
HAL Id: hal-03137874
https://hal.science/hal-03137874v1

Submitted on 10 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Misconfiguration Discovery with Principal Component
Analysis for Cloud-Native Services

Alif Akbar Pranata, Olivier Barais, Johann Bourcier, Ludovic Noirie

To cite this version:
Alif Akbar Pranata, Olivier Barais, Johann Bourcier, Ludovic Noirie. Misconfiguration Discovery with
Principal Component Analysis for Cloud-Native Services. UCC 2020 - 13th IEEE/ACM International
Conference on Utility and Cloud Computing, Dec 2020, Leicester / Virtual, United Kingdom. pp.269-
278. �hal-03137874�

https://hal.science/hal-03137874v1
https://hal.archives-ouvertes.fr


Miscon�guration Discovery with Principal Component Analysis
for Cloud-Native Services

Alif Akbar Pranata, Olivier Barais, Johann Bourcier

Univ Rennes 1, Inria, Irisa
Rennes, France

alif-akbar.pranata@inria.fr, olivier.barais@irisa.fr, johann.bourcier@inria.fr

Ludovic Noirie

Nokia Bell Labs
Nozay, France

ludovic.noirie@nokia-bell-labs.com

Abstract—Cloud applications and services have signif-
icantly increased the importance of system and service
con�guration activities. �ese activities include updating
(i) these services, (ii) their dependencies on third parties,
(iii) their con�gurations, (iv) the con�guration of the exe-
cution environment, (v) network con�gurations. �e high
frequency of updates results in signi�cant con�guration
complexity that can lead to failures or performance drops.
To mitigate these risks, service providers extensively rely
on testing techniques, such as metamorphic testing, to
detect these failures before moving to production. How-
ever, the development and maintenance of these tests
are costly, especially the oracle, which must determine
whether a system’s performance remains within acceptable
boundaries. �is paper explores the use of a learning
method called Principal Component Analysis (PCA) to
learn about acceptable performance metrics on cloud-
native services and identify a metamorphic relationship
between the nominal service behavior and the value of
these metrics. We investigate the following research ques-
tion: Is it possible to combine the metamorphic testing
technique with learning methods on service monitoring
data to detect error-prone recon�gurations before moving
to production? We remove the developers’ burden to de�ne
a speci�c oracle in detecting these con�guration issues. For
validation, we applied this proposal on a distributed media
streaming application whose authentication was managed
by an external identity and access management services.
�is application illustrates both the heterogeneity of the
technologies used to build this type of service and its large
con�guration space. Our proposal demonstrated the ability
to identify error-prone recon�gurations using PCA.

Keywords-Recon�gurations; Metamorphic testing; Princi-
pal component analysis; Cloud-native services

I. Introduction

A growing number of network services and applications

are now being deployed in the form of so-called ”cloud

native” applications or services. [1]. �ese services are

characterized by the following features:

• A service-based architecture. �e style can be any ar-

chitectural model that is modular and loosely coupled.

• A common packaging model and a self-contained ex-

ecution environment that provides portability as well

as isolation using container, VM and/or uni-kernel

solutions.

• A continuous and automated process to develop, build

and deploy these services.

As a side-e�ect of this trend, the frequency of services

recon�gurations is signi�cantly increased [2], [3], [4].

�ese recon�gurations are related to: changes in the source

code of services or third-party libraries of these services,

a change in the parameters of one of these services, or a

change in the underlying network parameters. �e so�ware

complexity is now overwhelming and it becomes di�cult to

guarantee, a priori, that a new service con�guration will be

correct or less error-prone [5]. Each of these new, modi�ed

con�gurations has the potential to introduce errors at the

service level. While some recon�gurations or updates can

signi�cantly change the service behavior, most of these

recon�gurations do not fundamentally change the business

logic. Still, business outputs are a�ected by this complexity

due to unexpected errors.

Each recon�guration is seen as a network state over time.

Given that errors and failures are caused by recon�guration

management, therefore, from a high abstraction level, the

expected service behavior should remain ”close” to the

previous con�gurations, meaning that for each particular

network state should have relations to the state − 1
con�guration as the oracle de�nition to embrace failures.

So�ware testing techniques are well-known techniques to

address recon�guration management issues and to ensure

performance validity [6]. In such techniques, each test

de�nes an oracle, characterized by input-output de�nitions

to check whether a test has passed or failed. However,

de�ning oracle and maintaining the testing code base is

burdensome and costly.

A metamorphic testing method has been proposed [7]

to test programs removing the need for oracle. It employs

properties of the target function, known as metamorphic

relations, to generate follow-up test cases and verify the

outputs automatically. �e intuition behind using metamor-

phic testing to alleviate the oracle problem is as follows:

Even if we cannot determine the correctness of the actual

outputs for individual input, it may still be possible to use

relations among the expected outputs of multiple related

inputs (and the inputs themselves). Following the principle

of metamorphic testing, it has been suggested that indi-



cating a service recon�guration validity is possible if there

are metamorphic relations between the previous behaviors

of the service and the recent behavior of the service with

the new con�guration [8]. Yet, since it is nearly impossible

to have an exact characterization of the behavior of a

service, the main challenge is to �nd an e�cient method

to characterize the service behavior and compare several

executions of a particular system.

