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A neural network-based method (CANYON: CArbonate system and Nutrients

concentration from hYdrological properties and Oxygen using a Neural-network)

was developed to estimate water-column (i.e., from surface to 8,000m depth)

biogeochemically relevant variables in the Global Ocean. These are the concentrations

of three nutrients [nitrate (NO3
−), phosphate (PO4

3−), and silicate (Si(OH)4)] and four

carbonate system parameters [total alkalinity (AT), dissolved inorganic carbon (CT), pH

(pHT), and partial pressure of CO2 (pCO2)], which are estimated from concurrent in situ

measurements of temperature, salinity, hydrostatic pressure, and oxygen (O2) together

with sampling latitude, longitude, and date. Seven neural-networks were developed using

the GLODAPv2 database, which is largely representative of the diversity of open-ocean

conditions, hencemaking CANYON potentially applicable to most oceanic environments.

For each variable, CANYON was trained using 80 % randomly chosen data from the

whole database (after eight 10◦ × 10◦ zones removed providing an “independent data-

set” for additional validation), the remaining 20 % data were used for the neural-network

test of validation. Overall, CANYON retrieved the variables with high accuracies (RMSE):

1.04µmol kg−1 (NO3
−), 0.074µmol kg−1 (PO4

3−), 3.2µmol kg−1 (Si(OH)4), 0.020 (pHT),

9µmol kg−1 (AT), 11µmol kg−1 (CT) and 7.6 % (pCO2) (30µatm at 400µatm). This was

confirmed for the eight independent zones not included in the training process. CANYON

was also applied to the Hawaiian Time Series site to produce a 22 years long simulated

time series for the above seven variables. Comparison of modeled and measured data

was also very satisfactory (RMSE in the order of magnitude of RMSE from validation

test). CANYON is thus a promising method to derive distributions of key biogeochemical

variables. It could be used for a variety of global and regional applications ranging from

data quality control to the production of datasets of variables required for initialization and
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validation of biogeochemical models that are difficult to obtain. In particular, combining

the increased coverage of the global Biogeochemical-Argo program, where O2 is one of

the core variables now very accurately measured, with the CANYON approach offers

the fascinating perspective of obtaining large-scale estimates of key biogeochemical

variables with unprecedented spatial and temporal resolutions. The Matlab and R codes

of the proposed algorithms are provided as Supplementary Material.

Keywords: neural network, nutrients, carbonate system, global ocean, GLODAPv2 database, profiling floats

INTRODUCTION

The ocean is under increasing stress (Gruber, 2011; Gattuso
et al., 2015). Given this context of a rapidly changing ocean, it is
crucial to reinforce the observation capability of biogeochemical
variables and develop ways of measuring or estimating new ones
(Claustre et al., 2010; Gruber et al., 2010b). This is required not
only for monitoring ongoing changes, but also to gain a better
understanding of key biogeochemical processes and for reducing
uncertainties in budgets of major elements (e.g., carbon, oxygen,
nitrogen, phosphorus, and silicium).

Reaching the goal of an improved global observation system
for biogeochemical variables primarily relies on enhancing
the spatio-temporal resolution of measurements. Historically,
marine biogeochemical observations have been conducted
from ships either taking discrete water samples followed by
laboratory analyses (e.g., Global Ocean Ship-based Hydrographic
Investigations Panel, GO-SHIP program; Talley et al., 2016),
or conducting continuous measurements of surface-water
properties. These approaches have been and still remain essential
as their estimates generally have the highest accuracies. Such
measurements have been assembled into global databases (e.g.,
GLODAPv2; Key et al., 2015; Olsen et al., 2016), which are a key
resource for making budgets of chemical elements, directly from
available measurements (Takahashi et al., 2009) or indirectly
through specific innovative methods (Landschützer et al., 2013,
2014, 2016), conducting climate change research (Le Quéré
et al., 2015) and biogeochemical modeling (e.g., use of data
for model initialization and/or validation; Doney et al., 2009;
Ilyina et al., 2013). The ship-based sampling mode has one major
limit, i.e., coarse spatio-temporal resolution and resulting under-
sampling of marine biogeochemical properties. This severely
limits the understanding of fundamental processes and the
accurate documentation of ongoing changes, especially at some
critical scales (e.g., seasonal, regional).

Over the last two decades, observation technologies such
as autonomous platforms have matured (e.g., profiling floats
and gliders equipped with biogeochemical sensors; Johnson
et al., 2009, 2013, 2016). Robotic observation now provides
a reliable complement to ship-based sampling that can be
used to cost-effectively densify the acquisition of marine
biogeochemical properties (Johnson et al., 2009). Among such
observation systems, the recently launched Biogeochemical-
Argo (BGC-Argo) network offers a promising approach
for the global coverage and spatio-temporal resolution of
biogeochemical properties (Johnson and Claustre, 2016). The
biogeochemically-relevant variables amenable to systematic and

reliable acquisition with robotic observation systems presently
include concentrations of oxygen (O2) and their number
increases rapidly (Johnson et al., 2015). More generally, O2

concentration is the most mature measurement, and could be
easily implemented on all types of profiling floats (Gruber et al.,
2010a) including those of the BGC-Argo network.

Oxygen optode sensors have been progressively implemented
on profiling floats since the early 2000s, and have thus opened
a new area of research (e.g., Körtzinger et al., 2004; Martz
et al., 2008; Riser and Johnson, 2008). Strong efforts have been
devoted toward the improvement of the long-term reliability
and accuracy of autonomous O2 measurements on profiling
floats. A crucial step is the possibility of frequently calibrating
optodes by recording O2 in air when the float surfaces (Bittig and
Körtzinger, 2015; Johnson et al., 2015; Bushinsky et al., 2016).
Such a calibration can be done for each profile and throughout
the float’s lifetime, improves the precision and accuracy of
O2 measurements to within 0.2 and 1 %, respectively (Bittig
and Körtzinger, 2015), which accuracy is comparable to that
of the reference Winkler titration technique. Water column
O2 concentration can therefore be globally monitored at the
biogeochemically relevant spatial and temporal resolutions. This
will move O2, which required specialized measurements until
now, among the key standard oceanographic variables.

