
HAL Id: hal-03137748
https://hal.science/hal-03137748

Submitted on 11 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

ESTIMATION OF OCEANIC PARTICULATE
ORGANIC CARBON WITH MACHINE LEARNING
Raphaëlle Sauzède, J. Johnson, Hervé Claustre, G. Camps-Valls, A. Ruescas

To cite this version:
Raphaëlle Sauzède, J. Johnson, Hervé Claustre, G. Camps-Valls, A. Ruescas. ESTIMATION OF
OCEANIC PARTICULATE ORGANIC CARBON WITH MACHINE LEARNING. ISPRS Annals
of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020, V-2-2020, pp.949-956.
�10.5194/isprs-annals-V-2-2020-949-2020�. �hal-03137748�

https://hal.science/hal-03137748
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


ESTIMATION OF OCEANIC PARTICULATE ORGANIC CARBON WITH MACHINE
LEARNING
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ABSTRACT:

Understanding and quantifying ocean carbon sinks of the planet is of paramount relevance in the current scenario of global change.
Particulate organic carbon (POC) is a key biogeochemical parameter that helps us characterize export processes of the ocean. Ocean
color observations enable the estimation of bio-optical proxies of POC (i.e. particulate backscattering coefficient, bbp) in the surface
layer of the ocean quasi-synoptically. In parallel, the Argo program distributes vertical profiles of the physical properties with
a global coverage and a high spatio-temporal resolution. Merging satellite ocean color and Argo data using a neural network-
based method has already shown strong potential to infer the vertical distribution of bio-optical properties at global scale with
high space-time resolution. This method is trained and validated using a database of concurrent vertical profiles of temperature,
salinity, and bio-optical properties, i.e. bbp, collected by Biogeochemical-Argo (BGC-Argo) floats, matched up with satellite ocean
color products. The present study aims at improving this method by 1) using a larger dataset from BGC-Argo network since
2016 for training, 2) using additional inputs such as altimetry data, which provide significant information on mesoscale processes
impacting the vertical distribution of bbp, 3) improving the vertical resolution of estimation, and 4) examining the potential of
alternative machine learning-based techniques. As a first attempt with the new data, we used some feature-specific preprocessing
routines followed by a Multi-Output Random Forest algorithm on two regions with different ocean dynamics: North Atlantic and
Subtropical Gyres. The statistics and the bbp profiles obtained from the validation floats show promising results and suggest this
direction is worth investigating even further at global scale.

1. INTRODUCTION

The ocean plays a crucial role in the climate of our planet by
regulating the amount of atmospheric carbon dioxide. The mag-
nitude of carbon sequestration in the ocean is driven by two dif-
ferent mechanisms: the so-called physical and biological car-
bon pumps. The latter is governed by the global export of
particulate organic carbon (POC) from surface waters to the
deep ocean. However, despite their importance, the processes
involved in the biological carbon pump are still poorly con-
strained. This essentially results from the paucity of global
observations at the appropriate spatial and temporal resolution,
and in particular in situ POC measurements. Therefore, and in
order to start developing an in depth understanding and quan-
tification of export processes at the context of global change,
the first prerequisite is to acquire and/or develop data sets with
improved spatio-temporal coverage.

The particulate backscattering coefficient (bbp) is widely used
as a bio-optical proxy for POC (e.g. Cetinic et al., 2012). bbp has
the advantage that it can be continuously measured in situ from
robotic platforms, like Biogeochemical-Argo (BGC-Argo) pro-
filing floats (Claustre et al., 2020; Roemmich et al., 2019) or
retrieved from satellite remote sensing. Thus, bbp is a key bio-
optical property for studying the space-time dynamics of the
vertical distribution of POC, possibly opening a path for im-
proving the characterization and quantitative assessment of the
biological carbon pump in the global open ocean (Boyd et al.,
2019; Briggs et al., In Press). Satellite-derived products of POC
from bbp-based algorithms (Stramski et al., 2008) have also
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shown their potential to study the spatio-temporal distribution
of POC in the open ocean (Gardner et al., 2006; Loisel et al.,
2002; Stramska, 2009). However, such satellite-based estim-
ates, restricted to the ocean surface layer, are insufficient in the
context of global carbon cycle studies including carbon produc-
tion and export.

