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Abstract. In the seminal paper of Bank and Weiser [Math. Comp., 44 (1985), pp. 283–301]
a new a posteriori estimator was introduced. This estimator requires the solution of a local
Neumann problem on every cell of the finite element mesh. Despite the promise of Bank–
Weiser type estimators, namely locality, computational efficiency, and asymptotic sharpness,
they have seen little use in practical computational problems. The focus of this contribution
is to describe a novel implementation of hierarchical estimators of the Bank–Weiser type in
a modern high-level finite element software with automatic code generation capabilities. We
show how to use the estimator to drive (goal-oriented) adaptive mesh refinement and to mixed
approximations of the nearly-incompressible elasticity problems. We provide comparisons
with various other used estimators. An open source implementation based on the FEniCS
Project finite element software is provided as supplementary material.

1 Introduction

A posteriori error estimation [3] is the de facto tool for assessing the discretization error of fi-
nite element method (FEM) simulations, and iteratively reducing that error using adaptive mesh
refinement strategies [56].

This paper is concerned with the description and justification of an implementation of an error
estimator introduced in the seminal paper of Bank and Weiser [13, Section 6]. In that paper an
error estimate was derived involving the solution of local Neumann problems on a special finite
element built on nested or hierarchical spaces. Despite its excellent performance and low compu-
tational cost, this estimator has seen relatively sparse use in practical computational problems.
The overarching goal of this contribution is to provide access to an efficient, generic and extensi-
ble implementation of Bank–Weiser type estimators in a modern and widely used finite element
software, specifically, the FEniCS Project [5].

1.1 Background

The literature on a posteriori error estimation and adaptive finite element methods is vast, so we
focus on articles on practical software implementations of adaptive finite element methods and
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comparative performance studies.
The T-IFISS [21] software package, based on the existing IFISS [34] package, is a finite element

software written in MATLAB/Octave with a focus on a posteriori error estimation and adaptive
finite element methods. Recently [20], T-IFSS has been extended to solve adaptive stochastic
Galerkin finite element methods. The stated emphasis of T-IFISS [21] is on being a laboratory
for experimentation and exploration, and also to enable the rapid prototyping and testing of new
adaptive finite element methods. A number of estimation and marking strategies are implemented
in T-IFISS, although not the Bank–Weiser estimator we consider in this paper. T-IFISS only works
for two-dimensional problems and it was never intended to be a high-performance code suitable
for large-scale computations e.g. high-performance computing systems using the Message Passing
Interface (MPI).

The PLTMG package [12] is one of the oldest open finite element softwares for solving elliptic
problems that is still under active maintenance, and includes many advanced features such as hp-
adaptive refinement, a posteriori error estimation, domain decomposition and multigrid precondi-
tioning. The a posteriori error estimation is based on a superconvergent patch recovery estimation
technique introduced in [14]. PLTMG only works in two dimensions and is naturally limited from
a usability perspective due to the programming tools available at its inception (Fortran and ANSI
C).

In [36] an adaptive first-order polynomial finite element method was implemented in a code
called p1afem using MATLAB. The primary goal was to show how the basic finite element algorithm
could be implemented efficiently using MATLAB’s vectorization capabilities. A standard residual
estimator [9] is used to drive an adaptive mesh refinement algorithm. Again, like T-IFISS, p1afem
only works in two dimensions.

In [63] a novel methodology for automatically deriving adaptive finite element methods from
the high-level specification of the goal functional and (potentially non-linear) residual equation was
implemented in the FEniCS Project. The emphasis of the paper [63], in contrast with the T-IFISS
toolbox [21], is on the automatic construction of goal-oriented adaptive finite element methods,
without much knowledge required on the part of the user. The implicit residual problems are
automatically localised using bubble functions living on the interior and facets of the cell, and
the dual problem [38] is derived and solved automatically on the same finite element space as the
primal problem, before being extrapolated to a higher-order finite element space using a patch-
wise extrapolation operator. In practice the automatically derived estimators seem to be able to
effectively drive adaptive mesh refinement for a range of different PDEs.