In the present study, we develop a new approach with which
the expected increased densification of O2 measurements in
the near future could be used to support new studies related
to seven key biogeochemical variables, i.e., concentrations of
three dissolved inorganic macronutrients (nitrate, phosphate,
and silicate) and four parameters of the carbonate system (total
alkalinity, dissolved inorganic carbon, pH on the total scale, and
partial pressure of CO2). Because O2 concentration is a variable
that reflects both phytoplankton production and community
respiration processes, the first-order relationships which link
O2, nutrients and inorganic carbon are rather well-constrained
through Redfield stoichiometry (Redfield, 1934, 1958). These
intrinsic relationships have been used to develop, from regional
to global scales, multiple linear regression, or neural network
approaches that link O2 and simultaneously acquired variables
(e.g., pressure, temperature, salinity) to biogeochemical variables,
in particular parameters of the carbonate system (Juranek et al.,
2011; Velo et al., 2013; Carter et al., 2016; Williams et al., 2016).
These relationships could be used as transfer functions to convert
dense fields of O2 (and associated variables) into corresponding
fields of biogeochemical variables of interest. This represents a
way to cost-effectively populate, spatially, and temporally, the
previously loosely resolved fields of these variables.
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Such transfer functions represent a potential approach to
profit from the upcoming numerous accurate measurements of
O2 (from profiling floats), which are expected to be routine soon,
to derive properties or variables that are difficult or costly to
acquire. To be useful, these functions must provide “predicted”
variables with relatively high accuracy, and they should be as
generic as possible (i.e., ideally of global applicability). Among
the different possible methods for developing such transfer
functions, artificial neural networks are an attractive tool as
these powerful methods can be used for approximating any
differentiable and continuous functions and thus allow to model
complex and non-linear relationships (Hornik et al., 1989; Lek
and Guégan, 1999). As a consequence, neural networks have
already been largely used for biogeochemical and geophysical
applications (e.g., Ward and Redfern, 1999; Friedrich and
Oschlies, 2009; Jamet et al., 2012; Ben Mustapha et al., 2013).
More recently, neural networks have been used successfully
to retrieve the vertical distribution of biogeochemical variables
at the global scale using as input the geolocation variables,
providing a single global transfer function handling boundary
issues compared to regional-based functions (Sauzède et al., 2015,
2016).

The present study takes advantage of the simultaneous release
of the GLODAPv2 database (Olsen et al., 2016) and the planning
of the BGC-Argo program (Johnson and Claustre, 2016). The
two observational systems and resulting databases are highly
complementary, and new approaches can be developed to
synergistically use their respective strengths, i.e., measurement
accuracy for GLODAPv2, and spatio-temporal coverage for
BGC-Argo, with a specific emphasis on O2 measurements.
We thus focus in this study on the development of global
neural network-based transfer functions using O2 as a primary
input to retrieve nutrient concentrations and carbonate system
parameters in the water column down to 8,000 m. Hereinafter,
we refer to our method as CANYON, for CArbonate system
and Nutrients concentration from hYdrological properties and
Oxygen using a Neural network.

MATERIAL AND METHODS

The GLODAPv2 Database
The Global Ocean Data Analysis Project version 2 (GLODAPv2)
was an effort from the international community to consolidate
all data from ocean bottle samples collected as part of many
oceanic cruises (Olsen et al., 2016). The GLODAPv2 database
(available at http://cdiac.ornl.gov/oceans/GLODAPv2/) provides
a single high-quality internally consistent global data product
that contains CO2-relevant ocean interior measurements from
ship-based surveys. The GLODAPv2 database includes samples
of core variables such as salinity, oxygen, macronutrients, and
seawater CO2 chemistry from 724 oceanic cruises. In this
study, we focused on seven variables representative of the
macronutrients and of the seawater carbonate system: nitrate
(NO3

−), phosphate (PO4
3−), silicate (Si(OH)4), pH on the total

scale (pHT), total alkalinity (AT), total dissolved inorganic carbon
(CT), and partial pressure of CO2 (pCO2). Note that we estimated

this last variable from the AT and CT measurements available in
GLODAPv2 (see details below).

Initially, GLODAPv2 was instigated to prepare a unified,
bias-corrected interior ocean data product. Thus, a high quality
control, QC, based on two steps (i.e., primary and secondary QC)
was applied to each data (Olsen et al., 2016). The primary QCwas
carried out following routines outlined in Sabine et al. (2005) and
Tanhua et al. (2010), essentially based on inspection of property-
property plots. The secondary QC for salinity, oxygen, nutrients,
CT, andAT wasmore complex, and carried out through crossover
(i.e., comparing data where two different cruises crossed or came
close to each over) and inversion analyses (i.e., calculation of
corrections required to minimize all cruise-by-cruise offsets).
This two step-based method was introduced by Gouretski and
Jancke (2000) and Johnson et al. (2001). For the secondary QC
applied to the GLODAPv2 database, the crossover offsets were
calculated using the running-cluster crossover routine (Tanhua
et al., 2010), with data from beneath 2,000m to minimize
effects of real variations. For pHT, crossover analysis was not
possible because data only exist for a small fraction of the
cruises. To pass the secondary QC, pHT measurements had to
be concomitant with CT and/or AT for calculating offsets (see
details in Olsen et al., 2016). For Mediterranean Sea data, the
secondary QC always failed because none of the cruises inside the
Mediterranean had an overlap with other cruises (e.g., outside the
Mediterranean) thus preventing the crossover analysis. Hence,
only “high-quality” GLODAPv2 data that passed the secondary
QCwere used to train and validate the CANYONmethods except
for the Mediterranean Sea where we used data that only passed
the primary QC.

