, it re-
lies on a single parameter: the super-batch-size. In the end,
it is a question of trade-off, the PER is heavier, and sensitive
to outliers. Yet, it also offers increased flexibility over how
the samples are drawn and how much this unbalance in the
sampling is being compensated for.

To show the interest of the samples prioritization when
applied to system identification, we use them on a “race
against the clock” task as part a of an MPC. MPCs have
been used to control drones [24,5] and rovers [15,19] with
impressive success. MPC algorithms optimize the trajectory
of a system such that it follows the trajectory that yields the
lowest cost. Unfortunately, most of the well-known MPC
algorithms such as the LQR or H∞ controllers require the
model of the robot to be written in a closed-form equation.
This is something that we do not have as the model here
is a NN. Hence, in our study we use the MPPI, an MPC
controller first defined in [29] and then refined in [31]. The
particularity of this controller is its high flexibility, it can
work with almost every cost function or model. For instance,
the cost function can implement both objectives and con-
straints, which is very useful in autonomous control where
both mission and security are often in competition. How-
ever, this controller is very expensive to run when compared
to LQR or H∞ controllers. Because it relies on both a NN
and a monte-carlo optimization scheme, this algorithm re-
quires to run on a GPU which limits its application to fairly
large robotic systems.

In this work, we apply various importance sampling meth-
ods to system identification. Those approaches are evalu-
ated on a custom dataset that exhibit a strong non-linearity,
and unbalancing. Building on the promising simulated result

of [22], we expand the prioritize experience replay and gra-
dient upper-bound method to an MPC task and show its ad-
vantage over non-prioritized models. We then demonstrate
the ability of these models to perform robotic tasks of var-
ious difficulties on a USV. We explore how the MPPI be-
haves as its main parameters change, and how these changes
translate on the different prioritization schemes. We con-
clude our study by applying our findings on a real system,
and provide insights on the main challenges that arose when
we deployed the MPPI on the field.

3 Method

In this section, we first detail the different approaches to
system identification that we compare in our experiments.
From the standard linear system identification and methods
using Multi-Layer-Perceptron (MLP), we show how prior-
itized sampling can be adapted to the system identification
task. Then, we detail how we use those models to achieve
the control of a USV with the MPPI.

3.1 Importance sampling for deep system identification

Linear system identification of the ARMA family have been
used for decades with success. When u(t) and x(t) respec-
tively denote the system input and output at time t, ARMA
considers a model of the system given by the following discrete-
time linear difference equation:

x(t)+
p

∑
k=1

akx(t− k) =
q

∑
k=1

bku(t− k). (1)

It is more intuitive to rewrite this equation so as to determine
the next output value given previous observations and a set
θ =

{
a1, ...,ap,b1, ...bq

}
of parameters:

x(t) =−
p

∑
k=1

akx(t− k)+
q

∑
k=1

bku(t− k). (2)

The linearity of the model makes it easy to compute the op-
timal parameters using the linear least-square method.

More recently, the ARMA methods have been challenged
by NNs because they expand the range of systems that can
be modeled from data. In particular, modeling non-linear
systems and functions using NNs have been quite success-
ful [2] even though the use of dataset collected from real
robot as been challenging [27]. In this study, we rely on the
well known MLP networks. Despite their apparent simplic-
ity, these networks are capable of modeling complex non-
linear functions, and, when well designed, are perfectly suit-
able for real time operations on embedded systems, as shown
in [30].



4 Antoine Mahé* et al.

When training a NN, two main problems related to the
data occur: quantity and quality. Although the two are inter-
twined, the most naive approach consists in increasing the
amount of data available as much as possible. Unfortunately,
this may not be very helpful when trying to learn dynamic-
features poorly represented in the dataset.

This is particularly true on datasets that have not been
acquired for the sole purpose of model identification. In-
deed, when operators use a system, they tend to stay in con-
ditions they are comfortable with. Thus, the interesting data
where the network should learn the most is the rarest. This
leads to traditional learning approaches failing to train on
those seldom seen events.

3.1.1 Prioritized experience replay

To address this problem, we propose to adapt the prioriti-
zation scheme introduced in [28] for reinforcement learning
to the context of system identification. In fact, prioritization
forces the training on harder samples even if they have poor
representations in the dataset.

The adaptation of this sampling strategy to system iden-
tification yielded encouraging results illustrated in [22]. In
practice, we use the loss of the network prediction to esti-
mate the training value of a sample. The samples that lead
to the highest errors are the ones where the network has the
most learning to do. Hence, the network prediction errors
are collected to compute a probability distribution over the
samples, which is then used for sampling the dataset for the
next training session. This process is detailed in algorithm 1.

Algorithm 1 Prioritized Experience Replay
Require: data, K : number of trials, MLP : neural network model

trainingData← data
sampleWeight← /0
for k = 0 to K do

MLP← Train(trainingData,sampleWeight)
N number of samples in data
for i = 0 to N do

δi←
∥∥Yi−MLP(Xi,Ui)

∥∥
P(i)← δ α

i
∑ j δ α

j

wi←
(

1
N

1
P(i)

)β

sampleWeight←{wi}0≤i≤N
trainingData← sample data di ∼ P(i)

end for
end for

One of the limitations of this approach is its focus on
a small subset of samples. Although that focus improves
its data efficiency, it also increases the risk of over-fitting.
Noisy datasets are also hard to learn from because it is harder
to make the distinction between complex cases and outliers.

To mitigate those problems and make the method practical,
two hyper-parameters are introduced: α and β . These pa-
rameters allow to choose how much the training should fo-
cus on hard cases.

The probability of choosing the sample i during the sam-
pling is given in eq. (3) where δi is the score of sample i, in
our case the error between the NN prediction and the actual
observation.

The α hyper-parameter allows to soften the prioritiza-
tion. Choosing α = 0 gives the uniform distribution, in that
case there is no prioritization at all. While a higher α value
encourages learning on edge cases

P(i) =
δ α

i

∑k δ α
k
. (3)

Nonetheless, the sensibility to the hyper-parameters makes
the approach difficult to apply and makes a systematic te-
dious grid search mandatory to find optimal values for these
parameters.

