
HAL Id: hal-03138054
https://hal.science/hal-03138054v1

Preprint submitted on 10 Feb 2021 (v1), last revised 19 Mar 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A note on Fokker-Planck equations and graphons
Fabio Coppini

To cite this version:

Fabio Coppini. A note on Fokker-Planck equations and graphons. 2021. �hal-03138054v1�

https://hal.science/hal-03138054v1
https://hal.archives-ouvertes.fr


A NOTE ON FOKKER-PLANCK EQUATIONS AND GRAPHONS

FABIO COPPINI

Abstract. Fokker-Planck equations represent a suitable description of the finite-time
behavior for a large class of particle systems as the size of the population tends to infinity.
Recently, the theory of graph limits have been introduced in the mean-field framework to
account for heterogeneous interactions among particles. In many instances, such network
heterogeneity is preserved in the limit which turns from being a single Fokker-Planck
equation (also known as McKean-Vlasov) to an infinite system of non-linear partial
differential equations (PDE) coupled by means of a graphon. While appealing from
an applied viewpoint, few rigorous results exist on the graphon particle system. This
note addresses such limit systems focusing on the relation between initial conditions
and interaction network: if the system initial datum and the graphon degrees satisfy
a suitable condition, a significantly simpler representation of the solution is available.
This in turn implies that very different graphons can lead to exactly the same particle
behavior, shedding some light on the network influence on the dynamics.

Examples of such representation are provided. In particular, step kernels represent
a class of graphons to which our result applies: this in turn opens the way to approxi-
mate the graphon particle system with a finite system of Fokker-Planck equations. As
a byproduct, we show that when the initial condition is uniform, every graphon with
constant degree leads to a behavior indistinguishable from the well-known mean-field
limit.

2020 MSC: 35Q84, 05C82, 82B20, 60H20, 60K35, 35Q70.

Keywords: Fokker-Planck equation, graphons, mean-field systems, Interacting particles,
McKean-Vlasov, graphon particle system, step kernels.

1. Introduction, model and literature

1.1. Introduction, aim of this note and organization. In the last years, the study of
interacting particle systems with a non-trivial dense network structure has been repeatedly
addressed in the mathematical community: see, e.g., [4, 10, 21, 9] for interacting diffusions,
[5, 6, 20] for applications in mean-field games and [11] in the context of dynamical systems.
Depending on the setting, many results on interacting particle systems are nowadays
available [1, 3, 8, 7, 17] whenever the underlying graph sequence is converging, in some
sense depending case by case, to a suitable object. More precisely, if the graph limit is
a graphon, then, as the size of the system tends to infinity, the finite-time population
behavior is suitably described by an infinite system of coupled non-linear Fokker-Planck
equations, the coupling between equations being made by the graphon limit itself (see
equation (1.1) for a simple example).

This note addresses the graphon particle system obtained in the limit and tries to make
clear how potentially different graphons can lead to the same particle behavior. Such
a perspective is important not only to better understand the limit system, but also in
case one is interested in reconstructing the network structure by looking at the particle
dynamics: we prove that, depending on the initial conditions, the class of suitable graphons
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can be potentially very large. As it will be clear later on, the relation between the graphon
and the initial datum plays the most important role.

Graphons have been used as a model for many real-world networks, yet, to the author’s
knowledge, known results on graphon particle systems are limited to existence and unique-
ness of solutions; we refer to Subsection 1.3 for the current literature. A mathematical
study of the limit object may lead to a better understanding of the complex phenomena
at the heart of these models.

A labeled graphon (we use the same notation of [15]) is a symmetric measurable function
W defined on the unit-square

W : [0, 1]2 → [0, 1]

(x, y) 7→W (x, y).

If the limit population is represented as a continuum of particles labeled by the unit interval
[0, 1], then W (x, y) stands for the connection strength between the particle labeled with
x and the one labeled with y. The function W thus describes the connection network
underlying a (possibly infinite) particle population.