A recent study showed that a neural network-based method could
efficiently extend surface bio-optical properties (i.e. bbp) to
depth by merging ocean color and hydrological data (SOCA
method for Satellite Ocean-Color merged with Argo data to in-
fer the vertical distribution of particulate backscattering coeffi-
cient; Sauzède et al., 2016). The interest in merging such type
of data resides in the fact that bbp and hence POC reflects the
stock of biological particles. This stock, derived from oceanic
photosynthesis, is primarily driven by nutrient availability and
light regime in the upper ocean which are both influenced by
the physical forcing. Thanks to the Argo program operating and
array of nearly 4000 robots measuring hydrological properties
with much enhanced spatio-temporal resolution in the global
ocean (Roemmich et al., 2009) the resuting acquired data can
be combined with ocean color to retrieve the vertical distribu-
tion of bbp with high resolution.

Data-driven techniques have become more popular within the
scientific community (Bergen et al., 2019) including the ocean
sciences (Malde et al., 2019). We are dealing with an explo-
sion of data from different sources of varying quality. Physical
models are powerful but trial-and-error approaches to modi-
fying these methods to accommodate new data streams is not
possible. As an alternative, data-driven techniques within the
machine learning (ML) community are numerous with many
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approaches that can handle the large quantity, quality and com-
plexity (Reichstein et al., 2019; Camps-Valls et al., 2019). In
the context of the study mentioned above, a neural network-
based method was trained using the BGC-Argo floats database
(∼4700 concurrent in situ temperature, salinity and bbp pro-
files). This method retrieves the bbp in the water column with
an error of ∼20% at a global scale.

Merging data from different sources presents many challenges
and so the original authors with the SOCA method (SOCA2016
hereafter, Sauzède et al., 2016) used artificial neural networks
to find a function that predicts bbp vertically at a global scale.
The original methods used were able to predict bbp for 10 differ-
ent layers (from the surface to the depth where there is no more
phytoplankton biomass). Although the database used in 2016
was representative of most open ocean oceanographic condi-
tions in the global ocean, some areas were significantly under-
sampled (e.g. southern ocean). It is therefore expected that
using the new BGC-Argo database available today (with ∼ 5
times more data and a much better spatial coverage), the method
could be greatly improved. In addition, it is timely to consider
and evaluate a more powerful method that would allow to estim-
ate bbp at higher resolution along the vertical dimension which
is of great interest for carbon export applications.

The success of SOCA2016 motivated the effort to create depth-
resolved global proxy of POC with higher space-time resolu-
tion, a prerequisite for improving the characterization and quan-
tification of export carbon fluxes. In particular, investigators
of biogeochemical models have shown great interest and their
need for such products, essential for the initialisation and valid-
ation of biogeochemical models. Thus, this study takes place
in the context of the European Copernicus Marine Environ-
ment Monitoring Service (CMEMS), one challenges of which
is to improve SOCA2016 to have high level 3D gridded global
products of POC (with associated estimation errors), to support
biogeochemical model data requirements for their improvements.

The current study is aimed to improve upon the SOCA2016
method (upgraded method hereafter referred as SOCA2020) by
1) using the large amount of new acquired data from BGC-
Argo floats network since 2016, 2) using additional inputs such
as the sea level anomaly which could give significant informa-
tion about sub-mesoscale processes the vertical distribution of
phytoplankton biomass and hence of POC, 3) replacing some
inputs such as the ocean color chlorophyll a concentration and
bbp by satellite reflectances to avoid additional errors due to
ocean color algorithms, 4) improving the vertical resolution
of the outputs (bbp retrieval) and 5) investigating the potential
of alternative machine learning-based techniques that could be
more efficient and additionally could estimate the retrieval er-
ror associated to the outputs, an essential point in the context of
modelling.

