Alif Akbar Pranata

Olivier Barais

Johann Bourcier

Ludovic Noirie

Misconfiguration Discovery with Principal Component Analysis for Cloud-Native Services

published or not. The documents may come L'archive ouverte pluridisciplinaire

Miscon guration Discovery with Principal Component Analysis for Cloud-Native Services

Alif Akbar Pranata, Olivier Barais, Johann Bourcier Univ Rennes 1, Inria, Irisa Rennes, France alif-akbar.pranata@inria.fr, olivier.barais@irisa.fr, johann.bourcier@inria.fr Ludovic Noirie Nokia Bell Labs Nozay, France ludovic.noirie@nokia-bell-labs.com Abstract-Cloud applications and services have significantly increased the importance of system and service con guration activities.

ese activities include updating (i) these services, (ii) their dependencies on third parties, (iii) their con gurations, (iv) the con guration of the execution environment, (v) network con gurations.

e high frequency of updates results in signi cant con guration complexity that can lead to failures or performance drops. To mitigate these risks, service providers extensively rely on testing techniques, such as metamorphic testing, to detect these failures before moving to production. However, the development and maintenance of these tests are costly, especially the oracle, which must determine whether a system's performance remains within acceptable boundaries.

is paper explores the use of a learning method called Principal Component Analysis (PCA) to learn about acceptable performance metrics on cloudnative services and identify a metamorphic relationship between the nominal service behavior and the value of these metrics. We investigate the following research question: Is it possible to combine the metamorphic testing technique with learning methods on service monitoring data to detect error-prone recon gurations before moving to production? We remove the developers' burden to de ne a speci c oracle in detecting these con guration issues. For validation, we applied this proposal on a distributed media streaming application whose authentication was managed by an external identity and access management services.

is application illustrates both the heterogeneity of the technologies used to build this type of service and its large con guration space. Our proposal demonstrated the ability to identify error-prone recon gurations using PCA. Keywords-Recon gurations; Metamorphic testing; Principal component analysis; Cloud-native services I. I A growing number of network services and applications are now being deployed in the form of so-called "cloud native" applications or services. [START_REF] Kratzke | Understanding cloud-native applications a er 10 years of cloud computing-a systematic mapping study[END_REF].

ese services are characterized by the following features:

• A service-based architecture. e style can be any architectural model that is modular and loosely coupled. • A common packaging model and a self-contained execution environment that provides portability as well as isolation using container, VM and/or uni-kernel solutions.

• A continuous and automated process to develop, build and deploy these services. As a side-e ect of this trend, the frequency of services recon gurations is signi cantly increased [START_REF] Wang | Research on dynamic recon guration technology of cloud computing virtual services[END_REF], [START_REF] Assuncao | Dynamic Work ow Recon gurations for Recovering from Faulty Cloud Services[END_REF], [START_REF] Durán | Robust and reliable recon guration of cloud applications[END_REF].

ese recon gurations are related to: changes in the source code of services or third-party libraries of these services, a change in the parameters of one of these services, or a change in the underlying network parameters. e so ware complexity is now overwhelming and it becomes di cult to guarantee, a priori, that a new service con guration will be correct or less error-prone [START_REF] Sayagh | So ware Con guration Engineering in Practice Interviews, Survey, and Systematic Literature Review[END_REF]. Each of these new, modi ed con gurations has the potential to introduce errors at the service level. While some recon gurations or updates can signi cantly change the service behavior, most of these recon gurations do not fundamentally change the business logic. Still, business outputs are a ected by this complexity due to unexpected errors.

Each recon guration is seen as a network state over time. Given that errors and failures are caused by recon guration management, therefore, from a high abstraction level, the expected service behavior should remain "close" to the previous con gurations, meaning that for each particular network state should have relations to the state -1 con guration as the oracle de nition to embrace failures. So ware testing techniques are well-known techniques to address recon guration management issues and to ensure performance validity [START_REF] Danglot | A snowballing literature study on test ampli cation[END_REF]. In such techniques, each test de nes an oracle, characterized by input-output de nitions to check whether a test has passed or failed. However, de ning oracle and maintaining the testing code base is burdensome and costly.

A metamorphic testing method has been proposed [START_REF] Chen | Metamorphic testing: A new approach for generating next test cases[END_REF] to test programs removing the need for oracle. It employs properties of the target function, known as metamorphic relations, to generate follow-up test cases and verify the outputs automatically. e intuition behind using metamorphic testing to alleviate the oracle problem is as follows: Even if we cannot determine the correctness of the actual outputs for individual input, it may still be possible to use relations among the expected outputs of multiple related inputs (and the inputs themselves). Following the principle of metamorphic testing, it has been suggested that indi-cating a service recon guration validity is possible if there are metamorphic relations between the previous behaviors of the service and the recent behavior of the service with the new con guration [START_REF] Boussaa | Leveraging metamorphic testing to automatically detect inconsistencies in code generator families. So ware Testing[END_REF]. Yet, since it is nearly impossible to have an exact characterization of the behavior of a service, the main challenge is to nd an e cient method to characterize the service behavior and compare several executions of a particular system.

