
HAL Id: hal-03137718
https://hal.science/hal-03137718v1

Submitted on 10 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Faust Programming Language As a Platform for
Creating Hybrid Acoustical and Digital Musical

Instruments
Romain Michon, Yann Orlarey, Stephane Letz, Dominique Fober

To cite this version:
Romain Michon, Yann Orlarey, Stephane Letz, Dominique Fober. The Faust Programming Language
As a Platform for Creating Hybrid Acoustical and Digital Musical Instruments. Forum Acusticum
2020 (FA 2020), Dec 2020, Lyon, France. �10.48465/fa.2020.0945�. �hal-03137718�

https://hal.science/hal-03137718v1
https://hal.archives-ouvertes.fr

THE FAUST PROGRAMMING LANGUAGE AS A PLATFORM FOR
CREATING HYBRID ACOUSTICAL AND DIGITAL MUSICAL

INSTRUMENTS

Romain Michona,b Yann Orlareya Stéphane Letza Dominique Fobera
a GRAME-CNCM, 11 cours de Verdun-Gensoul, Lyon (France)

b CCRMA, Stanford University (USA)
michon@grame.fr

ABSTRACT

FAUST is a functional programming language for real-
time audio digital signal processing. The Faust compiler
can generate code in lower-level programming languages
such as C, C++, JAVA, LLVM bitcode, WebAssembly, etc.
Code generated by the FAUST compiler can be turned into
a wide range of objects (e.g., audio plug-ins, smartphone
apps, web apps, etc.) for various platforms (e.g., Linux,
Windows, MacOS, etc.).

By also allowing us to target embedded systems such
as microcontrollers, DSPs, FPGAs, embedded Linux sys-
tems, etc. and by providing a set of tools to implement
physical models of musical instruments, FAUST is partic-
ularly well suited to design hybrid acoustical and digital
musical instruments mixing physical and virtual elements.

After giving an overview of the aforementioned tools,
we demonstrate how they can be used for designing novel
hybrid instruments.

1. INTRODUCTION

Hybrid acoustical and digital musical instruments combine
physical and virtual elements in an attempt to take the best
of both “worlds” [1]. There are many examples of such in-
struments both in the industry and in academia. The Korg
WaveDrum 1 can be regarded as one the first member of
this family. It combines a physical drum membrane to
a digital resonator allowing for the implementation of a
wide range of physical models using modal synthesis [2],
waveguide modeling [3], etc. The acoustical excitations
captured on the membrane are directly fed to the resonator,
allowing for a very natural and intuitive control of the in-
strument. The same approach has been exploited by Dan
Schlessinger [4] to implement his Kalichord, an instrument
that captures sound excitations created on plastic tines to
drive string physical models. More recently, Ali Momeni
created Caress, which provides a form of playground for
fingers where different textures can be touched to drive
various kind of resonators running on a computer [5]. Of
course, these are just a few examples.

1 https://www.korg.com/us/products/drums/
wavedrum_global_edition/ – All URLs were verified on
March 10, 2020.

Designing such instruments presents various chal-
lenges, especially if the goal is to make them standalone.
Indeed, there only exists a few software and hardware plat-
forms that can be used to reach that goal. The “ideal” plat-
form to implement hybrid instruments should: be easily
programmable, provide sensor inputs, have multiple audio
inputs and outputs, be easily embeddable.

While most hardware platforms used by the music tech-
nology/computer music communities provide such fea-
tures (e.g., the Raspeberry Pi 2 combined with an Ar-
duino 3 and an external audio interface, etc.) their pro-
gramming remains challenging and few software environ-
ments allow to target all these platforms from a single
standpoint. libpd [6] allows for the embedding of PD
patches into C++ programs, Mobile CSOUND [7] can be
used to embed CSOUND programs in mobile apps, etc.