Explicit residual estimators are also commonly employed by users of high-level finite element
software packages as they can usually be expressed straightforwardly in a high-level form language,
e.g. [5, 59]. For example, [41] used the FEniCS Project to implement an explicit residual error
estimator for the Reissner-Mindlin plate problem from [19]. The authors of [31] used the FEniCS
Project to implement an explicit residual estimator for elasticity problems within a dual-weighted
residual framework. The dual problem is solved on a higher-order finite element space in order to
ensure that the weighting by the dual residual solution does not vanish [63]. In [46] the authors use
an explicit dual-weighted residual strategy for adaptive mesh refinement of discontinuous Galerkin
finite element methods. In addition, as the name suggests, they can be explicitly computed as
they involve only functions of the known finite element solution and the problem data.

In the present work, aside of the Bank–Weiser estimator we will consider an explicit residual
estimator [10] named residual estimator in the following, a flux reconstruction based on averaging
technique estimator [71], referred to as Zienkiewicz–Zhu estimator, and a variant of the Bank–
Weiser estimator introduced in [68] and referred to as the bubble Bank–Weiser estimator. The
residual estimator was proved to be both reliable and (locally) efficient in [68] for any finite element
order and in any dimension. The proof of reliability and (local) efficiency of Zienkiewicz–Zhu
estimator has been derived in [62], for linear finite elements in dimension two and generalised to
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any averaging technique in any dimension in [26] and any finite element order in [15]. The bubble
Bank–Weiser estimator was proved to be reliable and locally efficient in [68] for any dimension and
any finite element order.

A proof of the equivalence between the Bank–Weiser estimator and the exact error was derived
in the original paper [13]. However, this proof requires a saturation assumption [13, 33, 55] asking
for the best approximation with higher order finite elements to be strictly smaller than that of
lower order elements and which is known to be tricky to assert in practice. Some progress has been
made in [55] removing the saturation assumption from the analysis. However, this progress was
made at the price of restricting the framework to linear polynomial finite elements and dimension
two only. The equivalence proof between Bank–Weiser and residual estimators have been improved
by the authors in [22] where it was extended to dimension three.

1.2 Contribution

We show how robust and cheap hierarchical error estimation strategies can be implemented in a
high-level finite element framework, e.g. FEniCS Project [5], Firedrake [37, 60], freefem++ [43],
Feel++ [59], GetFEM [61] or the C++ library Concha [30]. Specifically, the contribution of our
paper to the existing literature is:

• A generic and efficient implementation of the Bank–Weiser estimator in the open source
FEniCS Project finite element software that works for Lagrange finite elements of arbitrary
polynomial order and in two and three spatial dimensions. The code is released under an
open source (LGPLv3) license [23]. Because the code utilises the existing automatic code
generation capabilities of FEniCS along with a custom finite element assembly routine, the
package is very compact (a few hundred lines of code, plus documentation and demos).
Additionally, the estimators are be implemented in near mathematical notation using the
Unified Form Language, see the Supplementary Material for code snippets.

• A numerical comparison of the Bank–Weiser estimator with various estimators we mentioned
earlier. We examine the relative efficiency, and their performance within an adaptive mesh
refinement loop on various test problems. Unlike [29], we do not aim at running a competition
of error estimators but at stressing out the potential of the Bank–Weiser estimator since, as
the authors of [29] point out, a single error estimation strategy is not sufficient to cover the
particulars of all possible problems.

• Relying on results in [17], we show a goal-oriented adaptive mesh refinement algorithm can
be driven by weighted sum of estimators, computed separately on primal and dual problems
discretized on the same finite element space. This avoids the extrapolation operation of [63]
or the need to compute the dual solution in a higher-order finite element space [18].

• Using the same basic methodology as for the Poisson problem, we extend our approach to
estimating errors in mixed approximation of nearly incompressible elasticity problems. This
idea was originally introduced in [3] and is still an active research topic, see e.g. [47] for a
parameter-robust implicit residual estimator for nearly-incompressible elasticity.

1.3 Outline

An outline of this paper is as follows; in section 1.4 we outline the main notation and definitions
used in this paper. In sections 2 and 3 we show the derivation of the primal problem and the
Bank–Weiser error estimator. In section 4 we derive a new method for computing the Bank–
Weiser estimator and discuss its implementation in FEniCS. In section 5 we discuss the use of the
approach for various applications such as goal-oriented adaptive mesh refinement and for mixed
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approximations of PDEs. Then, in section 6 we show some results on two and three dimensional
Poisson test problems as well as on linear elasticity problems, before concluding in section 8.