In this paper we study the discovery of error-prone re-

con�gurations to understand the complex nature of native

cloud services and identify the actions that may lead to

erroneous behavior due to miscon�gurations. Motivated by

the ability of metamorphic testing to avoid oracle de�nition

for testing so�ware systems, we rely on performance

metrics as an input to this analysis to identify potential

miscon�gurations. Two types of metrics are introduced:

generic metrics and business metrics that must be kept

within acceptable limits to avoid user experience degrada-

tion and maintain continuous delivery

We applied a learning method called principal compo-

nent analysis (PCA) [9], [10] on cloud-native applications

metrics. As a proof of concept, we tested our approach in

a media streaming application, simulating a real-world use

case scenario of cloud-native systems. Given the advantage

of no oracle de�nition and �exible metrics selection, our

experiment shows that the use of generic and business

metrics, plo�ed as the metamorphic relations of multiple

system executions, as the inputs of the PCA are e�ective to

discover potential valid and invalid system recon�gurations

in the cloud environment. We also con�rm such validity

of each recon�guration by measuring the proximity of

metamorphic relations of each system execution.

�e remainder of the paper is as follows. Section II

explores real-world implementation examples that motivate

this paper, discusses the concept of PCA, and directs a

research question, followed by the proposed approach in

section III. We show our implementation scenario and the

experiment setup in IV, then we evaluate and validate our

approach in section V. Section VI discusses the related

works. Finally, section VII concludes the paper and foresees

our future works.

II. Motivation & Background

In this section, we provides examples of today’s network

system complexity from companies and our speci�c imple-

mentation. �en, we discuss principal component analysis

(PCA) method for our evaluation technique. To understand

the purposes and constraints of our work, we develop a

research question and raise the hypothesis.

A. Motivating Examples: So�ware Complexity

�e so�ware is complex [5], [11]. It has the inherent

characteristic of having several degrees of dependencies

that exist and work together to form a whole system to

meet customer needs. A so�ware system is therefore the

result of the spontaneous composition of a set of modules.

�e trend towards the ”so�warization” of everything

allows IT to move gradually to so�ware-based implementa-

tion, usually with API technology for service dependencies

and communication. An example of this evolution is the

current trend of so�ware-de�ned networks/network func-

tions virtualization (SDN/NFV) in a native cloud service

environment [12]. A case of Amazon networks is formed

by so�ware-based microservices, creating full connectivity

through which API communicates information data over

network protocols in the cloud environment
1
.

�e complexity and dynamic of so�ware module in-

teraction makes system management di�cult. Failures are

inevitable, especially in the production environment, when

engineers and experts are not always available to maintain

and manage the systems. As a motivating example, consider

a large-scale distributed system with microservices de-

ployed in cloud servers to provide seamless data exchange

and processing around the world. We take a more concrete

faulty event by Google Clout Platform (GCP)
2
. GCP has

Memcache, an app engine service that speeds up response

to data queries by storing them in cache memory. Google

utilizes well-built, automatic failover to ensure a seamlessly

switch from one failed data center to the other to prevent

failure a�er se�ing up Memcache for a consistent view of

data center serving every application. Yet, utilizing a well-

maintained failover mechanism does not mean that systems

are invulnerable. Failures can occur due to the unforeseen

circumstances at any time during runtime due to a single

failure of a module.

In this paper, we take an example of a simple media

streaming application (built for our use case implementa-

tion in section IV) where some instances of video server

deliver video data to their clients. �e implementation

complexity increases when an access management server

and a reversed proxy server sit between the video servers

and clients to provide authentication and authorization

mechanisms as well as a load balancing scheme. Consid-

ering only the video server application, we can have at

least 174 application modules. From those modules, we

have eleven core dependencies with the so�ware version

of each dependency as listed in table I. When we deploy

and run our media streaming application system in a cloud

environment, the system may evolve during the runtime

and it becomes hard to manage background events in the

execution. If, at any moment, we upgrade the version of

one of the dependencies, other services that depend on it

may have to adapt their behavior and may fail.

1
A presentation by Chris Munns at Amazon.com: I love APIs 2015:

Microservices at Amazon. Reference: h�ps://www.slideshare.net/apigee/i-

love-apis-2015-microservices-at-amazon-54487258.

2
An incident happened in 06/11/2017 for 1 hour 50 minutes. Reference:

h�p://status.cloud.google.com/incident/appengine/17007.



B. Principal Component Analysis (PCA)
Principal component analysis (PCA) [9], [10] is an un-

supervised learning method, multivariate data analysis of

large data sets. It reduces the dimensionality to increase

interpretability without losing essential information at the

same time. �e core idea behind PCA is that it creates from

the original data using orthogonal transformation new

uncorrelated variables that successively maximize variance.

�is new variable is called the principal components (PCs).

Finding PCs reduces solving an eigenvalue/eigenvector

problem. It accomplishes such task at hand, not a priori,

making PCA an adaptive tool for data analysis. �e adap-

tivity increases as a result of its capability to be tailored to

various data types and structures.

�e main objective of PCA is to reduce the dimension-

ality of the original data a�er obtaining the maximum

amount of variance with the selected minimum number

of PCs. �e process of PCA is explained as follows.

1) Given the original 2 x n (n is the number of metrics),

PCA computes the eigenvectors and the eigenvalues

of the covariance matrix. �e eigenvectors are used

to project the data from n dimensions to decrease

representation, and the eigenvalues provide the data

variance in the eigenvector direction.

2) PCA iterates the calculation of �nding PCs using

the number of eigenvector. �e �rst eigenvector de-

termines the direction of the highest data variance

and the �rst PC is obtained from the data with the

greatest possible variance in the data set.