2. DATA AND METHODS

The BGC-Argo database used in this study is composed of con-
current vertical profiles of temperature, salinity and particulate
backscaterring coefficient (bbp) merged with satellite products.
First, we present more in details BGC-Argo measurements. Then,
the procedure for the matchup between BGC-Argo and satellite
observations is given in detail. The third section presents the
machine learning models envisaged to carry out this study.

2.1 BGC-Argo measurements

Profiling floats typically collect measurements from 1000 m to
the surface with a 1 m vertical resolution every 10 days. When
the float surfaces, data is transmitted in real-time using Iridium
communication. Physical Argo profiling floats are equipped
with the standard conductivity-temperature-depth sensors that
allow one to continuously measure the temperature and salinity
in the global open ocean since the early 2000s (Roemmich et
al., 2009). The integration of new biogeochemical sensors on
Argo floats has led to a new generation of floats, the BGC-Argo
floats. These floats measure proxies of major biogeochemical
variables such as bbp that is used to train and validate the SOCA
methods.

The BGC-Argo profiling floats used in this study are equipped
with backscattering sensors that measure the angular scattering
coefficient at 124◦ relative to the direction of light propagation
at wavelength of 700 nm. This measurement is transformed
into bbp(700) (hereafter bbp) following Schmechtig et al. (2016).
The same quality control procedure as in Sauzède et al. (2016)
was applied to each profile. Because of their log-distribution,
bbp values were log transformed.

2.2 BGC-Argo and satellite matchup database

For the development of the SOCA2020 method, the new in-
puts are: 1) ocean color data: the reflectances (ρ) at 5 wave-
lengths (412, 443, 490, 555 and 670 nm) and the Photosyn-
thetically Available Radiation (PAR) and 2) altimetric data: the
Sea Level Anomaly (SLA). The ρ are used in this study to re-
place Chl and bbp satellite estimations used in SOCA2016, in
order to avoid additional input variability due to ocean color al-
gorithms errors. For the long-term vision, PAR and ρ data come
from GlobColour satellite multi-mission data (Garnesson et al.,
2019) that were downloaded from the Copernicus Marine En-
vironment Monitoring Service (CMEMS, http://marine.coper-
nicus.eu/). The matchup was done using the value of the closest
pixel available with a 5-day window (before and after the obser-
vation) and within a 5x5 pixel grid. This matchup procedure led
to discarding ∼ 50% of the BGC-Argo profiles. The altimetric
information (the SLA) is additionally used in SOCA2020 al-
gorithm because it is highly linked to mesoscale structures that
are known greatly influence the nitracline depth and so the ver-
tical distribution of phytoplankton biomass and primary pro-
ductivity (Lévy et al., 2018). The altimetric data are issued
from the Global Ocean Multimission altimeter satellite gridded
sea surface heights (available from CMEMS, daily data with a
0.25◦ spatial resolution). The SLA is computed with respect to
a 20-year mean of sea surface height.

The resulting BGC-Argo and satellite matchup database ap-
pears to be representative of a broad variety of hydrological and
biogeochemical conditions prevailing in the global open ocean
making the method applicable everywhere. Here, we focus our
study on the North Atlantic Ocean (NA) and the oligotrophic
Subtropical Gyres (STG) (blue and red points in Figure 1, re-
spectively). These two areas show quite different physical char-
acteristics and dynamics: the NA ocean presents less salinity
and lower temperatures than the STG throughout the year, and
it presents strong mixing of water during winter (mixed layer
depth, MLD, acquired by the BGC-Argo floats vary between 15
and 900 m). STG areas have a marked water stratification spe-
cially during summer, with high sea surface temperature and
deeper nitracline depth. These datasets are also representat-
ive of most trophic conditions observed in the open ocean (i.e.,
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Figure 1. Geographic distribution of the BGC-Argo profiles used
to train and validate the model for the North Atlantic ocean

(blue) and the oligotrophic Subtropical Gyres (red).

from oligotrophic to eutrophic waters) and variations in phyto-
plankton species composition and sizes.