In this paper we study the discovery of error-prone recon gurations to understand the complex nature of native cloud services and identify the actions that may lead to erroneous behavior due to miscon gurations. Motivated by the ability of metamorphic testing to avoid oracle de nition for testing so ware systems, we rely on performance metrics as an input to this analysis to identify potential miscon gurations. Two types of metrics are introduced: generic metrics and business metrics that must be kept within acceptable limits to avoid user experience degradation and maintain continuous delivery

We applied a learning method called principal component analysis (PCA) [START_REF] Wold | Principal component analysis[END_REF], [START_REF] Jollife | Principal component analysis: A review and recent developments[END_REF] on cloud-native applications metrics. As a proof of concept, we tested our approach in a media streaming application, simulating a real-world use case scenario of cloud-native systems. Given the advantage of no oracle de nition and exible metrics selection, our experiment shows that the use of generic and business metrics, plo ed as the metamorphic relations of multiple system executions, as the inputs of the PCA are e ective to discover potential valid and invalid system recon gurations in the cloud environment. We also con rm such validity of each recon guration by measuring the proximity of metamorphic relations of each system execution.

e remainder of the paper is as follows. Section II explores real-world implementation examples that motivate this paper, discusses the concept of PCA, and directs a research question, followed by the proposed approach in section III. We show our implementation scenario and the experiment setup in IV, then we evaluate and validate our approach in section V. Section VI discusses the related works. Finally, section VII concludes the paper and foresees our future works.

II. M B

In this section, we provides examples of today's network system complexity from companies and our speci c implementation. en, we discuss principal component analysis (PCA) method for our evaluation technique. To understand the purposes and constraints of our work, we develop a research question and raise the hypothesis.

A. Motivating Examples: So ware Complexity e so ware is complex [START_REF] Sayagh | So ware Con guration Engineering in Practice Interviews, Survey, and Systematic Literature Review[END_REF], [START_REF] Lew | So ware Complexity and Its Impact on So ware Reliability[END_REF]. It has the inherent characteristic of having several degrees of dependencies that exist and work together to form a whole system to meet customer needs. A so ware system is therefore the result of the spontaneous composition of a set of modules.

e trend towards the "so warization" of everything allows IT to move gradually to so ware-based implementation, usually with API technology for service dependencies and communication. An example of this evolution is the current trend of so ware-de ned networks/network functions virtualization (SDN/NFV) in a native cloud service environment [START_REF] Bruschi | An SDN/NFV Platform for Personal Cloud Services[END_REF]. A case of Amazon networks is formed by so ware-based microservices, creating full connectivity through which API communicates information data over network protocols in the cloud environment 1 .

e complexity and dynamic of so ware module interaction makes system management di cult. Failures are inevitable, especially in the production environment, when engineers and experts are not always available to maintain and manage the systems. As a motivating example, consider a large-scale distributed system with microservices deployed in cloud servers to provide seamless data exchange and processing around the world. We take a more concrete faulty event by Google Clout Platform (GCP) 2 . GCP has Memcache, an app engine service that speeds up response to data queries by storing them in cache memory. Google utilizes well-built, automatic failover to ensure a seamlessly switch from one failed data center to the other to prevent failure a er se ing up Memcache for a consistent view of data center serving every application. Yet, utilizing a wellmaintained failover mechanism does not mean that systems are invulnerable. Failures can occur due to the unforeseen circumstances at any time during runtime due to a single failure of a module.

In this paper, we take an example of a simple media streaming application (built for our use case implementation in section IV) where some instances of video server deliver video data to their clients. e implementation complexity increases when an access management server and a reversed proxy server sit between the video servers and clients to provide authentication and authorization mechanisms as well as a load balancing scheme. Considering only the video server application, we can have at least 174 application modules. From those modules, we have eleven core dependencies with the so ware version of each dependency as listed in table I. When we deploy and run our media streaming application system in a cloud environment, the system may evolve during the runtime and it becomes hard to manage background events in the execution. If, at any moment, we upgrade the version of one of the dependencies, other services that depend on it may have to adapt their behavior and may fail.