1.4 Notation

In this section we outline the main notations used in the rest of the paper. Let Ω be an bounded
open domain of Rd (d = 1, 2 or 3), with polygonal/polyhedral boundary denoted by Γ := ∂Ω.
We consider Γ = ΓD ∪ ΓN a partition of the boundary. We denote by n : Γ → Rd the outward
unit normal vector along Γ. Let ω be a subset of Ω. For l in R we denote by H l(ω) the Sobolev
space of order l. The space H0(ω) = L2(ω) is the Lebesgue space of square integrable functions
over ω. The space H l(ω) is endowed with the usual inner product (·, ·)l,ω and norm ‖·‖l,ω. We

omit the subscript l when l = 0 and subscript ω when ω = Ω. We denote H1
D(Ω) the subspace

of H1(Ω) of functions with zero trace on ΓD. We make use of the notation ∂nv := ∇v · n for the
normal derivative of a smooth enough function v. For l in R and for a d-dimensional subset ω of

Ω, we also define the following vector fields spaces L2(ω) :=
(
L2(ω)

)d
and H l(ω) :=

(
H l(ω)

)d
,

with respective inner products defined as their scalar counterparts, replacing the scalar product
by Euclidean inner product or double dot product. The space H1

D(Ω) is the subspace of H1(Ω) of
functions with zero trace on ΓD. From now on, the bold font notation will be reserved to vector
fields. With these notations at hand we can proceed with the rest of the paper.

2 Primal problem statement and finite element discretization

We consider the Poisson problem with mixed Dirichlet and Neumann boundary conditions. Let
Γ = ΓD ∪ ΓN be a partition of the boundary. We apply a Dirichlet boundary condition on ΓD

and a Neumann boundary condition on ΓN . Let f ∈ L2(Ω), uD ∈ H1/2(ΓD) and g ∈ L2(ΓN ) be
known data. We seek a function u:

−∆u = f in Ω, u = uD on ΓD, ∂nu = g on ΓN . (1)

Problem eq. (1) can be written in an equivalent weak form: Find u ∈ H1(Ω) of trace uD on ΓD

such that
(∇u,∇v) = (f, v) + (g, v)ΓN

, ∀v ∈ H1
D(Ω). (2)

The weak problem eq. (2) can be discretized using the Lagrange finite element method. We take a
mesh T of the domain Ω, consisting of cells T = {T}, facets E = {E} (we call facets the edges in
dimension two and the faces in dimension three), and vertices N = {χ}. The mesh T is supposed
to be regular, in Ciarlet’s sense: hT /ρT 6 γ, ∀T ∈ T , where hT is the diameter of a cell T , ρT
the diameter of its inscribed ball, and γ is a positive constant fixed once and for all. The subset
of facets in the interior of the mesh (i.e. those that are not coincident with the boundary Γ) is
denoted EI . The subset of facets lying on ΓD is denoted ED. The subset of facets lying on ΓN is
denoted EN . The subset of facets lying on the boundary of the domain Γ is denoted EB = ED∪EN .
Let n+ ∈ Rd and n− ∈ Rd be the outward unit normals to a given edge as seen by two cells T+

and T− incident to a common edge E. If we denote Pk(T ) the space of polynomials of order k on
a cell T , the continuous Lagrange finite element space of order k on the mesh T is defined by

V k :=
{
vk ∈ H1(Ω), vk|T ∈ Pk(T ) ∀T ∈ T

}
. (3)

We denote V k
D the finite element space composed of functions of V k vanishing on the boundary

ΓD. We consider the finite element problem: Find uk ∈ V k such that uk = w on ΓD and:

(∇uk,∇vk) = (f, vk) + (g, vk)ΓN
, ∀vk ∈ V k

D, (4)

and where w is a discretization of uD on V k.
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3 The Bank–Weiser estimator

In this section we derive the general definition of the Bank–Weiser estimator from the equation of
the error as it was given in the original paper [13]. We also give a concrete example of Bank–Weiser
estimator for linear finite elements.

3.1 The global error equation

We are interested in estimating the error we commit by approximating the solution u by uk in V k
w .