2.3 Preprocessing

We implemented some basic preprocessing techniques to make
the algorithms easier to train. Ultimately, there were over 1,100
features (Table 1) with majority of the features coming from the
variables temperature, salinity, density and spiciness (that re-
flects isopycnal water-mass contrasts). In addition, there were
only 2,860 samples for the North Atlantic dataset and 1,353
samples for the Subtropical Gyres dataset. This is a bad samples-
to-features ratio so we reduced the amount of correlation between
the large number of features and alleviate this burden from the
machine learning algorithms by implementing a series of simple
transformations to better capture the most important aspects of
our data.

The distributions for the core variables (SLA, PAR, MLD and
the ρ at 5 wavelengths) were skewed and heavy tailed so we
did a simple standardization by removing the mean µx from
each feature and dividing by the standard deviation σx. There
was still very little correlation across variables except between
some of ρ variables like ρ412 and ρ443. Some variables are cyc-
lic in nature so we converted the day of the year (DOY) variable
to the corresponding sin and cos representation to better cap-
ture the time component. The geographic coordinate system
(lat, lon), while relevant in Earth sciences, can be very diffi-
cult for machine learning algorithms due to the Earth curvature.
For example, utilizing distance calculations like the euclidean
distance between samples is non-trivial task in a geographical
coordinate system compared to a Cartesian coordinate system.
The trade-off is that the eventual predictions might produce er-
rors due to the between-coordinate transformation errors. So
we converted the latitude and longitude (lat,lon) features into
Cartesian (x,y,z) features to better accommodate euclidean-centric
distance calculations.

The high dimensional variables (temperature, salinity, density
and spiciness) were the ones with the largest amount of fea-
tures. Each variable had one measurement per layer (all 276).
So one option would have been to use the 1-to-1 layer corres-
pondence between the input and the output. This would mean
that each output for the y would have training data specifically
from its corresponding layer which might proven to be effect-
ive. However, we wanted to see if we could learn the relation-
ships between the variables and not just the individual levels.
Hence, we decided to use a Principal Components Analysis
(PCA) decomposition on these variables. 5 PCA components

Variable # Features Transform
Before After

SLA 1 1

Standardize
PAR 1 1
MLD 1 1
ρ412,443,490,555,670 5 5

Lat, Lon 2 3 Cartesian

DOY 1 2 Cycles

Temperature 276 5

PCA
Salinity 276 5
Density 276 5
Spiciness 276 5

Total # Features 1,115 33

Table 1. The number of features before and after their respective
transformations for different input variables used for the

machine learning models.
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Figure 2. The cumulative explained variance for the PCA
components of the training data for the a) North Atlantic and b)

Subtropical Gyres.

were extracted from each variable thus reducing the number of
features for the high dimensional variables from 1,104 (4×276)
features to just 20 (4× 5) features; significantly less. As shown
in Figure 2, the cumulative explained variance for 5 PCA com-
ponents was ≥ 98% and ≥ 97% for the North Atlantic and for
the Subtropical Gyres dataset, respectively. An argument can
be made that extra 2-3% explained variance hidden in some of
the remaining PCA components could have a big impact for de-
tecting rarer events and/or extreme bbp profiles (i.e. the tails
of the output distribution). However, that would increase the
number of redundant features of our input dataset which would
make the machine learning algorithm harder to train.