Fix a finite time horizon T > 0. For one-dimensional particles which are interacting
through a (regular enough) function Γ, the graphon particle system is an infinite system
of partial differential equations (PDE) coupled by means of W , i.e.,

∂tµt(θ, x) =
1

2
∂2
θµt(θ, x)

−∂θ
[∫ 1

0
W (x, y)µt(θ, x)

∫
R

Γ(θ, θ′)µt(dθ
′, y)dy

]
, x ∈ [0, 1],

(1.1)

for t ∈ [0, T ] and where µ = {µt(·, x), t ∈ [0, T ]}x∈[0,1] is a collection of probability mea-
sures. The initial datum is given by a probability measure µ0 ∈ P(R × [0, 1]). From the
disintegration theorem ([13]), we have that µ0(·, x) ∈ P(R) for almost every x ∈ [0, 1].
Namely, the probability measure

µ(x) := µ(·, x) = {µt(·, x), t ∈ [0, T ]} ∈ P(C([0, T ],R))

represents the law of the trajectory associated to the x-labeled particle, this last one
being connected to the others by means of W (x, ·) : [0, 1]→ [0, 1], see the following (1.2).
Each trajectory is a continuous function from [0, T ] to R, i.e., an element of the space
C([0, T ],R).

To the system of non-linear Fokker-Planck equations (1.1), it is associated a family of
continuous processes {θx}x∈[0,1] ⊂ C([0, T ],R), which solve{

θxt = θx0 +
∫ t

0

∫ 1
0 W (x, y)

∫
R Γ(θxs , θ)µs(dθ, y)dy ds+Bx

t , t ∈ [0, T ],

µt(·, y) = L(θyt ), for t ∈ [0, T ] and y ∈ [0, 1],
(1.2)

where the law of the initial condition θx0 , denoted by L(θx0 ), is thus given by µ0(x). The
family {Bx}x∈[0,1] is composed of independent and identically distributed (IID) Brownian
motions, independent of the initial conditions as well.

The link between (1.1) and (1.2) is given by the fact that µt(x) = L(θxt ) for every
t ∈ [0, T ] and x ∈ [0, 1]. We refer to Proposition 1.3 for a precise statement which includes
more general systems, including the degenerate case (σ ≡ 0).

System (1.1) or, equivalently, the family of non-linear processes (1.2), have been pro-
posed as a limit description in the literature [17, 21, 5, 1, 3], yet very little is known on
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their mathematical properties. We thus aim at mathematically addressing (1.1), firstly
by showing the strong link with the graphon theory (including unlabeled graphons, see
Proposition 1.5), secondly by proving that a simpler representation for both (1.1) and
(1.2) exists, whenever the initial conditions and the underlying graphon satisfy a suitable
condition, see Theorem 2.1 and, in particular, Corollary 2.3 and Proposition 2.6.

The note is organized as follows: the next subsection presents the general model asso-
ciated to (1.2), together with known results from the existing literature. Related works
are discussed at the end of this first section.

Section 2 provides the main result, Theorem 2.1, as well as two corollaries and a relevant
application to step kernels, see Proposition 2.6. Notably, Corollary 2.4 addresses the
classical mean-field scenario showing that, if every particle has the same initial law, then

for every graphon with constant degree, i.e., such that d(·) =
∫ 1

0 W (·, y)dy is constant, the
dynamics is mean-field.

Section 3 contains the mathematical set-up and the proof of the main result.

1.2. The model and some known results. We consider a class of models slightly
more general than (1.2): fix µ0 ∈ P(R× [0, 1]) and let {θx}x∈[0,1] be the family solving the
∞-dimensional coupled system:{

θxt = θx0 +
∫ t

0 F (θxs )ds+
∫ t

0

∫ 1
0 W (x, y)

∫
R Γ(θxs , θ)µs(dθ, y)dy ds+

∫ t
0 σ(θxs )dBx

s

µt(·, y) = L(θyt ), for t ∈ [0, T ] and y ∈ [0, 1],
(1.3)

where F , Γ and σ are 1-Lipschitz functions bounded by 1, and {Bx}x∈[0,1] is a family of
IID Brownian motions on R. For every x ∈ [0, 1], the initial condition θx0 is a random
variable with law given by L(θx0 ) = µ0(x), independent of the other initial conditions and
of the Brownian motions. The probability measure induced by the initial conditions and
the family of Brownian motions is denoted by P and the corresponding expectation by E.