We define this error by the function e := u − uk and we want to estimate its norm ‖∇e‖. The
first step towards this will be to derive a new variational problem for which the exact error e is
the solution. For a cell T of the mesh, we introduce the interior residual as

rT := (f +∆uk)|T , (5)

and for an edge E, the edge residual

JE =





0 if E ∈ ED,
1
2
[[∂nuk]]E if E ∈ EI ,

(g − ∂nuk)|E if E ∈ EN .
(6)

where the notation [[v]]E := v+−v− denotes the jump in the value of the function across an interior
facet E ∈ EI . Here, v+ and v− denote the values of v on the facet E as seen by the two incident
cells T+ and T−, respectively. The error function e satisfies what we call the global error equation

(∇e,∇v) =
∑

T∈T

(rT , v)T + 2
∑

E∈EI

(JE , v)E +
∑

E∈EN

(JE , v)E ∀v ∈ H1
D(Ω). (7)

3.2 The local Bank–Weiser space and the Bank–Weiser estimator

We introduce now local finite element spaces in order to derive the finite element approximation
of the error. For a cell T of the mesh we define

V k
T :=

{
vk,T ∈ Pk(T ), vk,T = 0 in (Ω \ T ) ∪ (T ∩ ΓD)

}
. (8)

A key idea in the Bank–Weiser estimator derivation is to introduce an appropriate finite element
space for the discretization of error. This non-standard space has two roles. Firstly, for the local
problems involving the cells with facets only in the interior of the domain or on the Neumann
boundary, it should remove the constant functions, giving a unique solution. Secondly, and as we
will notice in section 6, solving the local error equation on the finite element space V k

T /R does not
necessary lead to an accurate estimation of the error. However, in some cases, the estimation of
the error can be surprisingly accurate when the space is judiciously chosen. We refer the reader to
[1] for a full discussion.

Before introducing this non-standard space, we need some more notations. Let k+ and k− be

two non-negative integers such that k+ > k− > 0. Let T̃ be the reference cell fixed once for all
(independent from the mesh T ). We denote

LT̃ : V
k+

T̃
−→ V

k+

T̃
, Im(LT̃ ) = V

k
−

T̃
, (9)

the Lagrange interpolation operator between the local spaces V
k+

T̃
and V

k
−

T̃
⊂ V

k+

T̃
. Moreover, for

any cell T of the mesh, there exists an affine bijection

S : T̃ −→ T
x̃ 7−→ S(x̃) =: x

(10)
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mapping T̃ onto T . From the mapping S we deduce another mapping given by

S : V
k+

T −→ V
k+

T̃
v(x) 7−→ S(v)(x̃) := v(S(x̃)).

(11)

If we denote d+ the dimension of V
k+

T̃
and d− the dimension of V

k
−

T̃
, given B+

T̃
:= {ϕ̃1, · · · , ϕ̃d+

}

the basis of shape functions of V
k+

T̃
and B+

T := {ϕ1, · · · , ϕd+
} the basis of V

k+

T , we can always find

a mapping S (and a mapping S) such that

S(ϕT,i) = S(ϕ̃T,i) ∀i ∈ {1, · · · , d+}, (12)

We choose S and S so. For a given cell T of the mesh, we define the Lagrange interpolation
operator on T as follows

LT := S−1 ◦ LT̃ ◦ S. (13)

Note, due to (12), the matrix of S in the couple of basis (B+
T ,B

+

T̃
) is the identity matrix of size

d+ × d+. Consequently, if we denote G the matrix of LT in the basis B+
T and G̃ the matrix of LT̃

in the basis B−

T̃
, we have

G = Id−1 G̃ Id = G̃. (14)

For a cell T of the mesh, the local Bank–Weiser space V bw
T is defined as the null space of LT , in

other words
V bw
T := ker(LT ) =

{
vT ∈ V

k+

T : LT vT = 0
}
. (15)

With this new space in hands, we can derive a local discrete counterpart of equation eq. (7) on
any cell T : Find eT ∈ V bw

T such that:

(
∇ebwT ,∇vbwT

)
=

(
rT , v

bw
T

)
+

∑

E∈∂T

(
JE , v

bw
T

)
E

∀vbwT ∈ V bw
T . (16)

The edge residual J definition takes into account the error on the Neumann boundary data ap-
proximation, but it does not take into account the error on the Dirichlet boundary data. As a
consequence, the Bank–Weiser estimator does not take into account the contribution of the Dirich-
let boundary data approximation. For a detailed discussion on a priori and a posteriori error
estimation with inhomogeneous Dirichlet boundary conditions see [16]. Finally, on the cell T the
local Bank–Weiser estimator ηbw,T is defined by