The number of outputs for the bbp is 276 which is very high;
very unusual for a machine learning setting. Each output cor-
responds to a depth so most of the variability was near the
shallower regions for both the North Atlantic and Subtropical
Gyres datasets as seen in Figure 3. This was verified through
the mean and standard deviation of the outputs as it was heavily
skewed towards first 100 depths. So a simple log transform-
ation was used to increase the spread of the distribution to be
more Gaussian-like. Regardless, we still have the problem of
having a large number of outputs which is very difficult for a
machine learning model to train with a modest number of data
points. We considered doing a PCA transformation on the out-
put depths to reduce the number of outputs, but instead we de-
cided against it for the first pass as it adds a level of complexity.
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a) North Atlantic b) Subtropical Gyres
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Figure 3. The BGC-Argo measured bbp profiles for the training
dataset. The figure shows the mean and variance of the bbp

values vs. the depth (m) for the a) North Atlantic and b)
Subtropical Gyres.

2.4 Machine learning models

Multi-output regression methods are a challenge even in the ma-
chine learning community and there is no clear consensus about
the best way to handle this problem in regression settings. Gen-
erally, there are two main approaches to this problem from a
machine learning perspective: a single model for each output
or a single model for all of the outputs (Xu et al., 2019). The
ideal case is to have a single model to account for the correlated
outputs and this makes intuitive sense because we know that the
outputs are well correlated; for example the overall shape of the
output (depths in our case) would be captured instead of look-
ing at individual parts. In addition, this approach is especially
powerful when you have missing data and would like to use
semi-supervised learning (Álvarez et al., 2012). However, this
approach can be more expensive, more difficult to train, and ul-
timately there are not very many machine learning models that
are explicitly designed to handle multiple outputs. Some ex-
amples of ML models that can handle multi-output data include
composition of functions like Neural Networks, Bayesian meth-
ods like Gaussian processes, and ensemble methods like Ran-
dom Forests (Reichstein et al., 2019; Camps-Valls et al., 2019;
Ruescas et al., 2018) but depending on the construction, it may
or may not be taking into account the correlated outputs. The
other approach is to use one model per output. This approach
is useful if you have access to all the samples per output layer
and if you do not want to restrict the number of algorithms to
use. So one can use very sophisticated and fast algorithms with
the only additional modification is a parallel training procedure
to use each model per output. For this study we chose to use
a single model trained for all of the outputs even though we
do not have many samples and we have a very high number of
output dimensions. We also chose some of the simplest class
of models like linear regression and random forests. Although
we have plans to do a more extensive comparison between the
approaches, this is outside the scope of this paper and hence-
forth when we refer to multi-output methods, we are assuming
a single model that can handle multiple outputs.

We considered some baseline and robust methods for this ex-
periment. We looked at 2 classes of models: linear models and
ensemble models. We chose these models because they are an
excellent choice for a first pass on new datasets and they are
more easily intepretable. These “weakly” parametric models
are robust, generalizable and can fit a large number of different
datasets. This allows us to avoid making too many non-testable
assumptions on the pre-processing step. The next step is to
start adding more physical and intuitive constraints and expect-
ations, e.g. priors and uncertainty estimates. This is future work
but will require a Bayesian perspective of things. The baseline
linear model we used is a simple regularized linear regression

a) North Atlantic b) Subtropical Gyres

D
ep

th
(m

)

R2 R2

D
ep

th
(m

)

RMSE RMSE

Figure 4. Depth-associated statistics (R2 top and RMSE bottom)
of the comparison of bbp values estimated from RF and RLR

models (in blue and red, respectively) to BGC-Argo
measurements on the test dataset for the a) North Atlantic and b)

the Subtropical Gyres.

(RLR) model; the ridge regressor. We hypothesized that this
model would perform well on the STG dataset but not as well
on the NA dataset due to the non-linearities present in the shal-
lower regions. The ensemble method used is a Random Forest
(RF) regressor. This is an ensemble algorithm which averages
several independent decision tree estimators. The variance is
reduced because of the averages and in general, it is robust to
overfitting. Furthermore, we can extract the feature importance
from the model to see which features had the greatest impact
on the predictions within our model. The models were trained
using 1,000 estimators and a mean squared error (MSE) cri-
terion. Please see the github repository ML4OCEAN for some
example notebooks highlighting the preprocessing routines and
the machine learning models. For the experiment section, we
will showcase the ridge linear regressor (RLR) and RF regressor
results for the valdiation data. But we only show the RF model
for the profiles as it was the better of the two models.