3) �e subsequent PCs (second, third, and so on) are

obtained in the same manner using the respective

eigenvector value inside the iteration. However, there

is a condition for each PC: it is uncorrelated with

the previous one and it accounts for the next highest

variance.

4) Each of the eigenvector and the eigenvalue is associ-

ated with the direction of each PC. �e eigenvector

associated with the largest eigenvalue has the same

direction as the �rst PC. �e subsequent PCs have

the same association rule.

PCA plots data points a�er its calculation into a PCA

space. PCA can show data that have extreme points, called

outliers, which do not follow the model of the majority of

the data at the boundaries of the space.

C. Research �estion
We formulated the following research question: is it

possible to combine metamorphic testing technique
with unsupervised learning methods on service mon-
itoring data to detect error-prone recon�gurations
before moving to production? Our hypothesis arises for

the answer.

Metamorphic testing is a comparison testing technique

of two programs that have a relational pa�ern called meta-

Table I

Module dependencies in video server

Names of dependency Version
body-parser 1.19.0

cors 2.8.5

express 4.17.1

express-h�p-proxy 1.6.0

express-session 1.17.0

keycloak 1.2.0

keycloak-connect 9.0.3

keycloak-js 9.0.3

request 2.88.2

videojs-resolution-switcher 0.4.2

xmlh�prequest 1.8.0

morphic relations (MRs) for checking and comparing the

correctness of a�ributes in programs. In common cases, the

MRs are known, for example when we perform metamor-

phic testing in functional programming (such as NumPy

library
3

in Python) which relies mostly on mathematical

functions computations and thus are comparable. But there

may be other cases, such as in our implementation context,

which is di�cult to �nd relations and pa�erns as we

avoid oracle de�nitions. �is leads to insu�cient tooling for

comparison and analysis. �e combination of metamorphic

testing with unsupervised learning method is foreseen as

the solution. Given neither the metamorphic relations nor

the oracle de�nitions, our proposed approach automatically

creates relations among di�erent sets of input and output.

III. The Proposed Approach

We propose a technique to discover miscon�guration

in cloud-native services. Our approach was motivated by

the metamorphic testing technique that removes the need

to de�ne oracle in advance. As a replacement, we de�ne

our oracle with an unsupervised learning method called

principal component analysis (PCA) method. We choose

PCA among similar machine learning and dimensional

reduction technique such as ICA, LDA, and SVD as it suit

our requirement: measuring uncorrelated and unsupervised

metrics. We monitored and analyzed our approach in our

experiment using monitoring agents and statistical distance

measurements.

A. General Approach

Our approach was motivated by the metamorphic testing

technique, which compares and analyze multiple program

executions with each of them may have di�erent perfor-

mance behavior due to adjusted con�gurations, or recon�g-

urations, during the runtime. We de�ne a recon�guration

as an action trigger that a�ects the execution behavior yet

does not change the application business outputs. Recon-

�guration aimed to cause intentional system disruption.

�e examples of recon�gurations are: changing parameter,

3
NumPy library. Reference: h�ps://numpy.org/



Figure 1. �e proposed approach of miscon�gurations discovery in cloud-native services: (A) Baseline execution; (B) Recon�guration scheme.

revoking access, shu�ing down, or restarting a service

(�e exact recon�gurations in section V-B). Our approach

tested recon�gurations and discovered miscon�gurations

that may fail cloud-native services execution.

Metamorphic testing also o�ers �exibility in removing a

priori oracle de�nition and choosing any metrics for evalu-

ation. �e metrics are useful for the PCA to create relations

among di�erent program executions. In the metamorphic

testing technique, these relations are called metamorphic

relations (MRs). Our approach used the MRs as our oracle

de�nition for PCA. We compared and analyzed the MRs to

check the correctness of the executions under testing.

Figure 1 illustrates the general approach of our proposal.

We had two testing steps, denoted by (A) and (B), which

di�er in the context of execution. Step (A), called baseline

execution, is de�ned as the initial execution on which we

had experts knowledge about the normal expected execu-

tion. To avoid manual and repetitive e�ort for generating

baseline execution, we automate the process, starting from

creating nodes, connecting links, con�guring the networks

a�ributes (ip, gateway, etc.) per nodes, launching services

in the nodes, until destroying the nodes. We tested our

system using the knowledge for the (A) input in a system

under test (SUT) consisting of network architecture that

runs our use case scenario with running services in a cloud

environment (detailed description of use case scenario in

section IV). During the execution, we monitored the ex-

ecution behavior, extracted and obtained the performance

metrics data for building the model of execution behav-

ior using PCA. Our model builder run the PCA method

for each baseline execution to obtain this testing output,

namely the baseline model.

With the baseline model in (A), we then executed another

set of executions (B) in the SUT. Here in (B), we applied

recon�gurations to the SUT to change the execution be-

havior. �e subsequent processes were similar to (A) until

we built the (B)’s PCA model. From here, we combined

the PCA model from (A) and (B) to obtain our oracle by

evaluating and comparing the PCA model. We obtained

the PCA space, consisting of each data point representing

each execution behavior by the PCA calculation. We then

evaluated and compared each data point and validated their

relations using euclidean distance (ED). More speci�cally,

we measured the euclidean distance between each data

point and the centroid value of the major cluster in the PCA

space. �e euclidean distance also served as the MRs in the

perspective of the metamorphic testing approach. Finally,

we decided the correctness of each execution, whether it is

valid and invalid recon�gurations based on the ED relations

of each execution in the PCA space. �is decision is the

�nal output of our proposed approach. Further validation

can be made by the experts, whether a particular execution

has the correct decision of valid or invalid recon�gurations.