Additionally, the difference between the original distri-
bution and the re-sampled distribution introduces a bias. To
correct this bias, the importance sampling weights are com-
puted during training using (4).

wi =

(
1
N

1
P(i)

)β

. (4)

This is where β , the second hyper-parameter for train-
ing, is used. With β = 1 the prioritized sampling bias is com-
pletely corrected but it also slows down the learning. The α

parameter increases the aggressiveness of the prioritization
while the β parameter increases the correction. Therefore,
there is a trade-off between these parameters.

3.1.2 Gradient upper-bound

Another way to prioritize samples is to use the gradient upper-
bound as explained in [12]. As suggested by its name, the
gradient upper-bound method relies on an approximation of
the norm of the network’s gradient. [3,18] shows that the
gradient norm represents what a network can learn from a
data-point. In comparison, the loss of the network on which
the prioritized experience replay relies is a poor approxima-
tion of it. As a result, drawing from a loss-based distribution
is less efficient than using a distribution homogeneous to the
norm of the gradient.

Yet, computing the gradient norm is prohibitively expen-
sive. In order to alleviate this issue, [12] introduces an accu-
rate and computationally inexpensive estimation of it, which
is the gradient upper-bound. It is obtained by computing the
norm of the gradient between the loss and the last activa-
tion layer of the network. Furthermore, this approach, which



Evaluation of prioritized deep system identification on a path following task 5

constantly updates the probabilities of drawing the samples,
has fewer hyper-parameters than prioritized experience re-
play. Instead of updating the weights at some arbitrary train-
ing step, or epoch, this technique samples super-batches,
that are n-time larger than the standard training batches. From
these super-batches a distribution based on the gradient upper-
bound is computed and a standard batch is sampled from it.
Since the super-batches are sampled uniformly, this reduces
both the risk of over-fitting and the risk of focusing on out-
liers. The super-batches size is the hyper-parameter that re-
places α , β and the number of replay in the previous algo-
rithm. Depending on the size of the super-batches, the train-
ing time can be significantly extended. Algorithm 2 shows
our implementation of the gradient prioritization scheme.

Algorithm 2 Gradient Prioritization
Require: data, N number of steps, ssbs super-batch size, bs batch size

trainingData← data
for i = 0 to N do

super batch ssbs←−−U (trainingData)
g = get gradient upper bound(super batch)
G ← distribution f rom g
weights← 1

Bg

batch bs←− G (super batch)
train step(batch,weights)

end for

3.2 MPPI

To correctly steer the robot, the MPPI controller is built on
two main components: a dynamic model and a cost-function.
The dynamic model, which uses a NN, is used to infer future
trajectories. The cost-function measures three metrics: a po-
sition cost, inferred from the cost map defined in the world
frame, a velocity cost, which is computed based on the sys-
tem’s velocities in the robot frame, and a heading cost which
is based on the heading of the USV.

Hence, to be able to accurately compute these costs, we
rely on a state Xt . More specifically, in our setting, our state
Xt is composed of the 2D pose of the robot in the world
frame xt , yt , and θt along with its velocities in the robot
frame: the linear velocity vlint , the lateral velocity vlatt and
the angular velocity ωt . The position update is done using a
kinematic update as shown in eq. (5), while the next veloc-
ity is given by the NN. It is worth noting that the dynamic
model predicts the next velocities in the robot frame. Hence,

they have to be projected into the world frame to update the
pose of the robot.

vxt =−sin(θt)vlint + cos(θ)vlatt

vyt = cos(θt)vlint + sin(θ)vlatt

xt+1 = xt + vlint dt

yt+1 = yt + vlatt dt

θt+1 = θt +ωtdt

. (5)

To find the optimal trajectory to follow, the MPPI sam-
ples N sequences of commands over a time horizon of T
time-steps. Using these sequences of commands and run-
ning them through the dynamic model gives N trajectories
from which the cost-function can infer the costs. Based on
the cost of the trajectories, the optimal set of commands
found at the previous optimization step is updated and ap-
plied to the system until the next optimization step. In our
implementation we reduced the update frequency to 5Hz to
match the relatively slow pace of our system. For compari-
son, in [29], the update rate is set to 40Hz. Because of this,
the commands are no longer smoothed using the Savitsky-
Golay filter as it is in [31, alg. 2]. A pseudo-code of our
implementation can be seen in algorithm 3. Even though we
sample our commands at 5Hz, we send commands to the
system at a rate of 20Hz. To do so we apply a linear interpo-
lation on the set of optimal commands found by the MPPI.

As briefly mentioned earlier, the cost function used to
optimize the MPPI trajectory is composed of 3 components:

– A cost-map: this component of the cost function makes
sure that the robot remains on the track. In our case the
cost-map is computed based on the quadratic distance
from the track.

– A velocity cost: this component of the cost function makes
sure that the USV moves on the track at the desired
speed. It is computed using eq. (6), where vtarget is the
desired speed and v the actual speed of the USV.

vel cost =

∣∣vtarget− v
∣∣

0.0001+ v
. (6)

– Finally, the last element of the cost function is a heading
cost. It is computed based on the difference between the
heading of the robot and the heading of the track. This
cost is the error between the desired heading and the ac-
tual heading. The desired heading is set for each seg-
ment and follow the track counterclockwise direction.
This cost is given by : head cost =

∣∣θtarget −θ
∣∣. This el-

ement of the cost is only used in the square track (see
Sec. 4.1).

In the end, the total cost is given by eq. (7), with α1, α2 and
α3 regulating the weights of the different components of the
cost function.

cost = α1pos cost+α2vel cost+α3head cost. (7)



6 Antoine Mahé* et al.

Algorithm 3 Model Predictive Path Integral [31]
Require: F : Dynamic model

T : number of timesteps
K : number of sampled trajectories
φ : cost function
ut : commands sent at step t
st : state at step t
U = u1,u2, . . . ,uT : initial control sequence

Sample εk = ε1
k ,ε

2
k , . . . ,ε

T
k ∼N (µ, σ2)

for k = 0 to K−1 do
for t = 1 to T do

ut = ut + ε t
k

st+dt ← F(st ,ut)
end for
Sk ={st for t in [0,T ]}
Ck← φ(Sk)

end for
β ← mink[Ck]

η ← ∑
K−1
k=0 exp(−(Ck−β ))

for k = 0 to K−1 do
wk← 1

η
exp(−(Ck−β ))

end for
for t = 1 to T do

ut = ut +∑
K
k=1 wkε t

k
end for
return U

4 Experiments

In this section we explain how the experiments are performed,
what is evaluated, and how it is evaluated.