We work under the following assumptions.

Hypothesis 1.1. We assume that

(1) (measurability) The map [0, 1] 3 x 7→ µ0(x) ∈ P(R) is measurable;
(2) (moment condition) E[|θx0 (0)|2] <∞ for every x ∈ [0, 1].

Remark 1.2. Measurability with respect to x is somehow necessary since we are working
with measurable functions W on the unit interval [0, 1]; we will explicitly use it in the
following relation (2.1).

The finite second moment condition is related to the use of the 2-Wasserstein distance
between probability measures (see the Section 3 and, in particular, (3.1)). It is obviously
possible to work with initial conditions with finite p-moment for every p > 1, and the
choice p = 2 is purely arbitrary.

We stick to the one-dimensional setting, i.e., θx taking values in R; however, all the
proofs presented below are easily extendable to any finite dimension.

Existence and uniqueness for system (1.3) are known.

Proposition 1.3. Under the measurability assumption and the moment condition in Hy-
pothesis 1.1, there exists a unique pathwise solution to system (1.3).
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Moreover, if we denote by µ(x) the law of θx for each x ∈ [0, 1], then the map [0, 1] 3
x 7→ µ(x) ∈ P(C([0, T ],R)) is measurable and µ(x) weakly solves

∂tµt(θ, x) =
1

2
∂2
θ

(
σ2(θ)µt(θ, x)

)
− ∂θ (µt(θ, x)F (θ))

−∂θ
[∫ 1

0
W (x, y)µt(θ, x)

∫
R

Γ(θ, θ′)µt(dθ
′, y)dy

]
,

(1.4)

for every x ∈ [0, 1].

We refer to [1, Proposition 2.1] and [17, Proposition 2.4] for two standard similar proofs.
We point out that W needs only to be bounded and not necessarily with values in [0, 1],
i.e, existence and uniqueness hold for every kernel W , as in the notation below.

Let W := {W : [0, 1]2 → R bounded, symmetric and measurable} be the space of
kernels1. The cut-norm of W ∈ W is defined as

‖W‖� := max
S,T⊂[0,1]

∣∣∣∣∫
S×T

W (x, y)dxdy

∣∣∣∣ (1.5)

where the maximum is taken over all measurable subsets S and T of I. Let W0 := {W ∈
W : 0 6 W 6 1} be the space of labeled graphons: for W, V ∈ W0 their cut-distance is
defined by

δ�(W,V ) := min
ϕ∈S[0,1]

‖W − V ϕ‖� , (1.6)

where the minimum ranges over S[0,1] the space of invertible measure preserving maps
from [0, 1] into itself and where V ϕ(x, y) := V (ϕ(x), ϕ(y)) for x, y ∈ [0, 1].

The cut-distance δ� is a pseudometric on W0 since it can be zero between two different
labeled graphons. If we identify all labeled graphons with cut-distance zero, we obtain the

space of graphons W̃0 := W0/δ�. A well-known result of graph limits theory says that

(W̃0, δ�) is a compact metric space [15, Theorem 9.23].
Proposition 1.3 can thus be restated by saying that for every kernel W ∈ W, there

exists a unique solution µW to (1.4). It is thus natural to ask whether the application
W 7→ µW is continuous (e.g., in the topology of the weak-convergence) with respect to
‖·‖�. This point is discussed in the next remark.