By the euclidean distance (or MRs), Our approach cat-

egorized and de�ned two sets of output representing the

system execution correctness as follows:

1) valid recon�guration, which did not a�ect the

normal delivery of data a�er the trigger was applied.

2) invalid recon�guration, which produced error mes-

sages and disrupted the data delivery a�er the trigger

was applied.

We de�ne error messages as the report of error obtained

by monitoring agent in the form of bad requests/responses

in data exchange. Here, we obtained the number of HTTP

error code messages.

B. Monitoring & Analysis

We deployed monitoring agents in our network archi-

tecture for monitoring purposes. Our monitoring agents

collected the metrics data and exported the data into



a comma-separated values �le format. For analysis, we

obtained and compared a set of two scenario outputs of

baseline execution and recon�gurations. Speci�cally, we

selected metrics for observation, extracted the metrics data

from each scenario, and constructed our data set from the

data for PCA method processing.

We obtained the result abstraction of valid and invalid

recon�gurations with the PCA method. We a�rmed the

valid recon�gurations as the correct system behavior. At

the same time, we also discovered system misco�gurations

caused by invalid recon�gurations. In order to validate

the classi�cation of recon�guration validity, we calculated

the euclidean distance (ED) of each data points to the

centroid of the baseline execution scenario in the PCA

space. Data points representing each execution behavior

may be sca�ered in the PCA space in far proximity that we

considered outliers. To determine the outliers, we computed

the 97.5%-�antile Q of the Chi-square distribution as

a cuto� value of the ED (

√
X2

a,0.975). According to the

table of the Chi-square distribution
4
, the value is equal to√

7.38 = 2.71. Any ED value bigger than that is identi�ed

as the outlier, which means that the recon�guration is

invalid. Otherwise, the system running behavior is valid

a�er the recon�gurations.

IV. Implementation

We implemented our proposed approach in a cloud-

native system running a real-world business application.

�e application in our experiment had a use case scenario

with a system under test (SUT), which is de�ned as the set

of particular services as the testing targets. �e implemen-

tation was a media streaming system with services that

integrated processing and communicated media data.

A. Use Case Scenario

Application domains range widely in cloud environ-

ments, such as data stream processing. Such processing

operates a series of continuous data delivery to achieve

outputs. �ese domains include media/video streaming

application, delivering video information and playing it on-

demand as per user needs [13]. �e common protocol in

this application is HTTP live streaming (HLS), which has

gained popularity over the past years due to its �ne rate

adaptation and workload sharing [14].

Media streaming in a large-scale system can create

service and delivery quality issues to clients, mostly when

recon�gurations occur during the runtime. For example,

when a service is down or changes the parameter value,

other dependant services may lose its states to continue

functioning correctly. Due to the complex nature of such

application systems, we devised an experiment technique

4
Chi-Square distribution table. Reference: h�ps://store.fmi.uni-

so�a.bg/fmi/statist/education/Virtual Labs/tables/tables3.html

Figure 2. �e work�ow of identity and access management mechanism

by the video server instances and clients.

in a media streaming application to discover dynamic

system behavior and detect miscon�gurations resulting

from recon�gurations.

We applied our approach to a real-world video server-

clients communication with an identity and access manage-

ment service. �ere were four objects in our implementa-

tion: video server, client nodes (end users), identity and

access management server (or auth server for brevity), and

database server. Figure 2 illustrates the work�ow of these

objects. Initially, the video server executed an identi�cation

mechanism by asking the auth server to obtain a secure

token (1). �en, clients requested media stream to the

video server (2). Before holding its secure token from the

auth server, the video server could not directly grant valid

access to the clients for the requested video data. Instead,

it redirected the request to an authorization endpoint so

the clients can log in to the video server for authorized

access (3). Once logged in, the auth server communicated

with its database server to ask for client identi�cation (4).

In our implementation, the database server sat in the same

machine with the auth server. If not identi�ed, the video

servers access was blocked; otherwise, the auth server

identi�ed the request (5) and redirected the client responses

with auth code (6). �is code contains an access token that

has a limited lifespan. �e detail of short lifespan bene�t is

out of the scope in our discussion (in short, it is bene�cial

for enhanced security: to keep short validity duration for

frequent checking of a�ackers in the system). Due to the

short lifespan of access token, the clients had to refresh

the auth code with a refresh token when the access token

reached the timeout. Upon obtaining the auth code, the

clients requested the video data with its code to the video

server (7). �e Video server checked once again for the code

validity and requested a valid session with an ID token to

the auth server (8). �e auth server returned the ID token

(9), and �nally, the valid connection between clients and

video server was established.

To evaluate the implementation, we chose two kinds of

native system metrics: generic and business. �e generic



Figure 3. �e network architecture of our media streaming application.

metrics were a quantitative measurement that dealt with

values inherent from the general system running perfor-

mance, such as tra�c rate, CPU usage, and memory usage.

�e business metrics were the application-speci�c metric

that became the key parameter in running such an appli-

cation in real-world execution. In our implementation, the

business metric was the number of error messages caused

by recon�guration. We elaborate our metrics selection in

section V-A.