B. Principal Component Analysis (PCA)

Principal component analysis (PCA) [START_REF] Wold | Principal component analysis[END_REF], [START_REF] Jollife | Principal component analysis: A review and recent developments[END_REF] is an unsupervised learning method, multivariate data analysis of large data sets. It reduces the dimensionality to increase interpretability without losing essential information at the same time. e core idea behind PCA is that it creates from the original data using orthogonal transformation new uncorrelated variables that successively maximize variance.

is new variable is called the principal components (PCs). Finding PCs reduces solving an eigenvalue/eigenvector problem. It accomplishes such task at hand, not a priori, making PCA an adaptive tool for data analysis. e adaptivity increases as a result of its capability to be tailored to various data types and structures.

e main objective of PCA is to reduce the dimensionality of the original data a er obtaining the maximum amount of variance with the selected minimum number of PCs. e process of PCA is explained as follows.

1) Given the original 2 x n (n is the number of metrics), PCA computes the eigenvectors and the eigenvalues of the covariance matrix. e eigenvectors are used to project the data from n dimensions to decrease representation, and the eigenvalues provide the data variance in the eigenvector direction. 2) PCA iterates the calculation of nding PCs using the number of eigenvector. e rst eigenvector determines the direction of the highest data variance and the rst PC is obtained from the data with the greatest possible variance in the data set.

3)

e subsequent PCs (second, third, and so on) are obtained in the same manner using the respective eigenvector value inside the iteration. However, there is a condition for each PC: it is uncorrelated with the previous one and it accounts for the next highest variance. 4) Each of the eigenvector and the eigenvalue is associated with the direction of each PC. e eigenvector associated with the largest eigenvalue has the same direction as the rst PC. e subsequent PCs have the same association rule. PCA plots data points a er its calculation into a PCA space. PCA can show data that have extreme points, called outliers, which do not follow the model of the majority of the data at the boundaries of the space.

C. Research estion

We formulated the following research question: is it possible to combine metamorphic testing technique with unsupervised learning methods on service monitoring data to detect error-prone recon gurations before moving to production? Our hypothesis arises for the answer.

Metamorphic testing is a comparison testing technique of two programs that have a relational pa ern called meta- morphic relations (MRs) for checking and comparing the correctness of a ributes in programs. In common cases, the MRs are known, for example when we perform metamorphic testing in functional programming (such as NumPy library 3 in Python) which relies mostly on mathematical functions computations and thus are comparable. But there may be other cases, such as in our implementation context, which is di cult to nd relations and pa erns as we avoid oracle de nitions. is leads to insu cient tooling for comparison and analysis. e combination of metamorphic testing with unsupervised learning method is foreseen as the solution. Given neither the metamorphic relations nor the oracle de nitions, our proposed approach automatically creates relations among di erent sets of input and output.

III. T P A

We propose a technique to discover miscon guration in cloud-native services. Our approach was motivated by the metamorphic testing technique that removes the need to de ne oracle in advance. As a replacement, we de ne our oracle with an unsupervised learning method called principal component analysis (PCA) method. We choose PCA among similar machine learning and dimensional reduction technique such as ICA, LDA, and SVD as it suit our requirement: measuring uncorrelated and unsupervised metrics. We monitored and analyzed our approach in our experiment using monitoring agents and statistical distance measurements.

A. General Approach

Our approach was motivated by the metamorphic testing technique, which compares and analyze multiple program executions with each of them may have di erent performance behavior due to adjusted con gurations, or recon gurations, during the runtime. We de ne a recon guration as an action trigger that a ects the execution behavior yet does not change the application business outputs. Reconguration aimed to cause intentional system disruption. e examples of recon gurations are: changing parameter, revoking access, shu ing down, or restarting a service (e exact recon gurations in section V-B). Our approach tested recon gurations and discovered miscon gurations that may fail cloud-native services execution. Metamorphic testing also o ers exibility in removing a priori oracle de nition and choosing any metrics for evaluation. e metrics are useful for the PCA to create relations among di erent program executions. In the metamorphic testing technique, these relations are called metamorphic relations (MRs). Our approach used the MRs as our oracle de nition for PCA. We compared and analyzed the MRs to check the correctness of the executions under testing.

Figure 1 illustrates the general approach of our proposal. We had two testing steps, denoted by (A) and (B), which di er in the context of execution. Step (A), called baseline execution, is de ned as the initial execution on which we had experts knowledge about the normal expected execution. To avoid manual and repetitive e ort for generating baseline execution, we automate the process, starting from creating nodes, connecting links, con guring the networks a ributes (ip, gateway, etc.) per nodes, launching services in the nodes, until destroying the nodes. We tested our system using the knowledge for the (A) input in a system under test (SUT) consisting of network architecture that runs our use case scenario with running services in a cloud environment (detailed description of use case scenario in section IV). During the execution, we monitored the execution behavior, extracted and obtained the performance metrics data for building the model of execution behavior using PCA. Our model builder run the PCA method for each baseline execution to obtain this testing output, namely the baseline model.