Remark 1.4. Under suitable assumptions on the coefficients, see [3, Proposition 3.3] but
also [1, Theorem 2.1] and [14, Lemma 2.7], it is possible to show that for two solutions
µW and µV associated to W and V in W respectively, it holds that

D2
T (µW , µV ) 6 C ‖W − V ‖� , for some C > 0, (1.7)

where DT is some distance on probability measures metricizing the weak-convergence.
Equation (1.7) proves that the application W 7→ µW is (Hölder-)continuous and, thus,
that similar graphons (in cut-norm) leads to similar particle behaviors. However, it does
not say anything whether two different graphons (possibly in δ�-distance) lead to similar
behaviors. As Theorem 2.1 and its corollaries show, there are relevant examples where this
happens and where it is possible to prove that the particle dynamics coincide.

For every W ∈ W0, Proposition 1.3 shows that the infinite system (1.4) admits a unique

solution, yet it does not address the unlabeled class of W in W̃0. We explicit such relation
in the next proposition.

1we always consider two kernels to be equal if and only if they differ on a subset of Lebesgue measure
zero. We follow closely the notation in [15].
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Proposition 1.5. Let U be a uniform random variable on [0, 1] and θU the non-linear

process in {θx}x∈[0,1] with random label U . Then, the law of θU is given by µ̃ =
∫ 1

0 µ(x)dx

and it is independent of the class of W in W̃0.

Proof. This result was firstly stated in [3, Proposition 2.1] in the case of interacting oscil-
lators. In case the particles are living in R the proof does not change. Indeed, let ϕ be a
measure preserving map from [0, 1] to itself, we observe that µ(ϕ(x)) solves:

∂tµt(θ, ϕ(x)) =
1

2
∂2
θ

(
σ2(θ)µt(θ, ϕ(x))

)
− ∂θ (µt(θ, ϕ(x))F (θ))

−∂θ
[∫ 1

0
W (ϕ(x), y)µt(θ, ϕ(x))

∫
R

Γ(θ, θ′)µt(dθ
′, y)dy

]
,

(1.8)

where the last term is equal to

∂θ

[∫ 1

0
V (x, y)µt(θ, ϕ(x))

∫
R

Γ(θ, θ′)µt(dθ
′, ϕ(y))dy

]
with V (x, y) = W (ϕ(x), ϕ(y)). Thus {µ(ϕ(x))}x∈[0,1] solves the same system of {ν(x)}x∈[0,1]

solution to (1.4) with V ∈ W0 and initial condition {µ0(ϕ(x))}x∈[0,1]. Clearly µ̃ =∫ 1
0 µ(x)dx =

∫ 1
0 µ(ϕ(x))dx =

∫ 1
0 ν(x)dx = ν̃. �

Proposition 1.5 makes clear that, as for a graphon the relevant information is indepen-
dent of the labeling, the same holds true for the behavior of an interacting particle system:
it does not change under relabeling of the particles. Surprisingly, this result has never been
stated in the current literature (with the exception of [3] for interacting oscillators).

1.3. Related works. The graphon framework [16, 15] has been introduced in the the-
ory of particle systems [7, 18, 19, 21] as an useful ingredient to construct inhomogeneous
random graph sequences with nice statistical properties (edge independence, graph homo-
morphism, etc.). Most of the known literature on particle systems has been focused on
the converging properties of particle systems on such random graph sequences, see, e.g.,
[1, 3, 17, 21]. They show that some of the classical mean-field arguments (as propagation
of chaos [22]) can be extended to deal with random graphs and to include labeled graphons
in the limit description. Nevertheless, only little attention has been put into the study of
the limit object (1.4) which remains, to the author’s knowledge, rather unknown.

The recent work [3] shows a direct connection between particle systems and the graphon
theory: under suitable hypothesis on (1.2), there exists a Hölder-continuous mapping

between the space of graphons (W̃0, δ�) and µ̃ as in Proposition 1.5. This allows to
consider general graph sequences, as exchangeable random graphs [12], which leads to
a (possibly) random graphon W in the limit. However, despite the rather understood
convergence properties, only a few insights are available on the limit particle system, we
refer to the examples in Subsection 2.3 of [3].