The subset of the GLODAPv2 database used for our study
(i.e., the data that passed the secondary QC, except for the
Mediterranean Sea data as explained above) contained 37,863
concurrent profiles of water-column (from the surface to a
maximum sample depth of 8,000m) hydrological properties
together with nutrients concentration and/or parameters of
the carbonate system (see Figure 1). These data were collected
between 1972 and 2013 and were representative of the diversity
of oceanic regions, i.e., 25 % were collected in the North Atlantic,
10 % in the South Atlantic, 22 % in the North Pacific, 12 % in
the South Pacific, 10 % in the Indian Ocean, 13 % in the Southern
Ocean, 7 % in the Arctic Ocean, and∼0.2 % in theMediterranean
Sea (geographic boundaries are provided in Figure S1). On the
temporal scale, most of the data were acquired since the 1990’s
and more data were available for the spring and summer months
(Figure S2). There was a sampling bias according to latitude
as data from autumn and winter months (i.e., December to
March for the Northern hemisphere, and May to August for
the Southern hemisphere) were less represented at high than
low latitudes (i.e., >45◦ North and South, respectively) in the
GLODAPv2 database (Figure S2).

All the data used to train and validate CANYON were
measurements recorded in the GLODAPv2 database, except
the pCO2 estimates that we calculated from AT and CT

measurements using the R package “seacarb” (Gattuso et al.,
2015, 2016). The carbonate system parameters were computed
using the carbonic acid dissociation constants of Lueker et al.
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(2000), the hydrogen fluoride dissociation constant of Perez and
Fraga (1987), the dissociation constant for bisulfate of Dickson
(1990), and a ratio of total boron to salinity derived from
Uppström (1974). In situmeasurements of salinity, temperature,
hydrostatic pressure as well as the concentrations of PO4

3− and
Si(OH)4 were used to calculate pCO2. When not available in the
GLODAPv2 database, the concentrations of PO4

3− and Si(OH)4
were estimated using our CANYON algorithm (see associated
accuracies in Section Overall CANYON Performance).

For the neural network development, vertical profiles
of nutrients and carbonate system parameters from eight
independent zones of the GLODAPv2 database (squares of 10◦

latitude × 10◦ longitude) were first removed from the general
database to provide a more “independent data set” used for
an independent validation of the algorithm developed in this
study. These zones were chosen in several major oceanic basins
and were representative of the Sub-Equatorial Pacific, the Sub-
Equatorial Indian, the North Atlantic Subtropical Gyre, the
North Atlantic Subpolar Gyre, the North Pacific, the South
Atlantic, the South Indian, and the South Pacific (Figure 1). The
remaining profiles were then split into two subsets with 80 % and
20 % of the data, the so-called training and validation datasets,
respectively (see the number of data for each variable in Table 1).

Neural Network Development
General Principle of Multi-Layered Perceptron (MLP)
A multi-layer perceptron (MLP; Bishop, 1995; Rumelhart et al.,
1988) is an artificial neural network based on several layers

(i.e., the so-called input, hidden, and output layers) composed
of neurons which are basically elementary transfer functions.
These neurons are interconnected with the neurons of the
preceding and following layers by weights (Figure 2), which
are iteratively readjusted during the training phase of the MLP.
The criterion for readjusting the weights is the minimization
of a cost function defined as the quadratic difference between

TABLE 1 | Number of data available for each variable in the different

datasets used in this study: the general GLODAPv2 database (data that

passed the secondary quality control, except for the Mediterranean data),

the dataset from the eight independent zones that were first removed

from the general database, the dataset used to train the neural network

(80 % of the general database minus the eight independent zones), and

the dataset used to validate the neural network (20 %).

Variable in the

GLODAPv2

database

Total dataset Independent

dataset (eight

zones)

Training

dataset

(∼80%)

Validation

dataset

(∼20 %)

NO3
− 700,682 13,902 549,561 137,219

PO4
3− 650,809 11,564 510,981 128,264

Si(OH)4 704,624 14,350 552,311 137,963

pHT 277,749 6,522 217,043 54,161

AT 273,288 6,609 213,607 53,072

CT 317,604 7,292 247,634 62,678

pCO2 247,745 6,274 192,857 48,592

Details are given in Section The GLODAPv2 database.

FIGURE 1 | Geographic distribution of the 37,863 stations (gray dots) used in this study (from the GLODAPv2 database; Olsen et al., 2016). For each

station, concurrent samples of temperature, salinity, concentrations of O2, and nutrients and/or carbonate system parameters were analyzed. The red cross indicates

the location of the Hawaiian Time Series (HOT, used in Section Example of Application: Illustration with HOT Database). The eight colored boxes delineate the eight

independent zones of which data were not included in the training and validation of the neural network.

Frontiers in Marine Science | www.frontiersin.org 4 May 2017 | Volume 4 | Article 128

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Sauzède et al. Nutrients and Carbonate System from T/S/O2

FIGURE 2 | Schematic representation of the CANYON MLP-based neural-network algorithm that retrieves the concentrations of nutrients [NO3
−,

PO4
3−, and Si(OH)4] and the parameters of the carbonate system in seawater (pHT, AT, CT, and pCO2). The input variables are field measured

temperature, salinity, O2, and hydrostatic pressure (i.e., depth) together with the geolocation and time of sampling. The year is used as input only for retrieving pHT,

CT, and pCO2. Doy, day of year.

the reference measurements and the MLP-based outputs. This
minimization is done through the back-propagation conjugate-
gradient technique (Hornik et al., 1989; Bishop, 1995), an
iterative optimization method adapted to the development of
MLPs. To prevent overlearning (Bishop, 1995), the training data
set is randomly split into two subsets called “learning” and “test”
data sets (50 % of the training dataset each). Finally the validation
data set is used to evaluate the final method performance.
Moreover, the “independent data set” (see above in Section The
GLODAPv2 Database) is used to check the general applicability
of the method.

CANYON: Developing a MLP to Retrieve Nutrient and

Carbonate System Concentrations
The optimal architectures of CANYON MLPs for the seven
variables to retrieve (i.e., concentrations of three dissolved
macronutrients, NO3

−, PO4
3−, Si(OH)4, and four parameters

of the carbonate system, pHT, AT, CT, and pCO2) were chosen
after multiple tests. As summarized in Figure 2, the chosen input
variables include hydrological and biogeochemical components
(i.e., temperature, salinity, and O2 measurements), spatial
components (i.e., hydrostatic pressure, latitude, and longitude)
and a temporal component (i.e., day of the year, doy, for the seven
variables, and the year for only pHT, CT, and pCO2 retrievals).
We chose to use the year as input of the MLPs developed for
retrieving pHT, CT, and pCO2 in order to take into account the
long-term changes in seawater CO2-carbonate chemistry due to
the uptake of anthropogenic CO2 (e.g., Gattuso and Hansson,
2011).