With the baseline model in (A), we then executed another set of executions (B) in the SUT. Here in (B), we applied recon gurations to the SUT to change the execution be-havior. e subsequent processes were similar to (A) until we built the (B)'s PCA model. From here, we combined the PCA model from (A) and (B) to obtain our oracle by evaluating and comparing the PCA model. We obtained the PCA space, consisting of each data point representing each execution behavior by the PCA calculation. We then evaluated and compared each data point and validated their relations using euclidean distance (ED). More speci cally, we measured the euclidean distance between each data point and the centroid value of the major cluster in the PCA space. e euclidean distance also served as the MRs in the perspective of the metamorphic testing approach. Finally, we decided the correctness of each execution, whether it is valid and invalid recon gurations based on the ED relations of each execution in the PCA space. is decision is the nal output of our proposed approach. Further validation can be made by the experts, whether a particular execution has the correct decision of valid or invalid recon gurations.

By the euclidean distance (or MRs), Our approach categorized and de ned two sets of output representing the system execution correctness as follows:

1) valid recon guration, which did not a ect the normal delivery of data a er the trigger was applied. 2) invalid recon guration, which produced error messages and disrupted the data delivery a er the trigger was applied. We de ne error messages as the report of error obtained by monitoring agent in the form of bad requests/responses in data exchange. Here, we obtained the number of HTTP error code messages.

B. Monitoring & Analysis

We deployed monitoring agents in our network architecture for monitoring purposes. Our monitoring agents collected the metrics data and exported the data into a comma-separated values le format. For analysis, we obtained and compared a set of two scenario outputs of baseline execution and recon gurations. Speci cally, we selected metrics for observation, extracted the metrics data from each scenario, and constructed our data set from the data for PCA method processing.

We obtained the result abstraction of valid and invalid recon gurations with the PCA method. We a rmed the valid recon gurations as the correct system behavior. At the same time, we also discovered system misco gurations caused by invalid recon gurations. In order to validate the classi cation of recon guration validity, we calculated the euclidean distance (ED) of each data points to the centroid of the baseline execution scenario in the PCA space. Data points representing each execution behavior may be sca ered in the PCA space in far proximity that we considered outliers. To determine the outliers, we computed the 97.5%-antile Q of the Chi-square distribution as a cuto value of the ED (X 2 a,0.975). According to the table of the Chi-square distribution 4 , the value is equal to √ 7.38 = 2.71. Any ED value bigger than that is identi ed as the outlier, which means that the recon guration is invalid. Otherwise, the system running behavior is valid a er the recon gurations.

IV. I

We implemented our proposed approach in a cloudnative system running a real-world business application.

e application in our experiment had a use case scenario with a system under test (SUT), which is de ned as the set of particular services as the testing targets. e implementation was a media streaming system with services that integrated processing and communicated media data.

A. Use Case Scenario

Application domains range widely in cloud environments, such as data stream processing. Such processing operates a series of continuous data delivery to achieve outputs.

ese domains include media/video streaming application, delivering video information and playing it ondemand as per user needs [START_REF] Alasaad | Innovative Schemes for Resource Allocation in the Cloud for Media Streaming Applications[END_REF]. e common protocol in this application is HTTP live streaming (HLS), which has gained popularity over the past years due to its ne rate adaptation and workload sharing [START_REF] Le | An Evaluation of Bitrate Adaptation Methods for HTTP Live Streaming[END_REF].

Media streaming in a large-scale system can create service and delivery quality issues to clients, mostly when recon gurations occur during the runtime. For example, when a service is down or changes the parameter value, other dependant services may lose its states to continue functioning correctly. Due to the complex nature of such application systems, we devised an experiment technique in a media streaming application to discover dynamic system behavior and detect miscon gurations resulting from recon gurations.

We applied our approach to a real-world video serverclients communication with an identity and access management service. ere were four objects in our implementation: video server, client nodes (end users), identity and access management server (or auth server for brevity), and database server. Figure 2 illustrates the work ow of these objects. Initially, the video server executed an identi cation mechanism by asking the auth server to obtain a secure token [START_REF] Kratzke | Understanding cloud-native applications a er 10 years of cloud computing-a systematic mapping study[END_REF].