FAUST [8] is a functional programming language for
real-time audio signal processing that can be used to tar-
get a wide range of standards and platforms. FAUST can
be used to implement standalone programs, mobile apps,
audio plugins, web apps, etc. In recent years, it has also
been increasingly used to program embedded platforms
such as embedded Linux systems like the Rapsberry Pi as
well as powerful microcontrollers targeting real-time au-
dio processing like the Teensy. 4 In parallel of that, FAUST

provides a wide range of signal processing libraries im-
plementing an extended number of resonators and musical
instrument physical models which can all be used to design
hybrid instruments [9]. In particular, the FAUST physical
modeling toolkit [10] offers an ideal environment to pro-
totype hybrid musical instruments. In that context, it was
used at the heart of various hybrid musical instruments –
some of which are presented in the following sections.

In this paper, we give an overview of how FAUST can
be used to design hybrid musical instruments using various
platforms and approaches. We first demonstrate how mo-
bile platforms, embedded Linux systems, and microcon-
trollers can be programmed with FAUST. We then give ex-
amples of instruments based on these systems before pre-
senting future directions for this type of work.

2 https://www.raspberrypi.org/
3 https://www.arduino.cc/
4 https://www.pjrc.com/teensy/

2. FAUST ON MOBILE DEVICES

Mobile devices have been used as the basis of various
hybrid instruments for the past few years [11]. They
provide a well-suited platform for this type of applica-
tions with built-in audio inputs and outputs, potential sen-
sor inputs through a mircocontroller connected to them
through MIDI over USB, and they are completely stan-
dalone/battery powered.

FAUST can be used to program both Android and iOS
devices for real-time audio signal processing applications.
faust2android and faust2ios [12] can be used to
turn a FAUST program into a ready-to-use Android or iOS
application (respectively). The Graphical User Interface
(GUI) of the app will be declared in the corresponding
FAUST code (see Figure 1) and will hence be made out of
sliders, buttons, knobs, groups, etc. faust2smartkeyb
[13] on the other hand can target both iOS and Android
from a single standpoint and replaces the standard FAUST

GUI with a SMARTKEYBOARD interface declared in the
FAUST code as a metadata (see Figure 2).

Figure 1. Example of a Graphical User Interfaces gener-
ated by faust2ios (on the left) and faust2android
(on the right).

Figure 2. Simple SMARTKEYBOARD interface.

In all cases, audio inputs can be easily retrieved in
FAUST to drive the digital part of the instrument and sen-

sors can be mapped to sound synthesis parameters using
MIDI metadata. 5 Additionally, the built-in motion sen-
sors of the device (e.g., accelerometers, gyroscopes, etc.)
can also be mapped to the parameters of a FAUST program
using metadata. 6

3. FAUST ON EMBEDDED LINUX SYSTEMS

FAUST is very well supported on Linux and can therefore
target embedded Linux systems in many ways. For in-
stance, any of the Linux FAUST target can be used on this
type of platform (e.g., Alsa standalones, Jack standalones,
PureData externals, CSOUND opcodes, web apps, etc.).

As for mobile platforms, audio inputs can be retrieved
in a FAUST program from the built-in or external audio
interface of the system, and sensors can be mapped to the
sound synthesis parameters using MIDI metadata.

Figure 3. The Raspberry Pi 3B equipped with an I2S audio
hat providing a stereo PCM audio output.

Specific FAUST architectures targeting
the Raspberry Pi (see Figure 3) are also
available: faust2rpialsaconsole and
faust2rpinetjackconsole. They can be used
to generate command-line applications (e.g., to be used
through SSH) using an Alsa or a Jack audio driver
(respectively). They differ from “standard architecture”
by carrying out C++ compilation optimizations directly
linked to the processor architecture of the RPI.

Finally, FAUST can also target the BELA [14] and the
Elk 7 which are specific kinds of embedded Linux systems
where audio signal processing tasks are ran outside of the
operating system. They provide a very appealing platform
to create hybrid musical instruments.

4. FAUST ON MICROCONTROLLERS

As microcontrollers became more powerful in recent years
and provided a Floating Point Unit (FPU), they became a
viable option for real-time signal processing applications.

5 https://faust.grame.fr/doc/manual/index.html#
midi-and-polyphony-support

6 https://faust.grame.fr/doc/manual/index.html#
sensors-control-metadatas

7 https://elk.audio/

Figure 4. The BELA.