B. Experiment Setup

We set up and run our network architecture consisting

of nodes that run services in container applications. Our

services in the architecture communicated and constructed

our media streaming application. We experimented and

evaluated our approach in GNS3 network emulation en-

vironment. �e GNS3 server runs in our private cloud

lab with computing resources that can accommodate load

consumption with as many as thousands of nodes: Intel(R)

Xeon(R) Gold 6238 CPU with 2.10GHz 88 Core, 187GB

memory, and 11 TB disk storage size.

We show the network architecture of media streaming

application in our experiment in �gure 3. We had four

objects in the experiment as described in section IV-A. For

video server and clients, we deployed multiple instances

of each of them. We also deployed a reversed proxy

server to serve load balancing for requests sent to each

video server instance. We separated service nodes based

on service layering and function into the system under

test (SUT) cluster, testing cluster, and monitoring cluster.

Following this setup, we implemented our approach to the

use case scenario, evaluated our experiments and validated

the results.

V. Evaluation & Validation

We evaluated our proposed approach in the experiments

for various system recon�gurations on system under test

(SUT) and discovered miscon�gurations in cloud-native

systems. Our experiments compared and analyzed a series

of initial execution, which was labeled as the baseline

by experts, and executions with recon�guration schemes

that changed the system runtime behavior. �e baseline is

de�ned as a test scenario with expected correct behavior

due to the absence of execution changes during runtime.

In monitoring, we obtained execution metrics data and

collected them into a data set for the evaluation with

principal component analysis (PCA).

A. Metrics and Data Collection

For the evaluation, the PCA allows us to select arbitrary

metrics. We introduced metrics selection from generic

metrics in various application domains, and business met-

rics, which are systems-speci�c metrics. With PCA, we

processed the metrics data and produced data points in

the PCA space. �e correlations of each data point were

regarded as the metamorphic relations (MRs), which help to

determine the system performance correctness. We chose

the generic and business metrics as follows (the bold names

inside parentheses refer to the column names in table II).

1) Number of HTTP error codes (err). We obtained

and counted the total number of 400 error codes

for showing which recon�gurations produce invalid

con�gurations. �e number of error codes is one of

the business metrics, representing the failures in a

media streaming execution.

2) CPU usage. In container application, each service has

CPU usage which denotes its workload. We mea-

sured the average (cpu avg) and standard deviation

(cpu std) of the CPU usage in percentage.

3) Sent tra�c. Requests from clients were sent to

the video server and subsequently were routed to

the auth server for access management mechanism.

�e sent tra�c also included video data. We mea-

sured the average (sent avg) and standard deviation

(sent std) of the sent tra�c in megabyte per thirty

seconds.

4) Received tra�c. Being authorized, clients received the

responses of valid access from the auth server. �e

received tra�c also included video data. We mea-

sured the average (rcvd avg) and standard deviation

(rcvd std) of the received tra�c in megabyte per

thirty seconds.

5) Memory usage. Memory denotes the memory con-

sumption of the container application used by the

service. We measured the average (mem avg) and

standard deviation (mem std) of the memory usage

in megabyte (MB).

6) Uptime (uptime). We counted the uptime from the

�rst client requested media streaming until the last

client closed the streaming. During the uptime, me-

dia streaming processing and communication occur,

such as token exchange, media data delivery, and

error message exchange. We observed the uptime per



Table II

PCA data set of execution scenarios

Execution scenario err cpu avg cpu std sent avg sent std rcvd avg rcvd std mem avg mem std uptime
baseline 0 6.216 2.291 8.173 3.308 7.998 3.233 126.923 6.191 13

baseline, kcRestart 50 2.683 3.383 2.723 4.573 2.657 4.496 124.980 4.033 13

baseline, wrongUri 0 7.194 2.259 9.377 3.472 9.182 3.400 130.037 5.355 13

baseline, webOrigin 2152 4.111 2.123 3.405 3.443 3.330 3.383 128.050 5.683 13

baseline, revokeToken 50 3.585 3.720 3.893 5.059 3.807 4.977 128.929 5.578 12

Note: We prune this table, only showing one entry/test case per execution scenario.

Table III

The number of test cases per execution scenario

Execution scenario Number of test cases
baseline 30

baseline, kcRestart 3

baseline, UriRedirect 3

baseline, webOrigin 3

baseline, revokeToken 3

minute. �e uptime is another business metric in our

evaluation.

We collected data from the above metrics into a two-

dimensional matrix, which then formed our data set, with

features indicating the metrics in column, and compo-
nents denoting our test cases in row. �is matrix is shown

in table II.

We tested multiple execution times in test cases, which is

de�ned as a unique system execution and can be performed

multiple times per execution scenario (forming a series of

test cases). �e purpose of multiple test cases is to obtain

data consistency, which formed a historical data series

of each execution scenario. �e historical data builds a

behavioral execution trend for the comparison with other

execution scenarios. Table III shows the number of test

cases in each execution scenario. In the table, we executed

especially the baseline executions more in quantity to build

data con�dence for the basis of comparison with execution

with recon�guration schemes.

B. Recon�guration Schemes
Recon�gurations aimed to cause intentional system dis-

ruption during runtime. To achieve this goal, we triggered

each recon�guration in the SUT at the time the last client

has started the streaming until the system runtime has

ended. �e following explains the types of recon�guration

in our experiment and their behavior.

1) restarting auth server (kcRestart). We restarted the

server when all clients had run the streaming and

observed that all clients could not manage token

expiration when the access token must be refreshed

at a particular interval. �e clients failed to receive

streaming data from the video server. �e number of

error messages was equal to the number of clients.