Although interesting on itself, the study of the limit Fokker-Planck equation does not
necessarily provide a suitable description of particle systems on diverging time scales, as
already raised in [9, 8] for the mean-field case. With the exception of dissipative dynamics
[2], a substantial understanding of the phase space of (1.4) is needed to study the long-
time behavior of finite particle systems on graphs as shown in [8]. It is thus important to
better understand system (1.4) in order to address the finite particle system counterpart.
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2. Main result and discussion

We suppose that the initial condition µ0 ∈ P(R×[0, 1]) and the labeled graphonW ∈ W0

are fixed.
Before stating the main result, we introduce an equivalence relation on the unit interval

and give the definition of degree in W . For x and y in [0, 1], define the relation ∼ by

x ∼ y if and only if µ0(x) = µ0(y), (2.1)

i.e., we identifies two labels whenever the initial conditions of the corresponding particles
have the same law. Denote by J the quotient space [0, 1]/∼ and, for x̄ ∈ J , denote its
orbit by

[x̄] := {x ∈ [0, 1] : x ∼ x̄} .
For some x ∈ [0, 1], we denote the degree of x by d(x) =

∫ 1
0 W (x, y)dy. More generally,

we define the degree of x with respect to a (measurable) subset A ⊂ [0, 1] by

dA(x) =

∫
A
W (x, y)dy. (2.2)

Observe that under the measurability assumption (1.1), [ȳ] is a measurable subset of [0, 1]
for every ȳ ∈ J ; with a slight abuse of notation, we denote dȳ(·) := d[ȳ](·).

2.1. Main result, examples and applications. We have the following theorem.

Theorem 2.1. Assume Hypothesis 1.1. Suppose that, for every x̄ and ȳ in J it holds that

dȳ(x) =

∫
[ȳ]
W (x, y)dy =

∫
[ȳ]
W (x̄, y)dy = dȳ(x̄) for all x ∈ [x̄]. (2.3)

Then for every x̄ ∈ J , µ(x) = µ(x̄), for all x ∈ [x̄].

Condition (2.3) is requiring that, if we partition the interval [0, 1] in J subsets {[x̄]}x̄∈J ,
then the density of neighbors with respect to any of these subsets, i.e., dȳ(·) for some
ȳ ∈ J , is piecewise constant on [0, 1] and completely characterized by the values on J . See
Figure 1 (B) and Figure 2 (A) for graphons that satisfies (2.3).

Theorem 2.1 basically states that, if one can group the particles so that within each
group they have the same initial condition (in law) and are equi-connected to the other
groups in the sense of (2.3), then the solution µ to (1.4) is constant on these groups.

We observe that this result does not depend on the class of W as unlabeled graphon. As
a consequence, one can relabel the particles such that µ is piecewise constant as a function
of x ∈ [0, 1].

Remark 2.2. It is possible to weaken (2.3) by considering a larger J based on vertices
which have not only the same initial law, but also the same degree in W . We refrain
from increasing the complexity in the construction of J to keep the main ideas as clear as
possible. This aspect is briefly discussed in the application to step kernels below.

A direct consequence of Theorem 2.1 is that the information in {µ(x)}x∈[0,1] is contained
in the possibly much smaller object {µ(x̄)}x̄∈J .

Corollary 2.3. Under the assumptions of Theorem 2.1. The infinite system (1.4) is
suitably described by the (possible finite) system of coupled partial differential equations

∂tνt(θ, x̄) =
1

2
∂2
θ

(
σ2(θ)νt(θ, x̄)

)
− ∂θ (νt(θ, x̄)F (θ))

−∂θ
[∫

J
W (x̄, ȳ)νt(θ, x̄)

∫
R

Γ(θ, θ′)νt(dθ
′, ȳ)dȳ

]
, x̄ ∈ J,

(2.4)
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(a) Constant graphon (b) Disconnected graphon (c) Cayley graphon

Figure 1. Examples of graphons that satisfy (2.5) (constant degree). Ob-
serve that the graphon in (B) is composed of two connected components,
the smaller one being more densely connected (darker) with respect to the
other one so to satisfy (2.5). Finally, observe that (A), (B) and (C) are dif-
ferent both as labeled and unlabeled graphons, i.e., different in δ�-distance.

with ν0 = µ0. Notably, µ(x) = ν(x̄) for every x̄ ∈ J and x ∈ [x̄].