Prior to the full-depth CANYON version in this study, an
initial depth-restricted CANYON algorithm (i.e., 30 – 1,500
dbar depth range) was first developed, and showed a very
good performance in subsurface, mode, and intermediate waters.
However, estimated concentrations at 1,500 dbar occasionally
showed small-amplitude seasonal cycles (data not shown). This
especially occurred in regions with scarce reference data, where
spatially adjacent data had been acquired in different seasons.We
believe that, when the day of the year (doy) had been provided
as extra degree of freedom at depth to the MLP, per-se spatial
variability was parameterized as seasonal variability. To avoid this
misattribution by the neural network, we decided to develop the
full-depth CANYON where the doy information is not provided
below a certain depth. This depth is the larger of 750 dbar or the
climatological maximum mixed layer depth (Holte et al., 2016),
below which no seasonal cycle is expected.

For the full-depth CANYON algorithm development, the
pressure input was specifically transformed by a combination of
a linear and a logistic curve according to:

P =
P

20000 dbar
+

1
(

1+ exp
(

− P
300 dbar

))3

for two main reasons. (1) Based on our previous experience of
including doy in the model, we wanted to limit the degrees of
freedom of the neural network in deep and abyssal waters and
focus instead its parameterization on temperature and salinity,
i.e., the water mass properties. Preliminary analysis confirmed
that temperature and salinity were the main determinants of
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nutrient concentrations and carbonate system parameters in the
deep water masses. (2) Preliminary analysis showed that sub-
surface and mode-water CANYON estimates for a full-depth
version without pressure transformation were less satisfactory
than our initial 30 – 1,500 dbar version. We attributed this to
the extension of the pressure range to full ocean depth, where
sub-surface, and mode waters comprise a much smaller dynamic
range than previously. To counteract this effect, we chose the
above input transformation of pressure with the aim tomimic the
dynamic range of our initial CANYON in the interval between 0
and 1,000 dbar.

The uncertainty of the pCO2 calculation from CT and AT

is proportional to pCO2, i.e., high pCO2 levels have a higher
uncertainty than low pCO2 levels. Similarly, the uncertainty of
the CANYON-predicted pCO2 scales with pCO2 as well. The
cost function of the MLP training (the quadratic difference
between reference and MLP output), however, works on the
absolute pCO2-value. To account for the different behavior of
pCO2 and to avoid potential biases to the MLP induced by large
absolute pCO2-values (with large uncertainties) during training,
we transformed the pCO2 to a hypothetical, pCO2-equivalent
CT at constant conditions (i.e., AT 2,300µmol kg−1, 25 ◦C, 35
salinity, 0 dbar, zero silicate and phosphate) before training. A
constant change in this hypothetical CT corresponds to a change
in pCO2 that is proportional to pCO2. This transformation
thus approximates the observed pCO2 behavior while we retain
the benefits of our MLP architecture and the backpropagation
technique for training.

Similarly to the methods developed by Sauzède et al. (2015,
2016), a specific normalization procedure was applied to the doy
and longitude inputs to take into account the periodicity of these
variables (e.g., doy 1 of a given year is very similar from a seasonal
perspective to doy 365 of the previous year). These two input
variables were transformed into radians:

Xrad =
X.π

a

where X was either the doy or the longitude, and awas a constant
equal to 182.625 or 180 for the doy or the longitude, respectively
(accounting for half the number of days in the year and half
the maximum value of longitude, respectively). Moreover, as the
elementary transfer function that provided outputs when inputs
were applied to the MLP was a sigmoid non-linear function and
subsequently varied within the [−1;1] domain, the inputs and
outputs of the MLP were centered and reduced to match the
range [−1;1] (see details in Sauzède et al., 2016).

Finally, the MLP developed in this study for each of the seven
variables to retrieve (i.e., output variables) are composed of the
input layer, two hidden layers, and one output layer (schematic
overview in Figure 2). To choose the best architecture of each
MLP, tests were performed using one or two hidden layers with
a number of neurons varying between 1 and 50 and 1 and 20,
respectively. The MLP architecture for each output variable with
minimum error of validation and minimum number of neurons
was then selected as the best (Table 2). In order to evaluate the
method robustness for each MLP, several subsets of the training
data set were tested with no difference observed in the prediction.

TABLE 2 | Characteristics of the Multi-Layered Perceptron architecture for

each CANYON-retrieved variable.

CANYON-retrieved

variable

Number of

input variables

Number of

neurons in the first

hidden layer

Number of

neurons in the

second hidden

layer

NO3
− 9 20 17

PO4
3− 9 17 17

Si(OH)4 9 20 15

pHT 10 19 8

AT 9 19 17

CT 10 18 15

pCO2 10 18 8

Each MLP had a single output variable.

Statistical Evaluation of Method Performance
Four statistics were chosen to evaluate the CANYON algorithms
performance on the validation datasets. The coefficient of
determination (r2) and the slope of the linear regression
between the CANYON-retrieved values and the corresponding
GLODAPv2 measurements were computed. The statistics also
included the MAE (Mean Absolute Error) and the RMSE (Root
Mean Squared Error) to evaluate the errors and accuracies of each
model:

MAE =
1

N
.

N
∑

i= 1

|XCANYON i − XGLODAPv2 i|

RMSE =

√

√

√

√

1

N
.

N
∑

i= 1

(XCANYON i − XGLODAPv2 i)
2

Note that absolute uncertainties are expressed as values for
NO3

−, PO4
3−, Si(OH)4, pHT, AT, and CT parameters. For pCO2

parameter, the relative uncertainties are expressed as percentages
(e.g., a relative uncertainty of 5 % is an absolute uncertainty of
20µatm at 400µatm).