4.1 Simulation Setup

We tested our approach in simulation using the Gazebo soft-
ware2, a simulator that allows creating complex simulations
with custom robots and hardware. The simulation of the
USV itself is done using the heron package3 along with
the uuv-simulator4. The first one provides a simulated ver-
sion of Clearpath Robotics’s Heron an USV, while the later
provides advanced water buoyancy simulation, and realis-
tic thrust non-linearities that imitates the real USV behavior.
All the experiments were carried out using Robotic Operat-
ing System (ROS)5, a well known robotic middleware.

To evaluate the impact of the different parameters and
models, we created two different tracks with a width of half
a meter. The first one, a simple one, features smooth curves
and slow changes, while the second one has abrupt orienta-
tion changes. The two tracks can be seen in figure 1. From
these tracks we compute a cost map used by the MPPI to

2 gazebosim.org
3 github.com/heron/heron_simulator
4 github.com/uuvsimulator/uuv_simulator
5 www.ros.org

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

Simple Track

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

Advanced Track

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

Simple Track Cost-Map

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

Square Track Cost-Map

Fig. 1: The two tracks used to evaluate the different learning
paradigm and parameters of the MPPI (first row), associated
with their respective cost maps (second row).

plan its trajectories. In our case, the resolution of the cost
map is 10cm/pixel, and their values are computed from the
following rules: if the pixel is on the track then its cost is 0,
if the pixel is outside the track then its cost is determined by
its squared distance in pixels from the track. The two cost
maps can be seen in figure 1. This is different from the im-
plementation of the cost-map in the original MPPI [30,31]
code. In the latter, the cost map was binary with 0 for the
track and 1 outside of it. In our experiments, we have found
that having a gradient around the track helps the USV to stay
on it: if it ventures outside of the track, the gradient helps the
USV to come back to it.

4.2 Neural Networks

In the following subsection, we detail the dataset used to
train the NNs along with how the networks are trained and
evaluated.

4.2.1 Dataset

To train the NNs that are used to predict the dynamics of
the system, we need to create a dataset. To create a sys-
tem identification dataset, the most efficient method is to
sample random commands and send them to the system for
a random amount of time. Unfortunately, even though this
method works perfectly in simulation, in the real world it
does not work for obvious reasons. With this in mind, we
created a dataset that is a combination of straight lines and

gazebosim.org
github.com/heron/heron_simulator
github.com/uuvsimulator/uuv_simulator
www.ros.org


Evaluation of prioritized deep system identification on a path following task 7

turns at different velocities that we mixed with twenty per-
cent of random commands. In addition to being closer from
what a real dataset looks like, this dataset should also show
how the PER and the gradient upper-bound can leverage the
random samples to improve their prediction performances.

4.2.2 Training parameters

The NNs used in this paper are simple MLPs. More pre-
cisely, these MLPs feature two dense layers with 32 neu-
rons, and a final layer with 3 neurons: one for the linear ve-
locity, one for the lateral velocity, and finally one for the an-
gular velocity. The activation function used here are Leaky-
ReLUs [20], and there is no activation function in the final
layer. The input of the network is a flattened sequence of
the six previous states and commands. While these networks
can look simplistic, this answers a performance need: with
up to 1,000,000 forward passes per seconds, the networks
need to be light enough to run in real time on an embedded
platform. Before training, the dataset is normalized by sub-
tracting its mean and dividing it by its standard deviation. To
perform the regression, an L2 loss is used. Finally, we use
the Adam optimizer [13] with a learning rate of 0.001. All
the networks are trained using Tensorflow [1] version 1.15.

4.3 Evaluation

4.3.1 Networks evaluation

To evaluate the performance of the networks, we build two
datasets. The “full-random” dataset: a balanced dataset, and
an “unbalanced” dataset. Both the “full random” dataset and
the “unbalanced” dataset are split into into three subsets: a
training set, a validation set and a test set. In the “full ran-
dom” dataset all the subsets are comprised of samples ob-
tained by generating random commands. However, for the
“unbalanced” dataset only the test set is comprised of sam-
ples acquired using random commands. Both the training
and the validation set are made of a mix of straight line and
random commands as defined in Sec. 4.2.1. Overall, both
datasets include about 1 millions samples. The goal here is
to see if the networks trained with PER or gradient upper-
bound will achieve better performances than the standard
training procedures. To evaluate the different schemes, we
trained them with all the combinations of parameters 5 times
and averaged the results for each combination of parame-
ters. In the case of the PER, we trained 5 networks, for each
combinations of α and β , with α and β ranging between 0.1
and 0.9 with a 0.1 increment. For the gradient upper-bound,
we trained 5 networks for different super-batch size values.
Specifically, we took as super-batch size every power of 2
between 32 and 8196. Additionally, to show how those net-
works would perform in the case of a dataset acquired only

by applying random commands, we also included the results
of these comparisons on a fully random dataset in addition
to the mix one detailed in Sec. 4.2.1. In this case, we want
to see if these methods perform worse than the standard one
when applied to a well balanced dataset, for instance by fo-
cusing the networks training on outliers.

To evaluate the performance of the networks we consider
two metrics:

– The Root Mean Squared Error (RMSE) of the network
when predicting the next state of the system. It will be
referred to as single-step accuracy.

– The RMSE of the network over a trajectory of 15 points.
In this case the network iterates over its own predictions
15 times. It will be referred to as multi-step accuracy.

For both of these metrics, we report the average and the stan-
dard deviation of the RMSE over the 5 runs.

4.3.2 MPPI evaluation

In our experiments, we also evaluated the impact of the dif-
ferent parameters of the MPPI. We studied the impact of the
following parameters:

– The number of samples: this is the amount of trajecto-
ries that are sampled in the Monte-Carlo optimization
process. A small amount of samples means that the tra-
jectories generated will most likely not sufficiently cover
the area of space that is interesting. On the other hand, a
large amount of samples means that the trajectory will
cover a broader space and that the chances of having
scattered trajectories is lower. The main drawback of
having a large amount of samples is an increase in com-
putational cost. In this study, we vary the number of sam-
ples between 500 and 6000.