ηbw,T := ‖∇ebwT ‖T , (17)

where eT is defined in eq. (16) and the global Bank–Weiser estimator by the sum of local estimates

η2bw :=
∑

T∈T

η2bw,T . (18)

3.3 A particular example

If we assume k = 1 (i.e. we solve eq. (4) using linear finite elements) one can define the space V bw
T

from the choice of k+ = 2, k− = k = 1. This example was the case considered in the numerical
tests of the original paper [13]. The space V bw

T consists of quadratic polynomial functions (in V 2
T )

vanishing at the degrees of freedom of the standard linear finite element functions (in V 1
T ) i.e. the

degrees of freedom associated with the vertices of T .
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4 Algorithms and implementation details

The linear system corresponding to eq. (16) is not accessible in FEniCS this prevent us from
directly solving the Bank–Weiser equation. We propose to bypass the problem by constructing
the linear system corresponding to eq. (16) from another linear system derived from finite element
spaces that are accessible directly in FEniCS.

4.1 Method outline

1. We consider the following singular value decomposition (SVD) of G

G = UΣV T, (19)

where Σ is a diagonal matrix composed of the singular values of G. The columns of the
matrix V are singular vectors of G, associated with singular values. The columns associated
with the singular values zero span the null space of G. We take the submatrix N made of
the columns of V spanning the null space of G. Note that, since G does not depend on any
cell T , the same property holds for N .

2. We build the matrix A+
T and vector b+T of the local linear system corresponding to the

following variational formulation in the space V
k+

T , available in FEniCS:

(
∇e+T ,∇v

+
T

)
=

(
rT , v

+
T

)
+

∑

E∈∂T

(
JE , v

+
T

)
E

∀v+T ∈ V
k+

T . (20)

3. We construct the matrix Abw
T and vector bbwT as follow

Abw
T = NTA+

TN and bbwT = NTb+T , (21)

where Abw
T and bbwT are the matrix and vector which allow to recover the bilinear and linear

forms of eq. (16) in a basis of V bw
T .

4. We solve the linear system
Abw

T xbwT = bbwT , (22)

5. We bring the solution back to V
k+

T , consideringNxbwT , in order to post-process it and compute
the local contribution of the Bank–Weiser estimator eq. (17). The global estimator eq. (18)
is the square root of the sum of the squared local contributions.

4.2 Computational details

We now give more details specific to our implementation in FEniCS of each one of the above steps.

1. Computation of N . This is the key point of our implementation. The operator LT can be
written as follows:

LT : V
k+

T −→ V
k
−

T −→ V
k+

T

v+ 7−→ G1(v
+) 7−→ G2

(
G1(v

+)
)
.

(23)

Then, the matrix G is obtained via the following product

G = G2G1, (24)

where G1 and G2 are respectively the matrix in the couple of basis (B+
T ,B

−
T ) of the Lagrange

interpolation operator from V
k+

T to V
k
−

T , denoted G1 and the matrix in the same couple of
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Figure 1: Overall process of the Bank–Weiser estimator algorithm.

basis of the canonical injection of V
k
−

T into V
k+

T , denoted G2. The matrices G1 and G2 can be
calculated either using the Finite Element Automatic Tabulator (FIAT) [48] or, as we choose
to do, using the interpolator construction functions of the DOLFIN finite element library [51].
The next step consists in computing the unitary matrix V of right singular vectors of G. This
computation is done using the singular value decomposition (SVD) algorithm available in the
SciPy library [69]. We can write the matrix V as follows,

V =
(
ξ01 | · · · | ξ0dbw

| ξ1 | · · · |ξd
−

)
, (25)

where Bbw
T := {ξ01 , · · · , ξ

0
dbw

} is the set of singular vectors of G corresponding to a zero singular

value, spanning V bw
T and {ξ1, · · · , ξd

−

} is spanning the supplementary space. The matrix N is
then chosen as the submatrix of V , keeping only the columns from Bbw

T :

N :=
(
ξ01 | · · · | ξ0dbw

)
. (26)

The linear algebra operations needed to form the submatrix N from V are performed using the
NumPy library [66].