RESULTS AND DISCUSSION

Overall CANYON Performance
Using the validation database (i.e., 20 % of the general
database minus the eight independent zones), we evaluated
the performance of the method by comparing the CANYON-
retrieved nutrient concentrations and carbonate system
parameters with the measurements in the GLODAPv2 database
using the statistics from Section Statistical Evaluation of
Method Performance. Scatterplots of CANYON-retrieved
variables vs. GLODAPv2 measurements (Figure 3) show that
the CANYON method predicts nutrient concentration and
carbonate system parameters with good accuracy (i.e., of 0.93,
0.066, and 3.0µmol kg−1 for the concentrations of NO3

−,
PO4

3−, and Si(OH)4, respectively, and of 0.019, 7µmol kg−1,
10µmol kg−1 and 5.1 % or 20µatm at 400µatm for pHT, AT,
CT, and pCO2, respectively). The determination coefficients
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FIGURE 3 | Comparison of the values retrieved by CANYON with the corresponding measurements in the GLODAPv2 database for: (a) NO3
−;

(b) PO4
3−; (c) Si(OH)4; (d) pHT; (e) AT; (f) CT; and (g) pCO2 with data ordered according to the pressure. The 1:1 line is shown in each plot as visual reference. The

statistics are defined in Section Statistical Evaluation of Method Performance.
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of the seven linear models between the CANYON-retrieved
and GLODAPv2-variables are comprised between 0.982 and
0.996 with slopes ranging from 0.986 to 0.999. In Figure 3 only
very few data points diverge from the 1:1 line. A higher scatter
is observed for low CANYON-retrieved NO3

− (and PO4
3−),

which mostly corresponds to low surface nutrient concentrations
inside and at the edges of the subtropical gyres. Moreover, the
higher scatter observed near the surface than deeper for most
variables is probably due to the higher inherent variability in the
surface.

To go further, the final CANYON-accuracies for the
seven variables can be estimated using the merged accuracies
of CANYON estimations and GLODAPv2 measurements
(RMSEfinal =

√
[RMSECANYON

2+RMSEGLODAPv2
2]). The

accuracies of GLODAPv2 measurements are 0.46, 0.033, and
1.1µmol kg−1, for NO3

−, PO4
3−, Si(OH)4, respectively, and

0.005, 6µmol kg−1, and 4µmol kg−1, for pHT, AT, and CT,
respectively from Olsen et al. (2016) and 5.6 % (22µatm at
400µatm) for pCO2 from uncertainty propagation of the
carbonate system calculations using seacarb errors (Gattuso
et al., 2015, 2016). Thus, ultimately, the final global accuracies of
CANYON are 1.04, 0.074, and 3.2µmol kg−1 for NO3

−, PO4
3−,

and Si(OH)4 concentrations, respectively, and 0.020, 9µmol
kg−1, 11µmol kg−1 and 7.6 % (30µatm at 400µatm) for pHT,
AT, CT, and pCO2, respectively.

The training and validation datasets of the neural networks
used to retrieve carbonate system parameters were smaller than
the datasets for the retrieval of nutrient concentrations (Figure 3
and Table 1). It is thus possible that the carbonate system
networks are less robust than the nutrient ones. In any case,
all the MLPs could be updated in the future as more data
become available; this seems especially important for the pHT

database, which is presently the least populated. In order to
assess the importance of this potential weakness, we developed
a special neural network using all pHT data available, i.e., all
the data that passed the primary quality control (see details in
Section The GLODAPv2 Database). The results of this special
CANYON algorithm, based on more but a priori less accurate
data used for training, are not improved when compared to
our initial results (i.e., RMSE of 0.030). Given this and in order
to maintain consistency among CANYON algorithms and their
retrieval performance, all neural networks were trained using
data that had passed the secondary quality control (except for
the Mediterranean Sea, see details in Section The GLODAPv2
Database).

To identify possible trends, errors were plotted against
each input variable for each retrieved nutrient concentration
(Figure 4) and carbonate system parameter (Figure 5). Some
errors are larger because of the small numbers of data (the
intensity of the shading in each box refers to the number of
data). Nevertheless, some clear trends are observed. The range of
errors for Si(OH)4 retrieval seems to be higher at high latitudes
in the Southern hemisphere (i.e., latitudes <−60◦) and low
temperatures, i.e., the ranges of box-plot whiskers increased
with both decreasing latitude and temperature in Figure 4. This
corresponds to regions of significant Si(OH)4, mostly in the
Southern Ocean, which suggests that the CANYON method

is less accurate for Si(OH)4 retrievals in the Southern Ocean
than in other areas. The CT estimates show a high error at
high temperatures and unusually low (<34 psu) salinities. pCO2

estimates exhibit an increased uncertainty at the extremes of the
O2 input (Figure 5), i.e., the range of errors increases at low O2

concentrations corresponding to high pCO2 (Figure S3), and at
high O2 concentrations corresponding to cold, low salinity polar
surface waters. For CANYON-estimated NO3

−, PO4
3−, and CT,

the upper layer (i.e., ≤700 m) has the broadest error range. The
Si(OH)4 displays an opposite trend with error larger for deeper
than surface waters (i.e., ≥700 m). The CANYON-estimated AT,
pHT, and pCO2 errors are not affected by depth inputs. Finally,
Figure S3 shows that the CANYON retrieved variables are not
biased against the range of in situ values to retrieve, except for
a few extreme values where few data (i.e., lightly shaded boxes)
were available in the training and validation databases.

The above results indicate that hydrographic data and
information about season (doy) and geolocation can certainly
predict some aspects of the dynamics of biogeochemical variables
at the surface (e.g., nutrient and CT drawdown during the spring
bloom, seasonal reset to preformed nutrient concentrations with
winter ventilation) withO2 being themost important predictor in
CANYON for production and remineralization, particularly in
the ocean interior. The year is the only variable that accounts
in CANYON for the increase in anthropogenic CO2. As a
consequence, when the year was not included, CANYON-
estimated pHT, CT, and pCO2 showed a clear remaining trend
due to the missing information about the long-term changes in
seawater CO2-carbonate chemistry (data not shown).