– The number of time-steps: this is how far the MPPI pre-
dicts in the future. Too few time-steps, and the sam-
pled trajectory will not go far enough in the future. This
means that the algorithm will not be able to account for
the slow dynamics of the boat and its high slippage; the
algorithm will not anticipate enough and may not be able
to turn correctly. However, with too many time-steps the
problems comes from the dynamic model learned us-
ing the NN: for every time-step, the model iterates on
its own predictions, thus increasing the prediction error
over time. In this study, the number of time-steps vary
between 5 and 40.

– The variance of the sampling: this parameter rules how
new trajectories are sampled. As shown in algorithm 3,
the new commands are sampled by taking the optimal
commands found at the previous optimization step, and
adding noise onto them. The variance itself is how much
noise will be applied. Too much noise, and the trajecto-
ries will be sparse requiring a high amount of samples



8 Antoine Mahé* et al.

to compensate; not enough noise, and the trajectories
will be generated in a very small cone leading to a sub-
optimal solution. All in all, we tested different variance
values ranging from 0.15 to 2.0.

All these experiments were carried out on the square track.
Its abrupt turns helped better differentiate the parameters.
On these experiments the results are the average of 15 runs,
along with the standard deviation between these runs. We
also compared how the different learning paradigms impact
the evolution of the parameters. To do so, we tested all the
networks described previously, and reported the results of
the best performing networks across all parameters.

When evaluating the MPPI we monitor two distinct met-
rics: its performance in term of how well it stays in the track,
and its average velocity. While we could have studied the
cost on the velocity, we chose not to as it is very noisy,
and no useful information can be taken out of it. This is due
to the exponential penalty added to the velocity cost as the
USV slows down.

5 Results

5.1 Neural Networks training results

First, we present the results of the NNs training, with and
without a sample prioritization scheme. Here we expect the
different prioritization schemes to perform better than the
baseline in particular on the unbalanced dataset. The main
question is which of the PER or gradient upper-bound per-
form better. We evaluate them on two datasets: a dataset
solely comprised of random commands and an unbalanced
dataset. All the results presented in the tables and figures
below are reporting the average of 5 trainings with different
optimizer seeds.

Fig. 2: The PER results on the unbalanced dataset. Left:
single-step accuracy. Right: multi-step accuracy. The colder
the color the lower the RMSE. The lower the RMSE the bet-
ter.

Figures 2 and 3 show the grid-search results of the gradi-
ent upper-bound and the PER prioritization schemes on the

0 2000 4000 6000 8000 10000 12000 14000 16000
Super batch size

0.05

0.06

0.07

0.08

0.09

0.10

RM
SE

SingleStep RMSE for different superbatch-size values
average
std_dev

0 2000 4000 6000 8000 10000 12000 14000 16000
Super batch size

0.25

0.30

0.35

0.40

0.45

RM
SE

MultiStep RMSE for different superbatch-size values
average
std_dev

Fig. 3: The gradient upper-bound results on the unbalanced
dataset. Left: single-step accuracy. Right: multi-step accu-
racy. The lower the RMSE the better. The narrower the or-
ange area the better.

Fig. 4: The PER results on the fully random dataset. Left:
single-step accuracy. Right: multi-step accuracy. The colder
the color the lower the RMSE. The lower the RMSE the
better.

0 2000 4000 6000 8000 10000 12000 14000 16000
Super batch size

0.03

0.04

0.05

0.06

0.07

0.08

0.09

RM
SE

SingleStep RMSE for different superbatch-size values
average
std_dev

0 2000 4000 6000 8000 10000 12000 14000 16000
Super batch size

0.16

0.18

0.20

0.22

0.24

0.26

0.28

RM
SE

MultiStep RMSE for different superbatch-size values
average
std_dev

Fig. 5: The gradient upper-bound results on the fully random
dataset. Left: single-step accuracy. Right: multi-step accu-
racy. The lower the RMSE the better. The narrower the or-
ange area the better.

unbalanced dataset. Figure 4 and 5 show the grid-search re-
sults of the gradient upper-bound and the PER prioritization
schemes on the fully random dataset.

Let us first have a look at figure 2: it shows that the best
results are obtained with both a high α and a high β . This
means that to achieve the best results, the PER must put the
emphasis on the more difficult samples (α) but also com-
pensate as much as possible the bias that they introduce (β ).
Additionally, if we look at the color distribution, it is always
better to pick a large β , while α seems to be less impor-
tant. If we now look at figure 4, we can see that on the fully
random dataset, the single step prediction is more homoge-
neous in performance, with the notable exception of select-



Evaluation of prioritized deep system identification on a path following task 9

full random dataset unbalanced dataset
single-step RMSE multi-step RMSE single-step RMSE multi-step RMSE
mean std dev mean std dev mean std dev mean std dev

PER 0.060 0.006 0.18 0.021 0.068 0.0048 0.26 0.088
GRAD 0.052 0.007 0.17 0.024 0.070 0.0029 0.25 0.024
STD 0.066 0.014 0.27 0.101 0.082 0.0028 0.40 0.1

Table 1: Neural networks overall performance. The PER and gradient upper-bound networks were selected as the best per-
forming parameters in multi-step accuracy. Lower is better.

ing a high α coupled to low β . This behaviour, which can
also be found on the unbalanced dataset indicates that if the
PER does not compensate for the bias, then it most likely
overfits on outliers, hence degrading the general model per-
formance. Interestingly, when considering the multi-step ac-
curacy of the full random dataset (figure 4), we can see that
the color distribution is similar to the one of the unbalanced
dataset. This indicates that the PER scheme helps improve
multi-step performances in general, which is confirmed by
the results shown in table 1.