3. EXPERIMENTS

Two full machine learning pipelines were processed: one for
the North Atlantic (NA) dataset and the other for the Subtrop-
ical Gyres (STG) dataset. All preprocessing steps that did not
involve normalization were done prior to splitting the data into
training, testing and validation. Note that before this splitting,
the time series from two BGC-Argo floats (one in NA region
and the other in the STG regions, more precisely in the South
Atlantic Subtropical Gyre, identified by their official World Met-
eorological Organization number 6901486 and 3902121, re-
spectively) were removed from the database to create an ”in-
dependent data set” used for additional validation. After the
split into training, testing and validation datasets, the normaliz-
ation procedure was done on the training set only and then the
transformation was done on the other two sets. Then we train
the Multi-Output Random Forest on the training dataset. For
the NA dataset, there were 2, 288 training samples, 572 testing
samples and 352 validation samples. For the STG dataset, there
were 1, 082 training samples, 271 testing samples and 26 valid-
ation samples. With a 28-core on a SLURM server using multi-
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processing, the training time took ∼30 seconds for NA dataset
and ∼10 seconds for the STG dataset. Below, we showcase the
results we obtained from this training procedure.

3.1 Test Data

Figure 4 shows the R2 and the RMSE for the North Atlantic
ocean (NA) and oligotrophic Subtropical Gyres (STG). In the
NA, the RLR and the RF algorithms performs well in the layer
very near to the surface and beyond 200 m depth. The ”middle”
and upper layers (from ∼ 10 to 200 m) are where the weakest
predictions are found. In contrast, RMSE values decrease with
depth, with a maximum peak at ∼ 100 m. These weaker predic-
tions are related to the depths where bbp values show the more
variability (Figure 3). Moreover, the minimum peak of accur-
acy at 400 m (low R2 and high RMSE in Figure 4) is related
to a higher variance in the bbp values contained in the training
dataset at this specific depth. This variance is probably due to
profile(s) with ”spikes” (POC intense increase at depth) that can
be directly linked to POC export due to sinking particles. These
”extreme” profiles may have led to a decrease in the method
performance for this specific layer. In the same way, the STG
dataset shows an increase of the R2 value first and then a rel-
atively unstable decrease with depth, until reaching a peak of
lower accuracy and higher RMSE at around 200 m depth. This
peak is more accentuated with the RLR model. This depth is
associated with the layer where bbp is more variable in STG re-
gions because of the so-called deep biomass maxima that can
be found in these oligotrophic areas (between ∼ 150 - 200 m
depth, Mignot et al., 2014). RMSE values in the STG areas
show much more variability, related to the higher variance in the
input data shown in Figure 3. However, the RMSE are lower for
STG in a quantitative way (range from 0.1 to 0.15 for STG area
compared to a range from 0.15 to 0.4 for NA area) because of
the lower range of bbp values found in these oligotrophic gyres.
The highest R2 and lowest RMSE values very near the surface
for both areas with both models can be explained by the fact
that the methods should easily link surface bbp values to sur-
face satellite reflectance (ρ) inputs. Besides, some ocean color
algorithms retrieving biogeochemical parameters from ρ at sev-
eral wavelength are based on machine learning algorithms.