Independent Validation for Eight
Geographic Zones
The smoothed mean differences between CANYON-retrieved
and in situ measurements were plotted as vertical profiles for
each of the seven variables and the eight independent zones
(Figure 6). In general, the accuracy (i.e., RMSE) for each variable
is comparable to the accuracy determined on the validation data
set (Table 3). Beyond this general agreement, there are a few
discrepancies. The errors appear to be higher in the 0 – 200m
layer than below. This is maybe due to a larger variability in
this upper layer, caused by not only biogeochemical processes
but also air-sea exchange of O2 that act to decouple O2 from
the CANYON outputs (see also Figure 3). The Sub-Equatorial
Pacific, North Pacific and South Atlantic display higher RMSE
than calculated from the 20 % validation data (Table 3). These
results suggest that the GLODAPv2 data set for these specific
zones could have been underrepresented in the training database
with respect to the regional variability in nutrient concentrations
and carbonate system parameters.

The above comparisons and the identification of spatio-
temporal domains where CANYON performed less accurately
could be used to identify more objectively the periods or
regions that require more intense acquisition of discrete
high-quality measurements. Indeed, the periods and regions
where CANYON fails to reproduce well in situ observations
are those where the variability (mostly seasonal) was not
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FIGURE 4 | Box plots of the differences between CANYON estimates minus GLODAPv2 reference measurements for (from left to right): NO3
−

(µmol kg−1), PO4
3−(µmol kg−1), and Si(OH)4 (µmol kg−1) vs. the variable indicated on the left: pressure (P), year, doy, longitude, latitude, temperature

(T), salinity (S), O2. The intensity of the shading in each box refers to the number of data. The intervals were created by dividing the range of values in eight equal

intervals. For each box, the negative and positive whiskers represent the Q1–1.5*IQR and Q3 + 1.5*IQR, respectively, where Q1 is the 0.25 quantile, Q3 the 0.75

quantile, and IQR the inter-quantile range. The width of each box represents the IQR and the middle line the median of the values.

Frontiers in Marine Science | www.frontiersin.org 9 May 2017 | Volume 4 | Article 128

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Sauzède et al. Nutrients and Carbonate System from T/S/O2

FIGURE 5 | Box plots of the difference between CANYON estimates minus GLODAPv2 reference measurements for (from left to right) pHT, AT

(µmol kg−1), CT (µmol kg−1), and pCO2 (µatm) vs. the variable indicated on the left: pressure (P), year, doy, longitude, latitude, temperature (T),

salinity (S), O2. The intensity of the shading in each box refers to the number of data. The intervals were created by sharing the range of values in eight regular

intervals. For each box, the lower and upper whiskers represent the Q1–1.5*IQR and Q3+1.5*IQR, respectively, with Q1 the 0.25 quantile, Q3 the 0.75 quantile and

IQR the inter-quantile range. The width of each box represents the IQR and the middle line the median of the values.

well-represented in the training dataset. From Table 3 and
Figure 6, these regions are mainly the Sub-Equatorial Pacific,
the North Pacific and the South Atlantic, and the periods
are most likely late autumn and winter, when harsh sea

conditions generally prevent ship-based collection of high-
quality measurements. In fact, the GLODAPv2 database seems to
be biased in this respect (Section The GLODAPv2 Database and
Figure S2).
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FIGURE 6 | Vertical profiles of the smoothed mean differences between CANYON-retrieved and in situ measurements from surface to 6,000m depth

for: (a) NO3
−; (b) PO4

3−; (c) Si(OH)4; (d) pHT; (e) AT; (f) CT; and (g) pCO2. The number of profiles used to compute the mean difference for each zone is indicated

in the bottom left-hand side of each panel. Color code: eight independent zones in Figure 1.

Further Results for Specific Applications
Here we present further results important for specific
applications. Indeed, one of a potential application of the
CANYON method is the calibration of NO3

− and pHT

sensors mounted on BGC-Argo profiling floats (because the
corresponding sensors may drift over long-term deployment).
To overcome this problem, CANYON could be used to compute
deep (e.g.,≥1,000 m) reference measurements each time the float

Frontiers in Marine Science | www.frontiersin.org 11 May 2017 | Volume 4 | Article 128

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Sauzède et al. Nutrients and Carbonate System from T/S/O2

TABLE 3 | CANYON retrieval accuracy (RMSE) for each variable in each of the eight independent zones.

NO3
−

(µmol kg−1)

PO4
3−

(µmol kg−1)

Si(OH)4
(µmol kg−1)

pHT AT

(µmol kg−1)

CT

(µmol kg−1)

pCO2

(%)

Sub-Equatorial Pacific 0.99 (284) 0.073 (284) 4.4 (284) 5.7 (274)

Sub-Equatorial Indian 0.37 (886) 0.036 (903) 2.8 (919) 5 (408) 4 (418) 3.4 (367)

North Atlantic Subtropical Gyre 0.59 (4,526) 0.052 (3,848) 1.1 (4,660) 0.014 (1,468) 5 (2,031) 5 (2,565) 3.8 (1,884)

North Atlantic Subpolar Gyre 0.60 (2,889) 0.045 (1,293) 1.7 (3,168) 0.014 (1,960) 7 (1,428) 6 (1,469) 3.0 (1,333)

North Pacific 0.94 (1,005) 0.093 (1,017) 4.5 (1,005) 0.024 (341) 6 (343) 8 (331) 6.3 (330)

South Atlantic 0.85 (1,395) 0.065 (1,323) 2.5 (1,396) 0.016 (525) 6 (516) 7 (571) 4.5 (509)

South Indian 0.69 (1,511) 0.039 (1,490) 1.8 (1,512) 0.015 (833) 6 (841) 5 (900) 4.3 (823)

South Pacific 0.54 (1,406) 0.037 (1,406) 1.7 (1,406) 0.016 (754) 3 (760) 5 (762) 3.0 (754)

Validation dataset (20 %) 0.93 (137,219) 0.066 (128,264) 3.0 (137,963) 0.019 (54,161) 7 (53,072) 10 (62,678) 5.1 (48,592)

In the last row, comparable information is provided for the validation dataset (Section Overall CANYON Performance), as reference. In brackets figures the number of observations used

to compute each RMSE.

profiles. With this aim in mind, specific MLPs were developed to
retrieve NO3

− concentration and pHT only at depths between
950 and 2,050 m, i.e., different from the full water-column
MLPs used above. Results show that specific, deep MLPs do
not significantly improve the quality of the results compared
to the MLPs developed for the entire water column applied to
this layer (i.e., RMSE for NO3

− of 0.50 and 0.54µmol kg−1,
respectively, and for pHT of 0.013 units for the two approaches).
The CANYON method can therefore be used to retrieve NO3

−

concentration and pHT for specific applications focused on deep
layers with excellent accuracy.