2) misredirecting URI (UriRedirect). A valid redirect URI

is a scheme in the auth server that allows the server

to redirect responses to the requested application

a�er successful login. In baseline execution, we set

this value with a wildcard (*) and intentionally recon-

�gured it with a false URI at runtime to disrupt the

redirection scheme. Although valid responses from

the video server were missing, the clients retrieved

the video information from its cache, allowing normal

streaming.

3) removing web origin value (webOrigin). We removed

the web origin wildcard and obtained error messages

by this recon�guration. We observed this since the

video server failed to refresh the access token in

the auth server. We also noticed this produced a

great number of error messages compared to other

recon�gurations, although it only stopped the media

streaming and did not crash the video player instance.

4) revoking token (revokeToken). �e auth server peri-

odically sent two kinds of token: access and refresh

token to maintain valid authentication once clients

were authorized. We destroyed this valid authentica-

tion by revoking the token and observed failures in

the token exchange mechanism.

Table IV summarizes our observation in executing re-

con�guration scheme, including the categorization of valid

or invalid recon�guration referring to section III-A.

C. Results & Discussion

1) Results: We evaluated our implementation using the

PCA method. �e PCA result is shown in �gure 4. Data

points sca�er and have distance among each of them

in a PCA space in the �gure. In most experimentations,

any execution contexts share similar output if they have

similar actions, triggers applied to them in the experiment.

Speci�c to our experimentation, they follow a trend in

performance behavior in the PCA space and form a cluster.

�e di�erentiator can be seen among di�erent execution

scenarios; �ey indicate di�erent trends, thus classifying

themselves in the space and constituting a cluster. If they

are far from the trend of the dominant execution due to

di�erent recon�gurations, they are considered as an outlier.

�e baseline execution is the major trend and the data

points from its test cases form a cluster (�gure 4, green).

Other execution scenarios in the experiment with recon�g-

urations, in this case kcRestart (blue), webOrigin (purple),



Table IV

The observation summary of execution scenarios

Execution scenario Description Observation Output category (section III-A)
Baseline Running normal exection No impact, normal streaming delivery Valid recon�guration

baseline, kcRestart Restarting auth server

- Access token is expired at clients node

- Application crashes, re-login is required
Invalid recon�guration

baseline, UriRedirect Misredirecting URI from

auth server to video server

- Normal streaming delivery

- �e clients retrieve the video information

from its cache

Valid recon�guration

baseline, webOrigin Removing webOrigin

wildcard value

- Response from valid URI redirection

is not permi�ed

- Failed CORS request

Invalid recon�guration

baseline, revokeToken Revoking access and

refresh token

- Access and refresh token are missing

- Authentication is no longer

valid for the clients

Invalid recon�guration

and revokeToken (magenta), are sca�ered and some are

seen as outliers in the PCA space. We call these outliers

as invalid recon�gurations. �ese outliers may a�ect the

system performance due to its deviation found in their

metrics value. With this information of outliers, we argue

that obtaining the decision of invalid recon�gurations can

help to notify the system developers and managers for

potential weaknesses of the systems as discovered by our

proposed approach with PCA analysis.

However, we also �nd a particular recon�guration,

UriRedirect (brown), that does not have errors during exe-

cution yet has similar behavior to the baseline execution.

�is kind of recon�guration produces a small principal

component correlation output (by the PCA) and locates

close to the baseline. We categorize this phenomenon as

valid recon�gurations (along with the baseline execution).

Yet, this may become a seemingly-�ne execution with

subtle potential to fail the system as it may have hidden,

suspected deviations in the performance. For system de-

velopers and managers, we report this phenomenon as a

warning for potential system weaknesses. Having our PCA

result, we proceeded to measure each data point correlation

in the PCA space by calculating the distances.

To validate the determination of valid and invalid recon-

�gurations, we calculated the euclidean distance between

each data point in the PCA space and the baseline cluster

centroid. In the view of metamorphic testing, this distance

measurement identi�es the MRs for our built oracle (�gure

1). Any data point that does not follow the trend of the

baseline execution was suspected as the outliers. We show

the results of our outliers detection method in �gure 5.

We set the threshold of 2.71 in the y-axis, following the

97.5%-�antile Q of the Chi-square distribution commonly

used in the literature [8], [15], [16]. Modi�cations in

this threshold value may change the determination of the

recon�gurations validity; �e lower the value, the more

data points will be detected as the outliers. In �gure 1,

data points number 31-33 and 37-42 is considered as the

outliers. �ey con�rm that such points belong to the exe-

cution scenarios of the baseline execution with kcRestart,

webOrigin, and revokeToken recon�gurations (�gure 4). By

this calculation, we also con�rm that the baseline execution

with UriRedirect recon�guration (data points 34-36 in �gure

1) has the correct behavior, being close to the baseline

scenario (�gure 4), thus regarded as valid recon�guration.

2) Discussion: �e phenomena of data points sca�eration

a�er PCA show that each system execution assembles

into clusters and di�ers based on the execution scenario

applied to them. �ere were observable pa�erns in which

we remarked four types of relational pa�erns (as symbol-

ized by the MRs in metamorphic testing) among di�erent

phenomena:

1) baseline and all recon�gurations. In this relational

pa�ern, the baseline serves as the guideline and

comparator of the system execution to each recon�g-

uration. In this pa�ern, we disregarded the decision

of valid and invalid recon�gurations.