To better understand the validation results and relate them to the
input features and response of the model, the feature ranking for
the RF algorithm is shown in Figure 5 (for the entire output do-
main, not just a single layer). For the NA dataset, the most dom-
inant features are the principal components of the density, tem-
perature and salinity. Indeed, there is a lot of physical variab-
ility in this area, that can explain the POC vertical distribution.
For example, a strong winter mixing can bring phytoplankton
biomass and POC up to 1000 m depth. In addition, the loca-
tion seems to be also very important which was expected due
to the variability in this area. We used NA data from high lat-
itudes to 0◦ latitude (Figure 1) so this area is representative of
very different trophic regimes (from high latitudes productive
regions to the North Atlantic oligotrophic gyre). Surprisingly,
less weight have the remote sensing reflectance, PAR and SLA
variables, that are, those that affect more the upper layers.
For the STG dataset, the location was the most important fol-
lowed by some of the principal components for the temperature,
salinity and density. The STG dataset is composed of 5 differ-
ent gyres distributed on the planet whereas the NA dataset is
much more spatially localized. Like the NA dataset, the reflect-
ance and other variables like the MLD and PAR were not as im-
portant. The MLD has less seasonal variability in this warmer

a) North Atlantic

b) Subtropical Gyres

Figure 5. The feature importance of the Random Forest
algorithm for the test dataset for the a) North Atlantic and b)
Subtropical Gyres. This plot explains the importance of each

feature as learned from the algorithm.

area where waters are almost always stratified. In these areas,
the information from PAR input may be supported by the DOY
(day of the year, sinus and cosinus transformed) inputs. How-
ever, the SLA has a greater impact for the STG than the NA.
This is due to the high impact of mesoscale and sub-mesoscale
processes on the vertical distribution of phytoplankton biomass
and POC in the oligotrophic areas where the surface waters are
nutrient-depleted (e.g. Dufois et al., 2016).

One observation that can be made is that the ”surface” vari-
ables (remote sensing reflectances, SLA, PAR) seem to have
less weight in comparison to all of the variables. One explan-
ation is that the features are shared for all of the outputs and
therefore it would make sense that the upper layers are less ac-
curate and/or the surface variables are less important as they
only account for a fraction of the entire water column. Fur-
ther steps can be taken to try to model each layer independently
with independent features to verify that these variables are more
prominent for the surface layers but you would lose the correl-
ated outputs.

3.2 Validation Floats

The validation of the results has been made using two independ-
ent floats from the two separate areas (World Meteorological
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Figure 6. The measured bbp profiles for the validation dataset.
The figure shows the mean and variance of the bbp values vs. the
depth (m) for the a) North Atlantic and b) the Subtropical Gyres.

Organization number 6901486 and 3902121 for NA and STG
regions, respectively) by comparing the RF-retrieved bbp and
the BGC-Argo measured bbp at each location in the 276 layers
(i.e. 276 depths from the surface to 1,000 m depth).
Figure 6 shows the typical measured bbp profiles that were used
for the validation, very similar in shape and magnitude to the
typical vertical profiles comprised in the training set. The scat-
ter plot of measured vs. predictions for the NA dataset in Figure
7a shows a high R2 of 0.86 for the RF algorithm and Figure 7b
shows 0.73 for the RLR algorithm. The spread of the points
appear to be for the lower depths (as for the test dataset in Fig-
ure 4), and an overestimation on the surface. In Figure8a, the
STG displays a lower R2 of 0.83 for the RF algorithm and Fig-
ure8b shows a higher R2 value of 0.86 for the RLR method.
The spread of the points on the 1:1 line is less compared with
the NA; however, most of the points are situated above the line
(constant overestimation) for the RF algorithm and below the
line (constant underestimation) for the RLR algorithm. It is
important to note that these validations show slight better or
comparable statistics than the SOCA2016 independent valida-
tions for the NA and STG regions (R2 = 0.81 and 0.85, slope
= 0.81 and 0.85 and Mean Absolute Percent Difference, MAPD
= 12% and 21% for SOCA2016 in NA and STG, respectively;
see statistics for comparison with SOCA2020 in Figure 8). As
SOCA2020 retrieves bbp with a greatly improved depth resolu-
tion, this present work shows very promising results.