For pCO2 applications, most studies focus on the surface layer
of the open ocean and on CO2 air-sea exchange (e.g., Takahashi
et al., 2009). The CANYONmethod could be used to address the
regional and seasonal variability of air-sea CO2 fluxes in view of
comparing it with the results of previous studies based on neural
networks (Landschützer et al., 2014, 2016). For this application,
it is important to ascertain that the general MLP performs as
adequately as a specific MLP developed to retrieve pCO2 for
the surface layer only (i.e., ≤100m). Here again, the CANYON
algorithm developed for the entire water column is as robust as
a specific, surface-focused MLP (i.e., RMSE of 34 and 33µatm,
respectively).

Example of Application: Illustration with
HOT Database
The CANYON method was further applied outside the
GLODAPv2 domain, on which it was trained, using an
independent dataset that contained similar variables. The Hawaii
Ocean Time Series (HOT) database contains monthly vertical
profiles of hydrological properties, O2, nutrient concentrations
and carbonate system parameters from the deep-water station
ALOHA since 1994 (Karl and Lukas, 1996; Dore et al., 2003).
The HOT temperature, salinity, and O2 measurements from
HOT were used as input variables to estimate the concentrations
of nutrients and the carbonate system parameters. The
overall agreement between the CANYON-simulated variables
and their measured in situ counterparts is satisfactory, as
shown by the absolute differences between the two datasets

and the corresponding comparison statistics (Figure 7 and
Table 4). There are few systematic biases, such as the model
underestimation of NO3

− from 450 to 550m (i.e., the depth
horizon of the nitracline) and the overestimation of PO4

3− and
CT in the upper 150m (Figures 7b,d,l, respectively).

Interestingly, running CANYON on this dataset unraveled
O2 outliers in the database. A first run of CANYON produced
abnormally high differences between the retrieved and in situ
values of the seven CANYON-estimated variables for profiles
from 25 February 2003 to 29 March 2003. This corresponded
to five O2 profiles with abnormally high concentrations of
O2 (see black triangles in Figure S4). These profiles were
subsequently removed from the analysis to avoid contaminating
the CANYON-retrieved data shown in Figure 7 and the
corresponding statistics in Table 4.

CANYON also provided a way to fill a gap in the HOT
dataset. Indeed, pHT had not been acquired during the 1999–
2003 period, but the input variables needed to run CANYON had
been measured. pHT could thus be estimated during that period
(Figure 7g) with a mean accuracy of 0.033 units (i.e., RMSE in
Table 4). However, it is obviously not possible to compare the
values predicted by CANYONwith (non-existent) corresponding
in situmeasurements from 1999 to 2003 (Figure 7h).

Using the HOT temperature, salinity and O2 measurements
from the last year, i.e., 2015, we estimated pHT for the 15 years
to come (by changing only the year input in CANYON), and a
decline is found in pHT of 0.024 units over this 15-year period
(i.e., decrease of 0.0016 ± 0.0004 units year−1). This value is
consistent with the decrease in pHT of 0.0019 ± 0.0002 year−1

reported in the central North Pacific (Dore et al., 2009) and more
generally of 0.0013 to 0.0026 units year−1 units during the 20–
30 last years (Bates et al., 2014). This suggests that the CANYON
approach could perhaps also be used outside the temporal range
of training for the carbonate system parameters for estimating
near future changes in pHT, CT, and pCO2, thanks to the use
of the year among the input variables. However, this would
assume that the relationships between the input and output
variables, through the hidden layers of the CANYONmodel, will
remain unchanged in the future, and the sensitivity of retrieved
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FIGURE 7 | Values predicted by CANYON (a,c,e,g,i,k,m) and absolute differences between HOT measurements and CANYON estimates (b,d,f,h,j,l,n). Time

series (22 years) for NO3
− (a,b), PO4

3− (c,d), Si(OH)4 (e,f), pHT (g,h), AT (i,j), CT (k,l), and pCO2 (m,n). Five profiles from 25 February 2003 to 29 March 2003 have

been removed from the time-series because of their abnormal O2 profiles (see details in Section Example of Application: Illustration with HOT Database).

Frontiers in Marine Science | www.frontiersin.org 13 May 2017 | Volume 4 | Article 128

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Sauzède et al. Nutrients and Carbonate System from T/S/O2

TABLE 4 | Comparison statistics between the values retrieved by CANYON vs. the corresponding measurements in the HOT database.

CANYON-retrieved variable r2 Slope MAE RMSE Number of data

NO3
− 0.998 1.005 0.68µmol kg−1 0.89µmol kg−1 8,373

PO4
3− 0.999 0.982 0.081µmol kg−1 0.100µmol kg−1 8,082

Si(OH)4 0.999 1.004 0.7µmol kg−1 1.8µmol kg−1 7,999

pHT 0.991 0.989 0.027 0.033 2,338

AT 0.947 0.880 5µmol kg−1 7µmol kg−1 3,501

CT 0.995 0.928 12µmol kg−1 18µmol kg−1 3,567

pCO2 0.984 0.995 4.8 % 7.5 % 3,421

Five profiles from 25 February 2003 to 29 March 2003 had been removed from the time-series because of their abnormal O2 profiles (see details in Section Example of Application:

Illustration with HOT Database).

carbonate system parameters to departures from this assumption
remains to be explored.