We can now move on to figure 3 showing the impact
of the gradient upper-bound parameters on the unbalanced
dataset. On this figure, it can be seen that, as the super-
batch-size increases, the single-step performance also in-
creases. However, on the multi-step RMSE, the accuracy is
saturating once the super-batch-size exceeds 2048 samples.
Yet, as the super-batch-size further increases the variance
diminishes. When comparing these results to the fully ran-
dom dataset (figure 5), the multi-step accuracy appears to be
ruled by the same phenomenon with a saturation of the per-
formances after 2048. Surprisingly, on the single-step accu-
racy, the increase in super-batch size initially penalizes the
accuracy, and as it reaches a value larger than 2048, the ac-
curacy remains somewhat constant with a variance slightly

0 5 10 15 20 25
x

0

5

10

15

20

25

y

USV trajectory

STD
GRAD sbs = 768
PER a = 07 b = 01

Fig. 6: Comparison of standard neural network (STD) and
prioritized (PER/GRAD) version on a composite track

increasing. This could be due to a focus on irrelevant sam-
ples that degrades the performances.

Finally, table 1 compares the different learning schemes.
As can be seen on this table, as expected, both the PER and
the gradient upper-bound consistently perform better than
the standard training method on the mean RMSE. The most
interesting element of this table is the large performance
boost that these methods offer on the multi-step accuracy,
with almost 30% of performance increase on both datasets.
Furthermore, from the standard deviation on the different
metrics, one can see that the prioritization schemes reduce
the variance among the trainings. This is particularly inter-
esting as it means that training with these methods provides
models which are more reliable.

5.2 MPPI results on the cost-map

Here, we first present the results of the different models
when applied in the MPPI on a “race against the clock” task.
We then compare the results of the two tracks and discuss
how some of the MPPI parameters influence the robustness
of the control. As detailed in Sec. 4.3.2, the results reported
in the figures are averaged over 15 runs.

5.2.1 Comparing the different schemes on the simple track

First, the controller is tested in the simple track. It is com-
posed of straight lines followed by arcs forming a loop. The
main difficulty on this track arises from the discontinuity in
the track’s curvature where a straight line and an arc meet.
Figure 6 shows how the different learning schemes performed
after 670 time-steps of 0.2 seconds. The models shown are
the best performing ones for their category. The best PER
model is obtained α = 0.7 and β = 0.1 while the best gradi-
ent model is obtained for a suberbatch size of 768.

We can see here, that the models using prioritized sam-
pling perform better than the one using the standard train-
ing procedure. When using the standard model the controller
overshoots as it reaches the track, and struggles to keep up
with the pace of the prioritized networks. The network trained
using the gradient method overshoots on the first curvature
change at x = 20;y = 4 but manages to follow the track and
beats the other models in the race. Finally, the PER method



10 Antoine Mahé* et al.

manages to stay on the track rather well and is closely fol-
lowing the gradient based method.

5.2.2 Comparing the different models on the advanced
track

10 5 0 5 10 15 20
x

5

0

5

10

15

20

y

USV trajectory

STD
GRAD sbs = 2048
PER a = 09 b = 02

Fig. 7: Comparison of standard neural network (STD) and
prioritized (PER/GRAD) version on a square track

To test the capacity of the algorithms, we repeat the pre-
vious experiment on a much more challenging track: a square
track. The 90 degrees turns present major difficulty for the
USV due to its slow dynamics and high lateral slippage. De-
spite the complexity of this task, all the models managed to
follow the track once we added the heading cost. Without it,
they used to stay stuck in the corners. Figure 7 shows the tra-
jectories followed by the different models on their best run.
On that run, the PER is the fastest but the gradient-based
model is with the lowest map-cost, showing that it respects
the track better. The detail of the costs is as follow : the gra-
dient achieves an average map-cost of 3.9 and an average
global cost of 20.0, the PER achieves an average map-cost
of 6.9 and an average global cost of 18.7 while the stan-
dard method gets an average map-cost of 6.7 and an average
global cost of 22.3.

5.2.3 Study of the number of samples impact on the
performance

Figure 8 shows how the mean of the map-costs evolves as
the amount of samples used in the optimization process in-
creases. In our specific setup, using less than 500 samples
makes the controller highly unstable leading to the failure
of the track following task for all the models. On the other
hand, after 4000 samples we are reaching the limit of what
our python implementation can achieve in real time, and

1000 2000 3000 4000 5000 6000

2.5

5.0

7.5

10.0

12.5

st
an

da
rd

 d
ev

ia
tio

n

standard deviation of the mean cost over trials
STD
GRAD sbs = 2048
PER a = 0.9 b = 0.2

1000 2000 3000 4000 5000 6000
number of samples

10

15

20

m
ea

n

mean of the mean cost over trials

Fig. 8: Average map-cost and variance over several trials for
different number of sample trajectories. Lower is better.

above 6000 samples the controller cannot work properly any-
more as it is no longer running in real time and hence suffers
from a delay between its observations and the optimal tra-
jectories it finds.

Overall, the average map-cost is decreasing as the num-
ber of samples increases up to the point where the compu-
tational cost becomes a limiting factor. We can see on the
mean graph that on average the prioritized versions perform
better than the classic ones. The gradient method in particu-
lar obtains very good results compared to the other methods.
In figure 7, we see that the PER is faster than the gradient.
However, figure 8 shows that the gradient is more reliable
than the other approaches with a better average cost. It is
important to note that the comparison in figure 7 is on the
best run only while figure 8 show the results over 15 trials.

5.2.4 Study of the number of time-steps impact on the
performance

Figure 9 shows the influence of the length of the trajectories
being evaluated by the MPPI. Below 5 steps the trajectories
are so short that they cannot take into account the dynamics
of the USV, making the controller useless. Above 40 steps,
the computational costs becomes so high that, as encoun-
tered before, the optimal trajectories cannot be given in real
time, leading first to degraded performances and then to the
divergence of the controller. In term of average map-cost, the
standard model is worse than the prioritized models. We can
also see that increasing the number of time-steps improves
the performance of the controller until 25 steps, after which
the performances decrease slightly. This may be caused by
the fact that as the trajectory gets longer the position error
of the model increases, as explained in Sec. 5.2.