2. Computation of A+
T and b+T . The equation eq. (20) is expressed directly in the Unified Form

Language (UFL) [6] and efficient C++ code for calculating the cell local tensors A+
T and b+T for

a given cell T is then generated using the FEniCS Form Compiler (FFC) [49, 73]. If the cell
T has an edge on a Dirichlet boundary ED, the matrix A+

T and vector b+T must be modified in
order to enforce the boundary condition.

3. Computation of Abw
T and bbwT . The matrix Abw

T and vector bbwT are constructed using eq. (21).

4. Solution of the linear system (22). The linear system eq. (22) is solved using a partial-pivot LU
decomposition algorithm from the Eigen dense linear algebra library [40].

5. Computation of the Bank–Weiser estimator. Finally, the solution xbwT is sent back to V
k+

T

using N and the norm of the corresponding function, giving the local estimator eq. (17) is com-
puted using standard high-level functions already available within FEniCS. The global estimator
eq. (18) is computed using the information of all the local contributions.
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4.3 Additional remarks

The custom assembler composed of steps 2.-5. is performed by looping over every cell of the mesh
and, by virtue of using the abstractions provided by DOLFIN, works in parallel on distributed
memory computers using the Message Passing Interface (MPI) standard. For performance reasons
these steps have been written in C++ and wrapped in Python using the pybind11 library so that
they are available from the Python interface to DOLFIN. In contrast, the first step must only be
performed once since the matrix N is the same for every cell of the mesh.

Because we use the automatic code generation capabilities of FEniCS, our approach can be

readily applied to other definitions for the spaces V
k+

T and V
k
−

T , and to vectorial problems like
linear elasticity, as we will see in the next section.

In the numerical results secton we compare several versions of the Bank–Weier estimator and
especially the one we call bubble Bank–Weiser estimator and denote ηbT which can be obtained
with our method by taking V +

T as the space V 2
T +Span{ψT } (the local space of quadratic functions

enriched with the space spanned by the interior bubble function) and V −
T as V 1

T . The resulting
space V bw

T is spanned by the interior bubble function and the edges bubbles functions of the cell
T .

Note that this is not the only method we can use to compute the Bank–Weiser estimator, we
could have used e.g. Lagrange multipliers or a penalty method to define the space V bw

T .

5 Applications

In this section we show a number of applications, including adaptive mesh refinement, goal-
oriented estimation and extensions to more complex mixed finite element formulations for the
nearly-incompressible elasticity problems.

5.1 Adaptive mesh refinement

As well as simply providing an estimate of the global and local error, the estimator can be used
to drive an adaptive mesh refinement strategy. In the following we compare different refinement
strategy all based on the following loop:

... → SOLVE → ESTIMATE → MARK → REFINE → ...

The loop can be terminated once a given criterion e.g. maximum number of iterations, or global
error less than a given tolerance, has been reached. A detailed discussion on adaptive refinement
methods can be found in [56]. In the following we expand on the specific algorithms used in our
case.

5.1.1 Solve

The weak form eq. (2) is discretized using a standard finite element method implemented within
FEniCS. The resulting linear systems are solved using the appropriate algorithms available within
PETSc [11], e.g. conjugate gradient method preconditioned with Hypre BoomerAMG [35], or direct
methods, e.g. MUMPS [7, 8].

5.1.2 Estimate

The Bank–Weiser estimator ηbw is formulated and implemented as described in section 4. The
local contributions of the estimator provide an estimate of the local error for each cell in the mesh
and are subsequently used to mark the mesh. In addition the global estimator can be used to
determine when to stop iterating.
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5.1.3 Mark

We have used two distinct marking strategies throughout the results section: the maximum strategy
on the three-dimensional test cases and Dörfler strategy on the two-dimensional ones. We follow
the presentation in [57]. In the maximum marking strategy [9], a cell is marked if its indicator is
greater than a fixed fraction of the maximum indicator. More precisely, given a marking fraction
θ ∈ (0, 1], the marked set M ⊂ T is the subset such that:

ηbw,T ≥ θmax
T∈T

ηbw,T ∀T ∈ T . (27)

In the Dörfler marking strategy [32] (sometimes referred to as the equilibrated marking strategy)
enough elements must be marked such that the sum of their estimators is larger than a fixed fraction
of the total error. Given a marking fraction θ ∈ (0, 1], the marked set M is the subset with minimal
cardinality #M such that ∑

T∈M

η2bw,T ≥ θ
∑

T∈T

η2bw,T . (28)

We implement an O(N logN) with N := #T complexity algorithm for finding the minimum
cardinality set by sorting the indicators in decreasing order and finding the cutoff point such that
eq. (28) is satisfied. Because of the ordering operation this set is guaranteed to have minimal
cardinality. We note that recent work [44, 57] proposes a O(N) complexity algorithm for finding
the set with minimum cardinality.