CONCLUSIONS AND PERSPECTIVES

The global Biogeochemical-Argo (BGC-Argo) program is being
progressively implemented (Johnson and Claustre, 2016), and
its core variables include O2. BGC-Argo floats can now acquire
high-quality vertical profiles of O2 on the long term (Bittig and
Körtzinger, 2015; Johnson et al., 2015; Bushinsky et al., 2016).
Given the possibility of acquiring long-term, global vertical
profiles of temperature, salinity and O2, CANYON could be used
to develop a variety of new applications.

Firstly, CANYON may contribute to developing quality
control and post-processing procedures for NO3

− concentration
and pHT in oceanic waters (see Section Further Results for
Specific Applications). These two variables, together with O2,
are core BGC-Argo variables and their measurements make use
of an optical sensor for NO3

− (Johnson and Coletti, 2002)
and an electrochemical sensor for pHT (Johnson et al., 2016)
with known accuracies (1µM and 0.010 for NO3

− and pHT,
respectively; Johnson et al., 2013, 2016). However, these sensors,
like the O2 probes, drift over long-term deployments. Following
an approach similar to the one developed for oxygen sensors,
which can be referenced to atmospheric values each time the
floats surface (Bittig and Körtzinger, 2015; Johnson et al., 2015;
Bushinsky et al., 2016), CANYON could be used to compute deep
(e.g., ≥1,000 m) reference measurements at depth for pHT and
NO3

− each time the float makes a profile. At these depths, it is
indeed expected that reliable and stable reference measurements
could be acquired, which could be used to develop appropriate
correction procedures for NO3

− concentration and pHT and
thus guarantee the long-term accuracy of the sensors.

Secondly, CANYON can also provide estimates, with known
accuracies, of variables that are not presently measured by
BGC-Argo floats. This is the case for PO4

3− and Si(OH)4 and
the three other variables of the carbonate system than pHT.
CANYON could thus be used as a cost-effective method for
“filling the spatio-temporal gaps” of these variables by populating
spatially and temporally their loosely resolved fields in oceanic
waters. For these under-sampled variables, CANYON offers
novel opportunities at global and local scales. For example, global

fields of these variables provided by CANYON could support
the initialization and validation of biogeochemical models which
presently crucially lack reference data (e.g., Doney et al., 2009;
Ilyina et al., 2013).

Thirdly, CANYON could also be used in combination
with present measurements of the respective field nutrient
concentrations and/or carbonate system parameters. Beside
quality control of these data, CANYON values could serve
to identify unusual biogeochemical events that had not been
covered by the global but sparse GLODAPv2 training data set,
in cases where CANYON and field data diverge.

Fourthly, and for more local approaches (e.g., analysis of
individual float time series), the possible derivation of pCO2

from BGC-Argo float O2 and ancillary measurements (with
or without pHT) potentially represents a new way to address
regional and seasonal variability in CO2 air-sea exchanges, and
to reduce present uncertainties in the estimates of these fluxes.
Moreover, estimating the three macronutrients (NO3

−, PO4
3−,

and Si(OH)4) from BGC-Argo float data could be of great
value for better understanding the dynamics of biogeochemical
events such as the development and subsequent collapse of
phytoplankton blooms.

Fifthly, CANYON could contribute to design future
observational programs by identifying areas and periods
where data acquisition could most cost-effectively address
variability that is presently unresolved. Indeed, the strict quality
control of the input data in the present study (which used only
GLODAPv2 data that passed the second quality check, see
Section The GLODAPv2 Database) eliminated some specific
regions from our training and validation datasets. This argues
for developing field-based observation programs to conduct
high-quality measurements in these areas. More generally, the
spatio-temporal domains where CANYON provided the least
satisfactory results likely corresponded to weaknesses in the
GLODAPv2 database with respect to catching the inherent and
natural variability of different variables, such as the Southern
Ocean in winter.

Overall, the CANYON-type estimation of biogeochemical
variables based on data provided by the global BGC-Argo
program offers new avenues for marine biogeochemistry that
are comparable to those that have been created for physical
oceanography by the Argo network since the early 2000s.
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This novel approach could increase tremendously the value of
biogeochemical measurements made on board ships and by
BGC-Argo floats by combining the high quality of the first type
of data with the broad spatio-temporal coverage of the second.
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Figure S1 | Geographic boundaries of the seven major oceanic basins

used in Section The GLODAPv2 Database.

Figure S2 | Temporal distribution of the number of observations (Nobs)

available in GLODAPv2 that were used to develop CANYON MLPs, plotted

as a function of the sampling months (top) and years (bottom). The colors

refer to the sampling latitude: North high latitudes (≥45◦); North mid latitudes

(≥15◦ and <45◦); Equatorial latitudes (>−15◦ and <15◦); South mid latitudes

(>–45◦ and ≤−15◦), and South high latitudes (≤−45◦).

Figure S3 | Box plots of the difference between CANYON estimates minus

GLODAPv2 reference measurements for the seven variables: NO3
−

(µmol kg−1), PO4
3− (µmol kg−1), Si(OH)4 (µmol kg−1), pHT, AT

(µmol kg−1), CT (µmol kg−1), and pCO2 (µatm) vs. the range of the

variable retrieved (output variable). The intensity of the shading in each box

refers to the number of data. The intervals were created by sharing the range of

values in eight regular intervals. For each box, the lower and upper whiskers

represent the Q1–1.5∗ IQR and Q3+1.5∗ IQR, respectively, with Q1 the 0.25

quantile, Q3 the 0.75 quantile, and IQR the inter-quantile range. The width of each

box represents the IQR and the middle line the median of the values.

Figure S4 | Time series (22 years) of the temperature (a), the salinity (b), and

the O2 (c) measured at HOT. The five profiles from 25 February 2003 to 29 March

2003 that had been removed from the time-series because of their abnormal O2

profiles are shown with the black triangle in the panel (c)—(see details in Section

Example of Application: Illustration with HOT Database).
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