en, clients requested media stream to the video server [START_REF] Wang | Research on dynamic recon guration technology of cloud computing virtual services[END_REF]. Before holding its secure token from the auth server, the video server could not directly grant valid access to the clients for the requested video data. Instead, it redirected the request to an authorization endpoint so the clients can log in to the video server for authorized access (3). Once logged in, the auth server communicated with its database server to ask for client identi cation (4). In our implementation, the database server sat in the same machine with the auth server. If not identi ed, the video servers access was blocked; otherwise, the auth server identi ed the request (5) and redirected the client responses with auth code [START_REF] Danglot | A snowballing literature study on test ampli cation[END_REF]. is code contains an access token that has a limited lifespan. e detail of short lifespan bene t is out of the scope in our discussion (in short, it is bene cial for enhanced security: to keep short validity duration for frequent checking of a ackers in the system). Due to the short lifespan of access token, the clients had to refresh the auth code with a refresh token when the access token reached the timeout. Upon obtaining the auth code, the clients requested the video data with its code to the video server [START_REF] Chen | Metamorphic testing: A new approach for generating next test cases[END_REF]. e Video server checked once again for the code validity and requested a valid session with an ID token to the auth server [START_REF] Boussaa | Leveraging metamorphic testing to automatically detect inconsistencies in code generator families. So ware Testing[END_REF]. e auth server returned the ID token (9), and nally, the valid connection between clients and video server was established.

To evaluate the implementation, we chose two kinds of native system metrics: generic and business. e generic metrics were a quantitative measurement that dealt with values inherent from the general system running performance, such as tra c rate, CPU usage, and memory usage.

e business metrics were the application-speci c metric that became the key parameter in running such an application in real-world execution. In our implementation, the business metric was the number of error messages caused by recon guration. We elaborate our metrics selection in section V-A.

B. Experiment Setup

We set up and run our network architecture consisting of nodes that run services in container applications. Our services in the architecture communicated and constructed our media streaming application. We experimented and evaluated our approach in GNS3 network emulation environment.

e GNS3 server runs in our private cloud lab with computing resources that can accommodate load consumption with as many as thousands of nodes: Intel(R) Xeon(R) Gold 6238 CPU with 2.10GHz 88 Core, 187GB memory, and 11 TB disk storage size.

We show the network architecture of media streaming application in our experiment in gure 3. We had four objects in the experiment as described in section IV-A. For video server and clients, we deployed multiple instances of each of them. We also deployed a reversed proxy server to serve load balancing for requests sent to each video server instance. We separated service nodes based on service layering and function into the system under test (SUT) cluster, testing cluster, and monitoring cluster. Following this setup, we implemented our approach to the use case scenario, evaluated our experiments and validated the results.

V. E V

We evaluated our proposed approach in the experiments for various system recon gurations on system under test (SUT) and discovered miscon gurations in cloud-native systems. Our experiments compared and analyzed a series of initial execution, which was labeled as the baseline by experts, and executions with recon guration schemes that changed the system runtime behavior. e baseline is de ned as a test scenario with expected correct behavior due to the absence of execution changes during runtime. In monitoring, we obtained execution metrics data and collected them into a data set for the evaluation with principal component analysis (PCA).

A. Metrics and Data Collection

For the evaluation, the PCA allows us to select arbitrary metrics. We introduced metrics selection from generic metrics in various application domains, and business metrics, which are systems-speci c metrics. With PCA, we processed the metrics data and produced data points in the PCA space. e correlations of each data point were regarded as the metamorphic relations (MRs), which help to determine the system performance correctness. We chose the generic and business metrics as follows (the bold names inside parentheses refer to the column names in table II).

1) Number of HTTP error codes (err). We obtained and counted the total number of 400 error codes for showing which recon gurations produce invalid con gurations. e number of error codes is one of the business metrics, representing the failures in a media streaming execution. 2) CPU usage. In container application, each service has CPU usage which denotes its workload. We measured the average (cpu avg) and standard deviation (cpu std) of the CPU usage in percentage. 3) Sent tra c. Requests from clients were sent to the video server and subsequently were routed to the auth server for access management mechanism. e sent tra c also included video data. We measured the average (sent avg) and standard deviation (sent std) of the sent tra c in megabyte per thirty seconds. 4) Received tra c. Being authorized, clients received the responses of valid access from the auth server. e received tra c also included video data. We measured the average (rcvd avg) and standard deviation (rcvd std) of the received tra c in megabyte per thirty seconds. 5) Memory usage. Memory denotes the memory consumption of the container application used by the service. We measured the average (mem avg) and standard deviation (mem std) of the memory usage in megabyte (MB). 6) Uptime (uptime). We counted the uptime from the rst client requested media streaming until the last client closed the streaming. During the uptime, media streaming processing and communication occur, such as token exchange, media data delivery, and error message exchange. We observed the uptime per minute. e uptime is another business metric in our evaluation. We collected data from the above metrics into a twodimensional matrix, which then formed our data set, with features indicating the metrics in column, and components denoting our test cases in row. is matrix is shown in table II.