2) baseline and invalid recon�gurations. In this pa�ern,

invalid recon�gurations were identi�ed as the system

miscon�gurations. �ey were seen as outliers and

informed an explicit warning for the experts and

developers about system weaknesses that can fail the

system execution.

3) baseline and valid recon�gurations. Valid recon�gu-

rations showed delicate performance and can be re-

ported to the system developers for potential failures

that can be hard to manage in the execution and may

fail the system.

4) valid and invalid recon�gurations. Both phenomena

should be marked as potential system weaknesses,

regardless of the severity of the system failures.

�e combination of metamorphic testing and multi-

variate data learning method e�ectively detects potential

weaknesses of service recon�gurations due to its absences

of a priori oracle requirement and �exible metrics data

selection. By our approach, the four relational pa�erns are

adequate to discover miscon�gurations for further reports

and analyses by cloud business experts.



Figure 4. �e data points (from test cases) of each execution scenario

in a PCA space: baseline execution (the green points) and various

recon�guration scheme.

Figure 5. �e euclidean distance plot of each data point to the centroid

of baseline execution and the threshold which separates valid and invalid

recon�guration.

VI. Related Works

Recon�guration Veri�cation
Large-scale data centers and cloud computing have

turned system con�guration into a challenging problem.

Several widely-publicized outages have been blamed not

only on so�ware bugs but also on con�guration bugs. To

face this challenge, Shambaugh et al. [17] provide a veri�ca-

tion tool for Puppet con�gurations (DSL to describe cloud

con�gurations). In [4], Duran et al. propose a decentralized

and robust protocol for runtime recon�guration of cloud

applications with failures. �e proposed protocol focuses

on VM instantiation and destruction as well as component

start-up and shutdown. In the same trend, Jarraya et al. [18]

provide a formal framework for the speci�cation of virtual

machine migration and its security policy updates.

�ese three approaches represent so-called white-box

techniques [19] for which the evolution of a con�guration

has a precise semantics in the meaning of programming

language and logic. In this paper, we address recon�g-

urations with a �ner granularity (for example, version

changes of a third party library) of which the semantics are

not de�ned. �erefore, we use so-called black-box testing

techniques to validate the correctness of a recon�guration.

Closer to our proposal, ConfAdvisor [20] provides a

performance-centric con�guration tuning framework for

containers on Kubernetes. Parts of this framework can

be used to implement automatic con�guration exploration

using our approach to pre-detect invalid con�guration.

Yet, as our proposed approach does not match with the

implementation scenario in Kubernetes environment where

oracles can be found in advanced, we opt for our approach

with metamorphic testing and PCA in GNS3 cloud envi-

ronment.

Metamorphic Testing

As discussed in the introduction, the core of our ap-

proach is to investigate the possibility of building a meta-

morphic relationship following a recon�guration that does

not change the business logic of a cloud-native service

by looking at a set set of generic and business metrics.

A recent survey on metamorphic testing [21] highlights

that this approach is used in lots of domains [22], [23] and

can be applied when we can de�ne a clear metamorphic

relation between inputs and outputs [24].

In [25], Chen et al. discuss the next challenges for

metamorphic testing, which is to identify and select sys-

tematic metamorphic relations. �e authors identi�ed three

opportunities that match the context of our approaches

(cloud, big data, and agile development). Based on their

initial idea, this paper proposes a mechanism to bene�t

from learning metamorphic relations between the correct

behavior of services and these monitoring data a�er re-

con�gurations, from agile development and a vast volume

of monitoring data production services. In this paper, the

metamorphic testing approach combines the PCA to pro-

vide metamorphic relations that are useful for determining

the correctness or validity of system executions.

VII. Conclusion & Future Works

�is paper proposes a miscon�guration discovery tech-

nique of cloud-native services using PCA on monitored

service data. Our approach was motivated by metamor-

phic testing that removes a priori oracle de�nition when

passing functional tests of cloud-native services execution

for discovering the service miscon�guration. Instead, we

created our oracle using data point correlations in the PCA

space from the arbitrary selection of generic and business

metrics. Applying the proposed approach to a distributed

media streaming application shows that the approach ef-

fectively detects error-prone recon�gurations through sce-

nario execution without any associated oracle de�nition.

A�er the PCA method and the euclidean distance analysis,

business expert judgments help to validate the correctness

of particular recon�guration and understand the complex

nature of cloud-native systems.

For future works, we keep working on implementing

several e�cient heuristics to detect miscon�gurations that

do not impact a priori the business logic of the application.

�e simple heuristic proposed in this paper is relevant, but

it is necessary to compare several heuristics to detect these



speci�c changes. Finding a useful heuristic is a way to

include the approach in a continuous integration pipeline.

We are also interested to not only change the system

execution with recon�gurations, but also with network

failure injections, for example pu�ing link latency, adding

packet losses, or changing link bandwidth. Finally, we

are keen to obtain the ability to re-execute work�ows on

updates of services in a test environment to directly exploit

the monitored metrics in production.

Acknowledgment

�is work was done in the framework of the joint

research lab between Inria and Nokia Bell Labs on Smart,

Automated Programmable Infrastructures for End-to-end

Network Services (SAPIENS).

References

[1] N. Kratzke and P.-C. �int. Understanding cloud-native

applications a�er 10 years of cloud computing-a systematic

mapping study. Journ. of Systems & So�ware, 126:1–16, 2017.