They offer a wide range of advantages over embedded
Linux systems such as low audio latency (no Operating
System), lightness, low power, built-in sensors inputs, and
low cost (full systems including audio inputs and outputs
can be found for less than $15). On the other hand, their
limited memory (which is often less than 1MB) and CPU
power are their main flaw. It can quickly become a prob-
lem when using algorithms with large memory footprints
(e.g., echo, reverb, etc.) or too CPU demanding.

FAUST can be used to program the Teensy microcon-
troller (see Figure 5) through faust2teensy which
generates DSP objects for the Teensy Audio Library [15].
This system doesn’t provide MIDI support yet but it is not
necessarily a problem since sensors can be mapped to DSP
parameters directly from the microcontroller itself.

Similarly, FAUST can now be used to produce DSP en-
gines for the ESP32 microcontroller (see Figure 6) thanks
to faust2esp32 [16]. The ESP32 is used at the heart of
a wide range of cheap audio development boards such as
the Lyra 8 and the LilyGO TTGO T-Audio, 9 which have
been increasingly used by the music technology commu-
nity. faust2esp32 can also be used to fully program
some ESP32-based boards such as the TTGO T-Audio
without writing a single line of C++ or Arduino code.

5. EXAMPLE OF HYBRID INSTRUMENTS MADE
WITH FAUST

FAUST has been used at the heart of a wide range of hybrid
musical instruments. Some of them are presented in this
section.

5.1 The BladeAxe

The BLADEAXE [17] is an instrument based on an iPad
where plastic tines equipped with piezo contact micro-
phones are used to capture the sound of the plucks of the
performer to drive a series of physical models implemented
in FAUST. faust2smartkeyb was used to implement

8 https://www.espressif.com/en/products/
hardware

9 https://github.com/LilyGO/TTGO-TAudio

Figure 5. The Teensy 4.0 and its audio shield.

Figure 6. ESP32-based audio Processing boards (the
TTGO T-Audio on the left and the ESP32 Audio Dev Kit
on the right).

the app running the models on the iPad. Models were im-
plemented using the FAUST physical modeling toolkit [10].

Figure 7. The BLADEAXE.

The BLADEAXE has been featured in many perfor-
mances and continues to be used on stage by the first author
of this paper.

5.2 Instruments for Music 250a

Music 250a Physical Interaction Design for Music is a
class offered at the Center for Computer Research in Music
and Acoustics every year in Winter quarter. Students learn
how to make musical interfaces, hybrid instruments, fun-
damentals of electronics, microcontroller programming,
etc. FAUST has been used to teach this class for the past
three years and many student final projects feature hybrid

instruments.
Luigi Sambuy’s Sweeps and Collisions is a good exam-

ple of that (see Figure 8). This instrument allows to roll
balls on a plastic surface equipped with piezo contact mi-
crophones. The sound of the balls rolling is captured and
used to drive resonators running on a Teensy microcon-
troller that was programmed using faust2teensy.

Figure 8. Luigi Sambuy’s Sweeps and Collisions.

More examples of such instruments can be found on the
2019 and 2020 Music 250a courses websites. 10

6. FUTURE WORKS

We plan to continue facilitating the design of hybrid in-
struments with FAUST by supporting new platforms and
by sustaining the expansion of the FAUST DSP libraries.

On the hardware side, we’re currently investigating
the possibility of programming FPGA-based boards with
FAUST in the context of the SyFaLa project. 11 While we
already have a working prototype, much work remains to
be done to optimize generated objects. FPGAs could of-
fer extended computational power for specific kind of al-
gorithms such as modal resonators used in many hybrid
instruments. They also provide unparalleled audio latency
performances (as low as 100µs) which would be extremely
useful to design hybrid instruments involving active con-
trol.

On the software side, we want to improve the support
of FAUST for linear algebra to implement complex physi-
cal modeling algorithms (e.g., Finite Difference Schemes,
etc.).

7. CONCLUSION

By supporting an extended range of platforms and by pro-
viding dozens of DSP libraries, FAUST is well suited to
design hybrid acoustical and digital musical instruments.
We plan to keep expanding the scope of FAUST in the near
future by supporting new platforms and by adding new al-
gorithms to its libraries.