We tested multiple execution times in test cases, which is de ned as a unique system execution and can be performed multiple times per execution scenario (forming a series of test cases). e purpose of multiple test cases is to obtain data consistency, which formed a historical data series of each execution scenario.

e historical data builds a behavioral execution trend for the comparison with other execution scenarios. Table III shows the number of test cases in each execution scenario. In the table, we executed especially the baseline executions more in quantity to build data con dence for the basis of comparison with execution with recon guration schemes.

B. Recon guration Schemes

Recon gurations aimed to cause intentional system disruption during runtime. To achieve this goal, we triggered each recon guration in the SUT at the time the last client has started the streaming until the system runtime has ended. e following explains the types of recon guration in our experiment and their behavior.

1) restarting auth server (kcRestart). We restarted the server when all clients had run the streaming and observed that all clients could not manage token expiration when the access token must be refreshed at a particular interval. e clients failed to receive streaming data from the video server. e number of error messages was equal to the number of clients. 2) misredirecting URI (UriRedirect). A valid redirect URI is a scheme in the auth server that allows the server to redirect responses to the requested application a er successful login. In baseline execution, we set this value with a wildcard (*) and intentionally recongured it with a false URI at runtime to disrupt the redirection scheme. Although valid responses from the video server were missing, the clients retrieved the video information from its cache, allowing normal streaming.

3) removing web origin value (webOrigin). We removed the web origin wildcard and obtained error messages by this recon guration. We observed this since the video server failed to refresh the access token in the auth server. We also noticed this produced a great number of error messages compared to other recon gurations, although it only stopped the media streaming and did not crash the video player instance. 4) revoking token (revokeToken). e auth server periodically sent two kinds of token: access and refresh token to maintain valid authentication once clients were authorized. We destroyed this valid authentication by revoking the token and observed failures in the token exchange mechanism.

Table IV summarizes our observation in executing recon guration scheme, including the categorization of valid or invalid recon guration referring to section III-A.

C. Results & Discussion

1) Results: We evaluated our implementation using the PCA method. e PCA result is shown in gure 4. Data points sca er and have distance among each of them in a PCA space in the gure. In most experimentations, any execution contexts share similar output if they have similar actions, triggers applied to them in the experiment. Speci c to our experimentation, they follow a trend in performance behavior in the PCA space and form a cluster.

e di erentiator can be seen among di erent execution scenarios; ey indicate di erent trends, thus classifying themselves in the space and constituting a cluster. If they are far from the trend of the dominant execution due to di erent recon gurations, they are considered as an outlier.

e baseline execution is the major trend and the data points from its test cases form a cluster (gure 4, green). Other execution scenarios in the experiment with recon gurations, in this case kcRestart (blue), webOrigin (purple), and revokeToken (magenta), are sca ered and some are seen as outliers in the PCA space. We call these outliers as invalid recon gurations. ese outliers may a ect the system performance due to its deviation found in their metrics value. With this information of outliers, we argue that obtaining the decision of invalid recon gurations can help to notify the system developers and managers for potential weaknesses of the systems as discovered by our proposed approach with PCA analysis. However, we also nd a particular recon guration, UriRedirect (brown), that does not have errors during execution yet has similar behavior to the baseline execution.

is kind of recon guration produces a small principal component correlation output (by the PCA) and locates close to the baseline. We categorize this phenomenon as valid recon gurations (along with the baseline execution). Yet, this may become a seemingly-ne execution with subtle potential to fail the system as it may have hidden, suspected deviations in the performance. For system developers and managers, we report this phenomenon as a warning for potential system weaknesses. Having our PCA result, we proceeded to measure each data point correlation in the PCA space by calculating the distances.

To validate the determination of valid and invalid recongurations, we calculated the euclidean distance between each data point in the PCA space and the baseline cluster centroid. In the view of metamorphic testing, this distance measurement identi es the MRs for our built oracle (gure 1). Any data point that does not follow the trend of the baseline execution was suspected as the outliers. We show the results of our outliers detection method in gure 5. We set the threshold of 2.71 in the y-axis, following the 97.5%-antile Q of the Chi-square distribution commonly used in the literature [START_REF] Boussaa | Leveraging metamorphic testing to automatically detect inconsistencies in code generator families. So ware Testing[END_REF], [START_REF] Enot | Preprocessing, classi cation modeling and feature selection using ow injection electrospray mass spectrometry metabolite ngerprint data[END_REF], [START_REF] Hubert | Robust PCA for skewed data and its outlier map[END_REF]. Modi cations in this threshold value may change the determination of the recon gurations validity; e lower the value, the more data points will be detected as the outliers. In gure 1, data points number 31-33 and 37-42 is considered as the outliers. ey con rm that such points belong to the execution scenarios of the baseline execution with kcRestart, webOrigin, and revokeToken recon gurations (gure 4). By this calculation, we also con rm that the baseline execution with UriRedirect recon guration (data points 34-36 in gure 1) has the correct behavior, being close to the baseline scenario (gure 4), thus regarded as valid recon guration.