Evaluation of prioritized deep system identification on a path following task 11

5 10 15 20 25 30 35 40
0

10

20

30

40

st
an

da
rd

 d
ev

ia
tio

n

standard deviation of the mean cost over trials
STD
GRAD sbs = 2048
PER a = 0.9 b = 0.2

5 10 15 20 25 30 35 40
number of timestep step

10

20

30

40

m
ea

n

mean of the mean cost over trials

Fig. 9: Average map-cost and variance over several trials for
different number of time-steps per trajectory

5.2.5 Study of the number of the sampling variance

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

5

10

15

st
an

da
rd

 d
ev

ia
tio

n

standard deviation of the mean cost over trials
STD
GRAD sbs = 2048
PER a = 0.9 b = 0.2

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
variance of sampling

5.0

7.5

10.0

12.5

15.0

17.5

m
ea

n

mean of the mean cost over trials

Fig. 10: Average map-cost and variance over several trials
for different sampling variance

In figure 10, we show the results for different variance
values when sampling new commands. With too little vari-
ance, below 0.15, the controller can not find any relevant
trajectory and fails completely. As the variance grows be-
yond 1.5, the performances decrease, to the point where the
algorithm fails and the costs diverge. Figure 11 helps bet-
ter understand the behavior of the system with a low and
a high variance. With a low variance the system does not
explore enough and finds a suboptimal trajectory. This can
be observed from the many small oscillations on the system
trajectory. Also, because the MPPI uses the previous opti-
mal command to sample new commands the acceleration

10 5 0 5 10 15 20
x

5

0

5

10

15

20

y

USV trajectory

STD
GRAD sbs = 2048
PER a = 09 b = 02

10 5 0 5 10 15 20
x

5

0

5

10

15

20

y

USV trajectory

STD
GRAD sbs = 2048
PER a = 09 b = 02

Fig. 11: Snapshot of the robot position (dot) and their trajec-
tory (line). Command sampling variance at 0.15: left; and
variance at 2.0: right.

will be slower using a small variance. On the other hand,
with a variance of 2.0 we sample over the whole of the ac-
tion space. While it can be interesting, it also means that the
trajectories will be sparser. This is visible on the oscillations
in the straight line that are not present on figure 7 that was
acquired with a variance of 0.6. The gradient model encoun-
ters some issues at the 0.9 variance mark due to one run that
diverged. Otherwise the consistency of prioritized methods
observed in the previous graph is still true. We can also see
that an increased variance slightly improves the performance
of the standard and PER version.

Overall it is observed that the prioritized models lead
to better results in term of map-cost. Moreover for this ex-
periment the MPPI worked best for a number of samples
between 1500 and 4000, a number of time-step between 15
and 30 and a variance between 0.4 and 0.8.

5.3 MPPI velocity results

In this section, we have a look at how the different param-
eters of the MPPI impact the average velocity of the USV.
Furthermore, we compare the velocity of the different learn-
ing schemes.

Let us start by analyzing the impact of the number of
times-steps on the the mean velocity around the track. From
figure 12, it can be seen that, as the number of time steps
increases, the velocity of the USV decreases. This makes
sense, since with more time-steps the network can plan far-
ther ahead, and anticipates the sharp corners of the track.
Another interesting point is that the standard model is going
faster than the prioritized models. This indicates that the es-
timation made by the standard model is not as good as the
prioritized model. Hence it believes it can go faster and will
end-up going outside of the track. This behavior can be seen
in figures 9, 8, 10 where the standard model almost always
has a higher map-cost than the prioritized models. Similar
behavior can be seen on figures 13, 14 where the standard
model is constantly faster than the prioritized approach. In
the end, while the standard model goes faster on average,



12 Antoine Mahé* et al.

5.0 6.0 7.0 8.0 10.0 12.0 15.0 25.0

0.6

0.8

1.0

1.2

1.4

m
ea

n 
sp

ee
d

Distribution of mean over trials of the speed's norm for the standard model

5.0 6.0 7.0 8.0 10.0 12.0 15.0 25.0

0.6

0.8

1.0

1.2

1.4

m
ea

n 
sp

ee
d

Distribution of mean over trials of the speed's norm for the gradient model

5.0 6.0 7.0 8.0 10.0 12.0 15.0 25.0
number of timestep

0.6

0.8

1.0

1.2

1.4

m
ea

n 
sp

ee
d

Distribution of mean over trials of the speed's norm for the PER model

Fig. 12: Average velocity over several trials for different
number of time-steps. Higher is better.

0.150.1750.2 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9 1.0 1.25 1.5 1.75 2.0
0.0

0.2

0.4

0.6

0.8

m
ea

n 
sp

ee
d

Distribution of mean over trials of the speed's norm for the standard model

0.150.1750.2 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9 1.0 1.25 1.5 1.75 2.0
0.0

0.2

0.4

0.6

0.8

m
ea

n 
sp

ee
d

Distribution of mean over trials of the speed's norm for the gradient model

0.150.1750.2 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9 1.0 1.25 1.5 1.75 2.0
sampling variance

0.0

0.2

0.4

0.6

0.8

m
ea

n 
sp

ee
d

Distribution of mean over trials of the speed's norm for the PER model

Fig. 13: Average velocity over several trials for different val-
ues of variance. Higher is better.

this extra velocity is misused and leads to worst performance
on the track-following task.

50.0 100.0 250.0 500.0 1000.0 1500.0 2000.0 4000.0 5000.0
0.4

0.6

0.8

1.0

m
ea

n 
sp

ee
d

Distribution of mean over trials of the speed's norm for the standard model

50.0 100.0 250.0 500.0 1000.0 1500.0 2000.0 4000.0 5000.0
0.4

0.6

0.8

1.0

m
ea

n 
sp

ee
d

Distribution of mean over trials of the speed's norm for the gradient model

50.0 100.0 250.0 500.0 1000.0 1500.0 2000.0 4000.0 5000.0
number of sample

0.4

0.6

0.8

1.0

m
ea

n 
sp

ee
d

Distribution of mean over trials of the speed's norm for the PER model

Fig. 14: Average velocity over several trials for different
number of samples. Higher is better.

6 Application to a real world scenario

In the following we apply the MPPI to a real robotic sys-
tem, in a real-world scenario: following a lake shore. In this
use-case, unlike in simulation, the trajectory to follow is not
known a priory. Instead, a track is inferred in real-time using
the onboard sensors of the robot.

6.1 Problem definition and setup

In this subsection we used the know-how presented previ-
ously to make a USV autonomously follow a lake shore. To
tackle this task we relied on the Kingfisher, a 1.5 meter long
catamaran from Clearpath Robotics. We fitted our USV with
a 20 meters-range SICK LMS111 2D-LIDAR, and an EM-
LID Reach RS+ RTK-GPS. The GPS was used to acquire
the boat state which usually provides a localisation with a
precision of at least 5cm at 5Hz. On the computational side,
an Intel Atom was used for low-level computations, and an
NVIDIA Xavier was used to run the MPPI. Figure 15, shows
our real system and the test environment.