10 https://ccrma.stanford.edu/courses/
250a-winter-2019/projects/

11 https://faust.grame.fr/syfala/

8. REFERENCES

[1] R. Michon, “The hybrid mobile instrument: Recou-
pling the haptic, the physical, and the virtual,” 2018.

[2] J.-M. Adrien, “The missing link: Modal synthesis,”
in Representations of Musical Signals, ch. The Miss-
ing Link: Modal Synthesis, pp. 269–298, Cambridge,
USA: MIT Press, 1991.

[3] J. O. Smith, Physical Audio Signal Processing for Vir-
tual Musical Instruments and Digital Audio Effects.
W3K Publishing, 2010.

[4] D. Schlessinger and J. O. Smith, “The Kalichord:
A physically modeled electro-acoustic plucked string
instrument,” in Proceedings of the 9th International
Conference on New Interfaces for Musical Expression
(NIME-09), (Carnegie Mellon Univeristy, USA), June
2009.

[5] A. Momeni, “Caress: An enactive electro-acoustic per-
cussive instrument for caressing sound,” in Proceed-
ings of the International Conference on New Interfaces
for Musical Expression (NIME-15), (Baton Rouge,
USA), 2015.

[6] P. Brinkmann, P. Kirn, R. Lawler, C. McCormick,
M. Roth, and H.-C. Steiner, “Embedding PureData
with libpd,” in Proceedings of the Pure Data Conven-
tion, (Weinmar, Germany), 2011.

[7] V. Lazzarini, S. Yi, J. Timoney, D. Keller, and M. Pi-
menta, “The mobile Csound platform,” in Proceedings
of the International Conference on Computer Music
(ICMC-12), (Ljubljana, Slovenia), 2012.

[8] Y. Orlarey, S. Letz, and D. Fober, New Computa-
tional Paradigms for Computer Music, ch. Faust: an
Efficient Functional Approach to DSP Programming.
Paris, France: Delatour, 2009.

[9] R. Michon, J. Smith, and Y. Orlarey, “New signal pro-
cessing libraries for Faust,” in Proceedings of the Linux
Audio Conference (LAC-17), (Saint-Etienne, France),
2017.

[10] R. Michon, J. O. Smith, C. Chafe, G. Wang, and
M. Wright, “The faust physical modeling library: a
modular playground for the digital luthier,” in Proceed-
ings of the 1st International Faust Conference (IFC-
18), (Mainz (Germany)), 2018.

[11] R. Michon, J. O. Smith, M. Wright, C. Chafe,
J. Granzow, and G. Wang, “Mobile music, sensors,
physical modeling, and digital fabrication: Articulat-
ing the augmented mobile instrument,” Applied Sci-
ences, vol. 7, no. 12, p. 1311, 2017.

[12] R. Michon, “faust2android: a Faust architecture
for Android,” in Proceedings of the 16th Interna-
tional Conference on Digital Audio Effects (DAFx-13),
(Maynooth, Ireland), 2013.

[13] R. Michon, J. Smith, C. Chafe, G. Wang, and
M. Wright, “faust2smartkeyb: a tool to make mobile
instruments focusing on skills transfer in the Faust
programming language,” in Proceedins of the Interna-
tional Faust Conference (IFC-18), (Mainz, Germany),
July 2018.

[14] A. McPherson, “Bela: An embedded platform for low-
latency feedback control of sound,” The Journal of
the Acoustical Society of America, vol. 141, no. 5,
pp. 3618–3618, 2017.

[15] R. Michon, Y. Orlarey, S. Letz, and D. Fober, “Real
time audio digital signal processing with Faust and the
Teensy,” in Proceedings of the Sound and Music Com-
puting Conference (SMC-19), (Malaga, Spain), 2019.

[16] R. Michon, D. Overholt, S. Letz, Y. Orlarey, D. Fober,
and C. Dumitrascu, “A Faust architecture for the esp32
microcontroller,” in Submitted to the Sound and Music
Computing Conference (SMC-20), (Turin, Italy), 2020.

[17] R. Michon, J. O. Smith, M. Wright, and C. Chafe,
“Augmenting the iPad: the BladeAxe,” in Proceedings
of the International Conference on New Interfaces for
Musical Expression, (Brisbane, Australia), 2016.