2) Discussion: e phenomena of data points sca eration a er PCA show that each system execution assembles into clusters and di ers based on the execution scenario applied to them. ere were observable pa erns in which we remarked four types of relational pa erns (as symbolized by the MRs in metamorphic testing) among di erent phenomena:

1) baseline and all recon gurations. In this relational pa ern, the baseline serves as the guideline and comparator of the system execution to each recon guration. In this pa ern, we disregarded the decision of valid and invalid recon gurations. 2) baseline and invalid recon gurations. In this pa ern, invalid recon gurations were identi ed as the system miscon gurations. ey were seen as outliers and informed an explicit warning for the experts and developers about system weaknesses that can fail the system execution.

3) baseline and valid recon gurations. Valid recon gurations showed delicate performance and can be reported to the system developers for potential failures that can be hard to manage in the execution and may fail the system. 4) valid and invalid recon gurations. Both phenomena should be marked as potential system weaknesses, regardless of the severity of the system failures.

e combination of metamorphic testing and multivariate data learning method e ectively detects potential weaknesses of service recon gurations due to its absences of a priori oracle requirement and exible metrics data selection. By our approach, the four relational pa erns are adequate to discover miscon gurations for further reports and analyses by cloud business experts.

VI. R W Recon guration Veri cation

Large-scale data centers and cloud computing have turned system con guration into a challenging problem. Several widely-publicized outages have been blamed not only on so ware bugs but also on con guration bugs. To face this challenge, Shambaugh et al. [START_REF] Shambaugh | Rehearsal: A con guration veri cation tool for puppet[END_REF] provide a veri cation tool for Puppet con gurations (DSL to describe cloud con gurations). In [START_REF] Durán | Robust and reliable recon guration of cloud applications[END_REF], Duran et al. propose a decentralized and robust protocol for runtime recon guration of cloud applications with failures. e proposed protocol focuses on VM instantiation and destruction as well as component start-up and shutdown. In the same trend, Jarraya et al. [START_REF] Jarraya | Cloud calculus: Security veri cation in elastic cloud computing platform[END_REF] provide a formal framework for the speci cation of virtual machine migration and its security policy updates.

ese three approaches represent so-called white-box techniques [START_REF] Nidhra | Black box and white box testing techniques-a literature review[END_REF] for which the evolution of a con guration has a precise semantics in the meaning of programming language and logic. In this paper, we address recon gurations with a ner granularity (for example, version changes of a third party library) of which the semantics are not de ned. erefore, we use so-called black-box testing techniques to validate the correctness of a recon guration.

Closer to our proposal, ConfAdvisor [START_REF] Chiba | Confadvisor: A performance-centric con guration tuning framework for containers on kubernetes[END_REF] provides a performance-centric con guration tuning framework for containers on Kubernetes. Parts of this framework can be used to implement automatic con guration exploration using our approach to pre-detect invalid con guration. Yet, as our proposed approach does not match with the implementation scenario in Kubernetes environment where oracles can be found in advanced, we opt for our approach with metamorphic testing and PCA in GNS3 cloud environment.

Metamorphic Testing

As discussed in the introduction, the core of our approach is to investigate the possibility of building a metamorphic relationship following a recon guration that does not change the business logic of a cloud-native service by looking at a set set of generic and business metrics. A recent survey on metamorphic testing [START_REF] Segura | A survey on metamorphic testing[END_REF] highlights that this approach is used in lots of domains [START_REF] Segura | Metamorphic testing of restful web apis[END_REF], [START_REF] Donaldson | Metamorphic testing for (graphics) compilers[END_REF] and can be applied when we can de ne a clear metamorphic relation between inputs and outputs [START_REF] Liu | A new method for constructing metamorphic relations[END_REF].

In [START_REF] Chen | Metamorphic testing: A review of challenges and opportunities[END_REF], Chen et al. discuss the next challenges for metamorphic testing, which is to identify and select systematic metamorphic relations. e authors identi ed three opportunities that match the context of our approaches (cloud, big data, and agile development). Based on their initial idea, this paper proposes a mechanism to bene t from learning metamorphic relations between the correct behavior of services and these monitoring data a er recon gurations, from agile development and a vast volume of monitoring data production services. In this paper, the metamorphic testing approach combines the PCA to provide metamorphic relations that are useful for determining the correctness or validity of system executions.