5.1.4 Refine

We use two-dimensional and three-dimensional variants of the algorithm proposed in [58], some-
times referred to as the Plaza algorithm. This algorithm works by subdividing the facets of each
marked triangle or tetrahedron cell and then subdividing each triangle or tetrahedral cell so that
it is compatible with the refinement on the facets. The algorithm has O(M) complexity in the
number of added mesh vertices M . This algorithm already exists in DOLFIN [51] and was used
for the numerical results in [63].

5.2 Goal-oriented adaptive mesh refinement

In many practical applications it is desirable to control the error in a specific quantity of interest,
rather than the (global, i.e. across the entire domain Ω) energy norm [18]. In this section we show
how the basic Bank–Weiser estimator can be used to control error in a goal functional, rather than
in the natural norm. To do this, we use a weighted marking strategy proposed in [17].

Let J : L2(Ω) → R be a given linear functional. Associated with J (u) and the primal problem
eq. (2) is the dual or adjoint problem: Find the dual solution z ∈ H1

D(Ω) such that

(∇v,∇z) = J (v) ∀v ∈ H1
D(Ω). (29)

The dual problem, like the primal problem, can also be approximated using the finite element
method. Find zk ∈ V k such that

(∇vk,∇zk) = J (vk) = (c, vk) + (h, vk)Γ ∀vk ∈ V k. (30)

Using Galerkin orthogonality and Cauchy-Schwarz, it follows that

|J (u)− J (uk)| = |(∇(u− uk),∇z)| (31)

= |(∇(u− uk),∇(z − zk))| (32)

≤ ‖∇(u− uk)‖‖∇(z − zk)‖, (33)
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where the inequality holds due to Galerkin orthogonality.
Approximating the primal and dual errors ‖∇(u − uk)‖ and ‖∇(z − zk)‖ with any estimators

ηu and ηz respectively, gives us an estimator for the error in the goal functional |J(u)− J(uk)| as
the product of ηu and ηz, thanks to eq. (33):

ηw := ηuηz (34)

In addition, if ηu and ηz are reliable estimators i.e. if there exist two constants Cu and Cz only
depending on the mesh regularity such that

‖∇(u− uk)‖ ≤ Cuηu, and ‖∇(z − zk)‖ ≤ Czηz, (35)

then, ηw is reliable as well
|J(u)− J(uk)| 6 CuCzηw. (36)

Note that because the error in the goal functional is bounded by the product of two estimates,
the element marking strategy must incorporate information from local indicators for both approx-
imations to reduce the error on refinement. There are multiple strategies for doing this in the
literature, see e.g. [54]. We have chosen to implement the weighted goal-oriented (WGO) marking
strategy from [17]. The local WGO estimator is then defined as

η2w,T :=
η2z

η2u + η2z
η2u,T +

η2u
η2u + η2z

η2z,T ∀T ∈ T . (37)

The marking and refinement using η2w,T then follows in exactly the same manner as in the standard
adaptive refinement strategy.

5.3 Extension to linear elasticity problems

Our implementation of the Bank–Weiser estimator can be directly applied to mixed formulations of
(nearly-incompressible) linear elasticity problems using the results in [47]. In [2] a new a posteriori
error estimator is introduced for mixed formulations of Stokes problems consisting in solving a
local Poisson problem based on the local residuals on each cell. This estimator has been proved
to be reliable and efficient in [2] under a saturation assumption. This assumption has been later
removed in [50]. The reliability and efficiency of the estimator for mixed formulations of linear
elasticity is proved in [47] without the need of a saturation assumption. In addition, they show
that the estimator is robust in the incompressible limit.