Proof. Existence and uniqueness for system (2.4) directly follow from Proposition 1.3.
Moreover, system (2.4) is written in closed form and can be thus solved independently of
(1.4). �

Graphons have proven to be an important tool for establishing the convergence of
particle systems on graph sequences. Notably, it is now possible to show that interacting
particle systems on apriori different graph sequences have the same asymptotic behavior
whenever the limit of these sequences coincides as unlabeled graphon. However, different
unlabeled graphons can lead to the same particle behavior: in these cases, the limit (1.4)
tends to be a formal object instead of giving a precise description. Theorem 2.1 and
Corollary 2.3 precise that both network structure and initial conditions are necessary to
understand the system evolution.

We now turn to an interesting application when |J | = 1, i.e., when the law of the initial
condition is label independent. It turns out that condition (2.3) boils down to a constant
degree assumption on W .

Corollary 2.4. Under the assumptions of Theorem 2.1. Suppose that µ0(x) = µ0 ∈ P(R)
for every x ∈ [0, 1]. Then there exists p ∈ [0, 1] such that condition (2.3) is equivalent to

p =

∫ 1

0
W (x, y)dy, for all x ∈ [0, 1]. (2.5)

In particular, {µ(x)}x∈[0,1] is label independent, i.e., µ(·) ≡ µ ∈ P(C([0, T ],R)), and µ
solves the classical McKean-Vlasov equation

∂tνt(θ) =
1

2
∂2
θ

(
σ2(θ)νt(θ)

)
− ∂θ (νt(θ)F (θ))− ∂θ

[
νt(θ) p

∫
R

Γ(θ, θ′)νt(dθ
′)

]
, (2.6)

with initial condition µ0.

Proof. The hypothesis on µ0 forces |J | = 1 and thus condition (2.3) becomes (2.5). Corol-
lary 2.3 yields the result. �
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The constant degree assumption on W is satisfied by a large class of non-trivial graphons
as the examples shown in Figure 1.

Remark 2.5. Observe that Corollary 2.4 can be derived from the results in [10] com-
bined with the ones on particle systems on graphons, e.g., [17, 1]. Indeed, in [10] it is
shown that, for a particle system defined on a graph sequence and with IID initial condi-
tions, a sufficient condition to obtain the mean-field limit (2.6) is that each vertex in the
(renormalized) graph sequence has the same asymptotic degree density. If one chooses such
sequence to converge to a graphon with constant degree, then it satisfies both the hypothesis
in [10, Theorem 1.1] and in, e.g., [1, Theorem 4.1]. Combining [10, Theorem 1.1] and [1,
Theorem 4.1], we obtain that the same finite particle system converges to (2.6) but also
to (1.4). As a consequence, the solutions of (1.4) and (2.6) must be the same, giving an
undirect proof of Corollary 2.4.

We step to a representative example whenever the graphon is a piecewise constant
function, as the one in Figure 2.

Finite representation for step-kernels. For simplicity, we suppose that µ0 is label indepen-
dent, i.e., µ0(x) = µ0 ∈ P(R). However, observe that the strategy presented here can be
applied by suitably approximating the initial condition with a constant-wise initial datum:
indeed, the continuity of the solution µ to (1.4) with respect to the initial condition is a
classical result [22].

Step kernels ([15, §7.1]) represent one of the fundamental blocks of graphon theory since
they provide a way to approximate any W ∈ W0 with constant-wise functions. A function
W ∈ W is a step kernel if there is a partition P = {Si}i=1,...,k of [0, 1] into measurable sets
such that W is constant on every product set Si × Sj . We use the following notation

WP(x, y) =
k∑

i,j=1

wij 1Si×Sj (x, y), for x, y ∈ [0, 1], (2.7)

where {wij}i,j=1,...,k are bounded real numbers. See Figure 2 for an example with equidis-
tant partition.