Figure 9 and Figure 10 show the comparison between in situ
measured and RF-estimated bbp time series for the two valid-
ation floats over the water column (from the surface to 1,000
m depth). Results from the predictions are fairly smooth com-
pared to the measured for the NA dataset (Figure 9). Some of
the details near the surface cannot be reproduced with high de-
tails in the predicted profile. Results from the predictions are
also smooth compared to the in situ measured bbp for the STG
dataset (Figure 10). The seasonal trend near the surface where
the bbp decreases with time can be seen in both the predictions
and the measured values. The RF model reproduces well the
high bbp values up to the depth of the deep biomass maximum
(∼ 150-200 m) and then the bbp decrease with depth from 200
m depth.

4. CONCLUSIONS

Preprocessing techniques and machine learning model presen-
ted in this preliminary study give promising results, when using
large datasets and attempting to predict a high number of output
layers. The overall performance statistics are quite good and bbp
vertical profiles present high similarities when compared with
in situ observed data. This is still ongoing work, so we expect
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Figure 7. The resulting statistics for the validation float in the
North Atlantic (WMO=6901472). The top panel a) shows the
results using the Random Forest algorithm and bottom b) the

results using the Linear regression. The y-axis are the
observations (log-scale) and the x-axis are the predictions

(log-scale). The black line is the identity line.
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Figure 8. The resulting statistics for the validation float in the
South Atlantic Subtropical Gyre (WMO=3902121). The top
panel a) shows the results using the Random Forest algorithm

and bottom b) the results using the Linear regression. The y-axis
are the observations (log-scale) and the x-axis are the predictions

(log-scale). The black line is the identity line.
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Figure 9. The validation bbp profiles (BGC-Argo float 6901486)
as a function of depth and cycles (time) for the North Atlantic

dataset. Panel a) shows the in situ bbp profiles measured from the
float and panel b) shows the predictions from the Random Forest

regressor model.

to see even better results (or at least more physically consistent)
with algorithms and models adjusted to the several character-
istics of the water column. Ultimately, using ML models to in-
crease predictions of bbp profiles is a good endeavour and could
be a viable option when coupled with more physical constraints
and validation. Eventually, derived uncertainties will also be
tackled, which will require another family of methods not yet
tested.

The results from the new method (SOCA2020) will be avail-
able to users as part of the European Copernicus Marine Envir-
onment Monitoring Service (CMEMS). More specifically, the
4-dimensional products of particulate organic carbon (estim-
ated from bbp using the method of Cetinic et al. (2012)) will be
produced using merged hydrological and satellite (ocean color
and altimetric) gridded-data available from CMEMS. The res-
olution of these products will be 0.25◦x0.25◦ spatially, weekly
temporally (from January 1998 to December 2018) and at 19
depth levels vertically from the surface to 1,000 m depth. These
resolutions are defined from the lower input products resolu-
tions (i.e. physical data). In addition, a multi-year monthly
climatology will be provided. These CMEMS products will
be first released within the year 2020 and then will be updated
yearly. As all CMEMS products, these products will be quali-
fied against totally independent in situ observations.

One of the future perspective of the present study is to develop
the same method as SOCA2020 to retrieve chlorophyll a con-
centration, that is also a key biogeochemical product measured
from profiling floats. The conjoint use of these two SOCA
methods (that will retrieve bbp and chlorophyll a concentration)

South Atlantic Subtropical Gyre, 3902121
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Figure 10. The validation bbp profiles (BGC-Argo float
3902121) as a function of depth and cycles (time) for the

Subtropical Gyre dataset. Panel a) shows the in situ bbp profiles
measured from the float and panel b) shows the associated

predictions from the Random Forest regressor model.

would offer a new path to examine the variability in the phyto-
plankton carbon to chlorophyll relationship over the vertical di-
mension, which would represent a great opportunity for a bet-
ter understanding of light and nutrient control of phytoplankton
biomass and physiological status at a global scale. This is a cru-
cial step for improving the characterization of the distribution
and variability in ocean primary production and carbon export.
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