Unlike the previous section we do not follow a virtual
GPS track; instead we build a track that follows the shore at
a 10 meters distance. To do so, we convert the output of the
2D-LIDAR into a local track. We then use this local track
as the cost-map for the MPPI. The main difference between
this method and the one presented before, is that the map
is no longer fixed but changes with every new MPPI step.



Evaluation of prioritized deep system identification on a path following task 13

Fig. 15: Left our USV equipped with its sensors, right top
view of our test environment: soccer field for scale. (Lac
Symphonie, 57000 Metz, France, Google Maps, 2020)

An illustration of the system and its task can be found in
figure 16.

In the end, the cost function that we used to solve this
task is similar to the one shown in (7), and the target ve-
locity was set to 0.7m/s: the maximum velocity the system
could reach while performing its task reliably. The heading
term was removed from the cost function as we do not have
a smooth and well defined trajectory to follow but rather a
track to stay on. Regarding the MPPI parameters we lever-
aged the previously found results and chose the parameters
that made most sense in an embedded application. As a re-
sult, we opted for 1500 samples and 20 time-steps. As for the
variance we found that 0.3 was a good value for the real sys-
tem, as we will see in 6.2. Finally we trained our NN using
a PER scheme on a dataset collected in the real environment
with the method described in 4.2.1. For this dataset, we also
used a grid-search to find the optimal PER parameters.

����������

����������

��������������

������������
��������

������
���
�

������	������
����������������

�����
���

����
���

Fig. 16: The USV and its shore-following task. Black is a
zero cost area, blue has a gradually increasing cost as we
move away from the track, orange has a positive cost of 500,
green is collision and has a positive cost of 10000.

6.2 Results

Because performing grid-searches on a real system is pro-
hibitively expensive, we chose to only report one experiment
in the result section and explain how we tuned some of the
parameters. Figure 17 shows the trajectory followed by the
USV along with the cost in position and velocity associated
to this trajectory.

Here we only show a third of the run, the remaining part
having been frequently interrupted by fishermen. During this
run, the USV maintained a velocity of 0.83m/s± 0.19m/s,
and a distance from the shore of 9.5m±2.5m. As we can see
on the velocity cost, this constraint is fairly well respected.
We can observe a few high spikes: these happen when the
robot goes backward because it came too close to the shore.
Regarding the distance from the shore, the cost values may
seem large but this is because LIDARs measurements are
noisy in natural environments. Since the leaves do not reflect
the laser beams well and the branches are small objects, the
laser beams only hit them partially and it results in incorrect
distance measurements. Finally, because our laser only has
a 270◦ field of view, there is a blind spot which leads to a de-
formation of the local path when the robot is not parallel to
the shore. Nonetheless, the USV performed well, and across
our testing it never collided with the shore and managed to
go around most of the obstacles. The main limitation of the
approach was that when facing obstacles that have an acute
angle relatively to the shore the boat could turn back.

On the real system, we found that the sweet-spot for the
command variance sampling was around 0.3, when in sim-
ulation values from 0.5 to 1.0 seemed to work best. Having
a larger variance would lead to instability. This could be ex-
plained by the constraints faced by our embedded system.
In simulation we can see that optimal amount of samples
range from 2000 to 4000 and the ideal horizon was around
25. This was not achievable with our implementation on the
Xavier, hence we reduced the number of particles which in-
turn forced us to reduce the variance of the command sam-
pling to prevent the MPPI from becoming unstable.

7 Conclusion

Following the work done in [22], this paper looks at the in-
terest of prioritization in training for deep model identifi-
cation. After showing the advantage of our method in the
modeling of the USV used for our experiment, we show
that it translates into good performance on a track-following
task for two different tracks. Then, we study the reliability
of the controller for the different models depending on the
algorithm parameters. We show that the prioritization im-
proves the result, in particular, the gradient-based method
outperforms other methods in most cases. Even though these
methods bring significant performance boost, both the PER



14 Antoine Mahé* et al.

Fig. 17: Top: cost of the USV along the trajectory shown on the bottom left. For the cost. A lower cost indicates a better
performance. The colors on the three plots match so the costs can be associated easily to the position. On the bottom right, a
satellite image of the lake is given.

and gradient upper-bound require grid-searches to work op-
timally. This is particularly true on datasets where there are
outliers to which the PER is particularly sensitive to. Ad-
ditionally, the main drawback of the MPPI and the NNs
in general comes from their inability to correctly estimate
their uncertainty. Yet, recent advances in the field [4,6,23]
show promising results. In future research, we are planning
to adapt the MPPI by replacing the current NN inside it by
Evidential Networks[4]. This should improve the robustness
of the MPPI by discarding the most unreliable particles.



Evaluation of prioritized deep system identification on a path following task 15

Ethical Approval

Not applicable

Consent to Participate

Not applicable

Consent to Publish

Not applicable

Authors Contributions

– Antoine Mahé: Simulation experiments, writing, coding
– Antoine Richard: Simulation/Field experiments, writing,

coding
– Stéhanie Aravecchia: Field experiments, writing, coding
– Matthieu Geist: Supervision, writing, review
– Cédric Pradalier: Supervision, writing, review

Funding

This work is done under the Grande Region rObotique aeri-
enNE(GRoNe) project, funded by a European Union Grant
thought theFEDER INTERREG VAinitiative and the french
“Grand Est” Région.