[2] S. Wang, F. Du, X. Li, Y. Li, and X. Han. Research on

dynamic recon�guration technology of cloud computing

virtual services. In 2011 IEEE Int. Conf. on Cloud Computing
and Intelligence Systems, pages 348–352. IEEE, sep 2011.

[3] L. Assuncao and J. C. Cunha. Dynamic Work�ow Recon�g-

urations for Recovering from Faulty Cloud Services. In IEEE
Int. Conf. on Cloud Computing Technology and Science, pages

88–95, dec 2013.

[4] F. Durán and G. Salaün. Robust and reliable recon�guration

of cloud applications. Journal of Systems and So�ware,
122:524 – 537, 2016.

[5] M. Sayagh, N. Kerzazi, B. Adams, and F. Petrillo. So�ware

Con�guration Engineering in Practice Interviews, Survey,

and Systematic Literature Review. IEEE Transactions on
So�ware Engineering, 46(6):646–673, jun 2020.

[6] B. Danglot, O. Vera-Perez, Z. Yu, A. Zaidman, M. Monperrus,

and B. Baudry. A snowballing literature study on test

ampli�cation. Journ. of Systems & So�ware, 157:110398, nov

2019.

[7] T. Y. Chen, S. C. Cheung, and S. M. Yiu. Metamorphic testing:

A new approach for generating next test cases. Technical

Report HKUST-CS98-01, Department of Computer Science,

�e Hong Kong University of Science and Technology, 1998.

[8] M. Boussaa, O. Barais, G. Sunyé, and B. Baudry. Leveraging

metamorphic testing to automatically detect inconsistencies

in code generator families. So�ware Testing, Veri�cation and
Reliability, 30(1), jan 2020.

[9] S. Wold, K. Esbensen, and P. Geladi. Principal component

analysis. Chemometrics and intelligent laboratory systems,
2(1-3):37–52, 1987.

[10] I. T. Jollife and J. Cadima. Principal component analysis: A

review and recent developments. Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineer-
ing Sciences, 374(2065), 2016.

[11] K. S. Lew, T. S. Dillon, and K. E. Forward. So�ware

Complexity and Its Impact on So�ware Reliability. IEEE
Trans. on So�ware Engineering, 14(11):1645–1655, 1988.

[12] R. Bruschi, F. Davoli, P. Lago, A. Lombardo, C. Lombardo,

C. Rame�a, and G. Schembra. An SDN/NFV Platform for

Personal Cloud Services. IEEE Transactions on Network and
Service Management, 14(4):1143–1156, dec 2017.

[13] A. Alasaad, K. Sha�ee, H. M. Behairy, and V. C.M. Leung.

Innovative Schemes for Resource Allocation in the Cloud for

Media Streaming Applications. IEEE Transactions on Parallel
and Distributed Systems, 26(4):1021–1033, apr 2015.

[14] T. C. �ang, H. T. Le, A. T. Pham, and Y. M. Ro. An

Evaluation of Bitrate Adaptation Methods for HTTP Live

Streaming. IEEE Journal on Selected Areas in Communica-
tions, 32(4):693–705, apr 2014.

[15] D. P. Enot, W. Lin, M. Beckmann, D. Parker, D. P. Overy,

and J. Draper. Preprocessing, classi�cation modeling and

feature selection using �ow injection electrospray mass

spectrometry metabolite �ngerprint data. Nature Protocols,
3(3):446–470, 2008.

[16] M. Hubert, P. Rousseeuw, and T. Verdonck. Robust PCA for

skewed data and its outlier map. Computational Statistics
and Data Analysis, 53(6):2264–2274, 2009.

[17] R. Shambaugh, A. Weiss, and A. Guha. Rehearsal: A

con�guration veri�cation tool for puppet. SIGPLAN Not.,
51(6):416–430, June 2016.

[18] Y. Jarraya, A. Eghtesadi, M. Debbabi, Y. Zhang, and

M. Pourzandi. Cloud calculus: Security veri�cation in elastic

cloud computing platform. In 2012 Int. Conf. on Collaboration
Technologies and Systems (CTS), pages 447–454, 2012.

[19] S. Nidhra and J. Dondeti. Black box and white box testing

techniques-a literature review. Int. Journal of Embedded
Systems and Applications, 2(2):29–50, 2012.

[20] T. Chiba, R. Nakazawa, H. Horii, S. Suneja, and S. Seelam.

Confadvisor: A performance-centric con�guration tuning

framework for containers on kubernetes. In 2019 IEEE Int.
Conf. on Cloud Engineering (IC2E), pages 168–178, 2019.

[21] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortés. A

survey on metamorphic testing. IEEE Trans. on So�ware
Engineering, 42(9):805–824, 2016.

[22] S. Segura, J. A. Parejo, J. Troya, and A. Ruiz-Cortés. Meta-

morphic testing of restful web apis. IEEE Trans. on So�ware
Engineering, 44(11):1083–1099, 2018.

[23] A. F. Donaldson and A. Lascu. Metamorphic testing for

(graphics) compilers. In Proceedings of the 1st International
Workshop on Metamorphic Testing, MET ’16, page 44–47, New

York, NY, USA, 2016. Association for Computing Machinery.

[24] H. Liu, X. Liu, and T. Y. Chen. A new method for construct-

ing metamorphic relations. In 2012 12th Int. Conf. on �ality
So�ware, pages 59–68, 2012.

[25] T. Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T. H. Tse,

and Z. Q. Zhou. Metamorphic testing: A review of challenges

and opportunities. 2018.