VII. C

F W is paper proposes a miscon guration discovery technique of cloud-native services using PCA on monitored service data. Our approach was motivated by metamorphic testing that removes a priori oracle de nition when passing functional tests of cloud-native services execution for discovering the service miscon guration. Instead, we created our oracle using data point correlations in the PCA space from the arbitrary selection of generic and business metrics. Applying the proposed approach to a distributed media streaming application shows that the approach effectively detects error-prone recon gurations through scenario execution without any associated oracle de nition. A er the PCA method and the euclidean distance analysis, business expert judgments help to validate the correctness of particular recon guration and understand the complex nature of cloud-native systems.

For future works, we keep working on implementing several e cient heuristics to detect miscon gurations that do not impact a priori the business logic of the application.

e simple heuristic proposed in this paper is relevant, but it is necessary to compare several heuristics to detect these speci c changes. Finding a useful heuristic is a way to include the approach in a continuous integration pipeline. We are also interested to not only change the system execution with recon gurations, but also with network failure injections, for example pu ing link latency, adding packet losses, or changing link bandwidth. Finally, we are keen to obtain the ability to re-execute work ows on updates of services in a test environment to directly exploit the monitored metrics in production.

A is work was done in the framework of the joint research lab between Inria and Nokia Bell Labs on Smart, Automated Programmable Infrastructures for End-to-end Network Services (SAPIENS). R

Figure 1 .

 1 Figure 1.

Figure 2 .

 2 Figure 2. e work ow of identity and access management mechanism by the video server instances and clients.

Figure 3 .

 3 Figure 3.

Figure 4 .

 4 Figure 4.e data points (from test cases) of each execution scenario in a PCA space: baseline execution (the green points) and various recon guration scheme.

Figure 5 .

 5 Figure 5. e euclidean distance plot of each data point to the centroid of baseline execution and the threshold which separates valid and invalid recon guration.

Table I M

 I

	Names of dependency	Version
	body-parser	1.19.0
	cors	2.8.5
	express	4.17.1
	express-h p-proxy	1.6.0
	express-session	1.17.0
	keycloak	1.2.0
	keycloak-connect	9.0.3
	keycloak-js	9.0.3
	request	2.88.2
	videojs-resolution-switcher	0.4.2
	xmlh prequest	1.8.0

 We prune this table, only showing one entry/test case per execution scenario.

						Table II					
				PCA						
	Execution scenario	err	cpu avg	cpu std	sent avg sent std	rcvd avg	rcvd std	mem avg	mem std	uptime
	baseline	0	6.216	2.291	8.173	3.308	7.998	3.233	126.923	6.191	13
	baseline, kcRestart	50	2.683	3.383	2.723	4.573	2.657	4.496	124.980	4.033	13
	baseline, wrongUri	0	7.194	2.259	9.377	3.472	9.182	3.400	130.037	5.355	13
	baseline, webOrigin	2152	4.111	2.123	3.405	3.443	3.330	3.383	128.050	5.683	13
	baseline, revokeToken	50	3.585	3.720	3.893	5.059	3.807	4.977	128.929	5.578	12
	Note: Table III								
	T										
	Execution scenario	Number of test cases						
	baseline				30						
	baseline, kcRestart			3						
	baseline, UriRedirect			3						
	baseline, webOrigin			3						
	baseline, revokeToken			3						

Table IV T

 IV

	Execution scenario	Description	Observation	Output category (section III-A)
	Baseline	Running normal exection	No impact, normal streaming delivery	Valid recon guration
	baseline, kcRestart	Restarting auth server	-Access token is expired at clients node -Application crashes, re-login is required	Invalid recon guration
			-Normal streaming delivery	
	baseline, UriRedirect	Misredirecting URI from auth server to video server	-e clients retrieve the video information	Valid recon guration
			from its cache	
			-Response from valid URI redirection	
	baseline, webOrigin	Removing webOrigin wildcard value	is not permi ed	Invalid recon guration
			-Failed CORS request	
			-Access and refresh token are missing	
	baseline, revokeToken	Revoking access and refresh token	-Authentication is no longer	Invalid recon guration
			valid for the clients	

A presentation by Chris Munns at Amazon.com: I love APIs

2015:Microservices at Amazon. Reference: h ps://www.slideshare.net/apigee/ilove-apis-2015-microservices-at-amazon-54487258.[START_REF] Wang | Research on dynamic recon guration technology of cloud computing virtual services[END_REF] An incident happened in 06/11/2017 for 1 hour 50 minutes. Reference: h p://status.cloud.google.com/incident/appengine/17007.

NumPy library. Reference: h ps://numpy.org/

Chi-Square distribution table. Reference: h ps://store.fmi.uniso a.bg/fmi/statist/education/Virtual Labs/tables/tables3.html