For a step kernel, condition (2.3) is clearly satisfied by taking J = {xi}i=1,...,k with
xi ∈ Si for every i = 1, . . . , k, thus refining the strategy presented before Theorem 2.1, as
anticipated in Remark 2.2.

Applying Theorem 2.1 and Corollary 2.3, we have the following representation for the
graphon particle system (1.4) on the step graphon WP .

Proposition 2.6. Suppose that µ0 ∈ P(R) and let W be the step kernel in (2.7). Then
the graphon particle system (1.4) is suitably described by the finite collection of probability
measures {µi}i=1,...,k which solve

∂tµ
i
t(θ) =

1

2
∂2
θ

(
σ2(θ)µit(θ)

)
−∂θ

(
µit(θ)F (θ)

)
−∂θ

 k∑
j=1

wijµ
i
t(θ)

∫
R

Γ(θ, θ′)µjt (dθ
′)

 , (2.8)

and where µi0 = µ0, for i = 1, . . . , k.

As shown in Proposition 2.6, the representation given in Corollary 2.3 becomes natural
in the case of step kernels, and thus for graph limits arising from the stochastic block
model. While Proposition 2.6 could be derived with direct computations2, observe that

2A step kernel can be seen as a Stochastic Block Model, for which the representation (2.8) is somehow
known.
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(a) Step kernel (b) Scale free graphon

Figure 2. Suppose that J = {x0, x1, x2} and that [x0] = [0, 1/3),
[x1] = [1/3, 2/3) and [x2] = [2/3, 1]. Then, the step kernel in the figure
(A) satisfies (2.3). It also represents a way to approximate the scale-free
graphon (B). The grayscale stands for different values in [0, 1].

Theorem 2.1 goes a step further: if one replaces every single constant block Si × Sj in
(2.7) by a (suitable scaled) graphon with constant degree, equation (2.8) does not change.

We also observe that combining Proposition 2.6 with the continuity estimates as in
Remark 1.4, allows to approximate the graphon particle system (1.4) by a finite number
of coupled Fokker-Planck equations. Since it is beyond the scope of this note, we do not
purse such analysis, yet we make this point a bit more precise in the next remark.

Remark 2.7. By using the Weak Regularity Lemma [15, Corollary 9.13], one can approx-
imate every graphon by a step kernel with an explicit control on the error. Assuming the
continuity of (1.4) with respect to W , recall Remark 1.4, Proposition 2.6 opens the way
to approximate the infinite graphon particle system (1.4) by using a finite (thus apriori
numerically solvable) system of coupled Fokker-Planck equations, with precise bounds on
the error.

3. Proof of the main result

3.1. Distance between probability measures. For two probability measures µ̄, ν̄ ∈
P(C([0, T ],R)), define their 2-Wasserstein distance as

DT (µ̄, ν̄) = inf
X,Y

{
E

[
sup
t∈[0,T ]

|Xt − Yt|2
]

: L(X) = µ̄, L(Y ) = ν̄

}1/2

(3.1)

where the infimum is taken on all random variables X and Y with values in C([0, T ],R)
and law L equal to µ̄ and ν̄ respectively. From (3.1) we obtain that for every s ∈ [0, T ]
and for every bounded 1-Lipschitz function f∣∣∣∣∫

R
f(θ) µ̄s(dθ)−

∫
R
f(θ) ν̄s(dθ)

∣∣∣∣ =

∣∣∣∣∫
R
f(θ) [µ̄s(dθ)− ν̄s(dθ)]

∣∣∣∣ 6 Ds(µ̄, ν̄). (3.2)

Observe that (3.1) also makes sense with T = 0 and C([0, T ],R) replaced by R.
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3.2. Proof of Theorem 2.1. Recall the definition of the 2-Wasserstein distance DT in
(3.1), we aim at showing that

max
x̄∈J
x∈[x̄]

DT (µ(x̄), µ(x)) = 0. (3.3)