Competing Interests

None

Availability of data and materials

None

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,
C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: Tensor-
flow: Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467 (2016)

2. Akpan, V.A., Hassapis, G.D.: Nonlinear model identification and
adaptive model predictive control using neural networks. ISA
transactions 50(2), 177–194 (2011)

3. Alain, G., Lamb, A., Sankar, C., Courville, A., Bengio, Y.: Vari-
ance reduction in sgd by distributed importance sampling. arXiv
preprint arXiv:1511.06481 (2015)

4. Amini, A., Schwarting, W., Soleimany, A., Rus, D.: Deep eviden-
tial regression. Advances in Neural Information Processing Sys-
tems 33 (2020)

5. Dentler, J., Kannan, S., Mendez, M.A.O., Voos, H.: A track-
ing error control approach for model predictive position control
of a quadrotor with time varying reference. In: Robotics and
Biomimetics (ROBIO), 2016 IEEE International Conference on,
pp. 2051–2056. IEEE (2016)

6. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation:
Representing model uncertainty in deep learning. In: international
conference on machine learning, pp. 1050–1059 (2016)

7. Gonzalez, J., Yu, W.: Non-linear system modeling using lstm neu-
ral networks. IFAC-PapersOnLine 51(13), 485–489 (2018)

8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural
computation 9(8), 1735–1780 (1997)

9. Horgan, D., Quan, J., Budden, D., Barth-Maron, G., Hessel, M.,
Van Hasselt, H., Silver, D.: Distributed prioritized experience re-
play. arXiv preprint arXiv:1803.00933 (2018)

10. Hwangbo, J., Sa, I., Siegwart, R., Hutter, M.: Control of a quadro-
tor with reinforcement learning. IEEE Robotics and Automation
Letters 2(4), 2096–2103 (2017)

11. Katharopoulos, A., Fleuret, F.: Biased importance sampling for
deep neural network training. CoRR abs/1706.00043 (2017).
URL http://arxiv.org/abs/1706.00043

12. Katharopoulos, A., Fleuret, F.: Not all samples are created equal:
Deep learning with importance sampling. CoRR abs/1803.00942
(2018). URL http://arxiv.org/abs/1803.00942

13. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014)

14. Lattanzi, D., Miller, G.: Review of robotic infrastructure inspec-
tion systems. Journal of Infrastructure Systems 23(3), 04017004
(2017)

15. Lenain, R., Thuilot, B., Cariou, C., Martinet, P.: High accuracy
path tracking for vehicles in presence of sliding: Application
to farm vehicle automatic guidance for agricultural tasks. Au-
tonomous robots 21(1), 79–97 (2006)

16. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa,
Y., Silver, D., Wierstra, D.: Continuous control with deep rein-
forcement learning. CoRR abs/1509.02971 (2015). URL http:
//arxiv.org/abs/1509.02971

17. Ljung, L.: System identification. In: Signal analysis and predic-
tion, pp. 163–173. Springer (1998)

18. Loshchilov, I., Hutter, F.: Online batch selection for faster training
of neural networks. arXiv preprint arXiv:1511.06343 (2015)

19. Lucet, E., Lenain, R., Grand, C.: Dynamic path tracking control
of a vehicle on slippery terrain. Control engineering practice 42,
60–73 (2015)

20. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities im-
prove neural network acoustic models. In: Proc. icml, vol. 30, p. 3
(2013)

21. Mahé, A., Pradalier, C., Geist, M.: Trajectory-control using deep
system identication and model predictive control for drone control
under uncertain load. In: 2018 22nd International Conference on
System Theory, Control and Computing (ICSTCC), pp. 753–758
(2018). DOI 10.1109/ICSTCC.2018.8540719

http://arxiv.org/abs/1706.00043
http://arxiv.org/abs/1803.00942
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971


16 Antoine Mahé* et al.

22. Mahé, A., Richard, A., Mouscadet, B., Pradalier, C., Geist, M.:
Importance sampling for deep system identification. In: 2019 19th
International Conference on Advanced Robotics (ICAR), pp. 43–
48. IEEE (2019)

23. Malinin, A., Gales, M.: Predictive uncertainty estimation via prior
networks. In: Advances in Neural Information Processing Sys-
tems, pp. 7047–7058 (2018)

24. Naegeli, T., Alonso-Mora, J., Domahidi, A., Rus, D., Hilliges, O.:
Real-time motion planning for aerial videography with dynamic
obstacle avoidance and viewpoint optimization. IEEE Robotics
and Automation Letters 2(3), 1696–1703 (2017). DOI 10.1109/
LRA.2017.2665693

25. Pannocchia, G.: Offset-free tracking mpc: A tutorial review and
comparison of different formulations. In: Control Conference
(ECC), 2015 European, pp. 527–532. IEEE (2015)

26. Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive
control technology. Control engineering practice 11(7), 733–764
(2003)

27. Schaal, S., Atkeson, C.G., Vijayakumar, S.: Real-time robot learn-
ing with locally weighted statistical learning. In: Robotics and Au-
tomation, 2000. Proceedings. ICRA’00. IEEE International Con-
ference on, vol. 1, pp. 288–293. IEEE (2000)

28. Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experi-
ence replay. arXiv preprint arXiv:1511.05952 (2015)

29. Williams, G., Drews, P., Goldfain, B., Rehg, J.M., Theodorou,
E.A.: Aggressive driving with model predictive path integral con-
trol. In: Robotics and Automation (ICRA), 2016 IEEE Interna-
tional Conference on, pp. 1433–1440. IEEE (2016)

30. Williams, G., Wagener, N., Goldfain, B., Drews, P., Rehg, J.M.,
Boots, B., Theodorou, E.A.: Information theoretic mpc for model-
based reinforcement learning

31. Williams, G., Wagener, N., Goldfain, B., Drews, P., Rehg, J.M.,
Boots, B., Theodorou, E.A.: Information theoretic mpc for model-
based reinforcement learning. In: 2017 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 1714–1721. IEEE
(2017)

32. Yaghoubi, S., Akbarzadeh, N.A., Bazargani, S.S., Bazargani, S.S.,
Bamizan, M., Asl, M.I.: Autonomous robots for agricultural tasks
and farm assignment and future trends in agro robots. International
Journal of Mechanical and Mechatronics Engineering 13(3), 1–6
(2013)

33. Zhang, T., Kahn, G., Levine, S., Abbeel, P.: Learning Deep Con-
trol Policies for Autonomous Aerial Vehicles with MPC-Guided
Policy Search. ArXiv e-prints (2015)

34. Zhang, T., Kahn, G., Levine, S., Abbeel, P.: Learning deep control
policies for autonomous aerial vehicles with mpc-guided policy
search. In: 2016 IEEE international conference on robotics and
automation (ICRA), pp. 528–535. IEEE (2016)


	Introduction
	Related work
	Method
	Experiments
	Results
	Application to a real world scenario
	Conclusion