We first assume F ≡ 0 and σ ≡ 1.
Let x̄ ∈ J and x ∈ [x̄], without loss of generality, we can suppose that the associated

realizations of the Brownian motion are the same. Using the fact that x ∈ [x̄], the initial
conditions cancel and we have that

θxt − θx̄t =

∫ t

0

∫ 1

0
W (x, y)

∫
R

Γ(θxs , θ)µ(dθ, y)dy ds

−
∫ t

0

∫ 1

0
W (x̄, y)

∫
R

Γ(θx̄s , θ)µ(dθ, y)dy ds,

(3.4)

In particular, this can be rewritten as∫ t

0

∫ 1

0
W (x, y)

∫
R

[
Γ(θxs , θ)− Γ(θx̄s , θ)

]
µ(dθ, y)dy ds

+

∫ t

0

∫ 1

0
[W (x, y)−W (x̄, y)]

∫
R

Γ(θx̄s , θ)µ(dθ, y)dy ds.

(3.5)

We now use hypothesis (2.3) and add the following term in the previous equation

0 =

∫
J

[∫
[ȳ]

[W (x, y)−W (x̄, y)]

∫
R

Γ(θx̄s , θ)µs(dθ, ȳ)dy

]
dȳ, (3.6)

where the integrals are sums whenever J or [ȳ] are countable (recall that [ȳ] is a measurable
subset of [0, 1] because of Hypothesis (1.1)).

By taking the squares and using (a+ b)2 6 2(a2 + b2), this leads to∣∣θxt − θx̄t ∣∣2 6 2T 2

∫ t

0

∣∣θxs − θx̄s ∣∣2 ds+

+ 2T 2

∫ t

0

∫
J

∣∣∣∣∣
∫

[ȳ]
[W (x, y)−W (x̄, y)]

∫
R

Γ(θx̄s , θ)[µs(dθ, y)− µs(dθ, ȳ)]dy

∣∣∣∣∣
2

dȳ ds,

(3.7)

where we have used Cauchy-Schwartz inequality as well as the fact that Γ is 1-Lipschitz.
Applying Cauchy-Schwartz again, and using (3.2), we are left with

∣∣θxt − θx̄t ∣∣2 6 2T 2

∫ t

0

∣∣θxs − θx̄s ∣∣2 ds+ 4T 2

∫ t

0

∫
J

[∫
[ȳ]
D2
s(µ(y), µ(ȳ))dy

]
dȳ ds, (3.8)

Thus, taking the supremum with respect to the time and the expected value E this leads
to

E

[
sup
t∈[0,T ]

∣∣θxt − θx̄t ∣∣2
]
6 2T 2

∫ T

0
E

[
sup
u∈[0,s]

∣∣θxu − θx̄u∣∣2
]

ds+

+ 4T 2

∫ T

0

∫
J

[∫
[ȳ]
D2
s(µ(y), µ(ȳ))dy

]
dȳ ds.

(3.9)
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Finally, we can take the maximum with respect to x̄ ∈ J and x ∈ [x̄] and use the charac-
terization of (3.1), to obtain

max
x̄∈J
x∈[x̄]

D2
T (µ(x̄), µ(x)) 6 6T 2

∫ T

0
max
x̄∈J
x∈[x̄]

D2
s(µ(x̄), µ(x))ds, (3.10)

which implies (3.3).
Whenever F is not zero, the proof is basically the same: using the Lipschitz properties

of F , a term equal to |θxs − θx̄s |
2 appears, thus adding the constant factor of 2T 2 to the

final equation (3.9).
If σ is not constant, then we may use the Burkholder-Davis-Gundy inequality (and the

Lipschitz property of σ) to bound:

E

[
sup
t∈[0,T ]

∣∣∣∣∫ T

0

(
σ(θxs )− σ(θx̄s )

)
dBs

∣∣∣∣2
]
6 CT 2

∫ T

0
E

[
sup
u∈[0,s]

∣∣θxu − θx̄u∣∣2
]

ds,

with C a universal positive constant. The rest of the proof remains unchanged. �
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