5.3.1 Nearly-incompressible elasticity

We consider the problem of linear deformation of an isotropic elastic solid Ω using the Herrmann
mixed formulation. We consider the stress tensor σ : Ω → Rd×d, the strain tensor ε : Ω → Rd×d,

the load f : Ω → Rd which belongs to
(
L2(Ω)

)d
, the Dirichlet boundary data uD in

(
H1/2(ΓD)

)d
,

the Neumann boundary condition (traction) data g in
(
L2(ΓN )

)d
and displacement field u : Ω →

Rd. The stress and strain tensors are defined by

σ := 2µε(u)− p Id, (38a) ε(u) :=
1

2

(
∇u+ (∇u)T

)
. (38b)

where Id is the d×d identity matrix and µ and λ are the Lamé coefficients. The weak form of this
linear elasticity problem reads: find u in H1(Ω) of trace uD on ΓD and p in L2(Ω) such that

2µ (ε(u), ε(v))− (p, div(v)) = (f ,v) + (g,v)ΓN
∀v ∈ H1

D(Ω), (39a)

(q, div(u)) +
1

λ
(p, q) = 0 ∀q ∈ L2(Ω). (39b)
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The problem given by eqs. (39a) and (39b) admits a unique solution (see e.g. [47]). We introduce
the finite element spaces XD ⊂ H1

D(Ω) and M ⊂ L2(Ω) such that

XD :=
(
V 2
D

)d
, (40)

and M := V 1. Let w be a discretization of uD in X. Considering the stable Taylor–Hood method
of discretization, the mixed finite element approximation of eqs. (39a) and (39b) reads: find u2 in
XD with u2 = w on ΓD and p1 in M such that

2µ (ε(u2), ε(v2))− (p1, div(v2)) = (f ,v2) + (g,v2) ∀v2 ∈ XD, (41a)

(q1, div(u2)) +
1

λ
(p1, q1) = 0 ∀q1 ∈M. (41b)

Similarly to eqs. (39a) and (39b) transposed to the discrete context, eqs. (41a) and (41b) have a
unique solution. If we denote e := u− u2 and ε := p− p1 the discretization error is measured by
2µ‖∇eT ‖+ ‖rT ‖.

For a cell T and an edge E the residuals are defined by

RT := (f + div (2µε(u2))−∇p1)|T , (42a) rT :=
(
div(u2) +

1

λ
p1
)
|T
, (42b)

RE =





1
2
[[(p1 Id−2µε(u2))n]] if E ∈ EI ,

0 if E ∈ ED,
g − (p1 Id−2µε(u2))n if E ∈ EN ,

(42c)

Here, once again we derive the a posteriori error estimator from these residuals and a local Poisson
problem, following [47]. Let T be a cell of the mesh, the local Poisson problem read: find eT in
V bw
T such that

2µ (∇eT ,∇vT )T = (RT ,vT )T −
∑

E∈∂T

(RE ,vT )E ∀vT ∈ V bw
T . (43)

The Poisson estimator is then defined by

η2p :=
∑

T∈T

η2p,T , (44a) η2p,T := 2µ‖∇eT ‖
2
T + ‖rT ‖

2
T . (44b)

This estimator has been proved to be reliable and locally efficient in [47] as well as robust in
the incompressible limit.

6 Results

We illustrate our implementation first on several two dimensional problems as Poisson problems
with solutions of different regularities and with different boundary conditions. Then, we also look
at examples of linear elasticity, and goal-oriented problems. Finally, we treat a three dimensional
example: a linear elasticity problem on a mesh inspired by a human femur bone. One can find
another example of three dimensional application in [22].

We apply different adaptive refinement methods as presented in section 5.1. For each method
we perform the estimation step with a different estimator among the following: ηres the residual
estimator, defined in section A, ηzz the Zienkiewicz–Zhu estimator, defined in section B. Note
that the Zienkiewicz–Zhu estimator is not defined for quadratic or cubic finite elements nor for
linear elasticity problems, and consequently will be absent from the comparison in these cases (It
is possible to extend the idea of the Zienkiewicz–Zhu estimator to higher-order polynomials via the
definition of the Scott-Zhang interpolator, see [27, 65]). In addition we compare several versions
of the Bank–Weiser estimator: the bubble Bank–Weiser estimator ηbbw defined from the enriched
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bubble functions space and η
k+,k

−

bw for multiple choices of the fine and coarse spaces orders k+ and
k−.

For each one of the following test cases we will first give a comparison of all the refinement
strategies by giving the efficiency of the a posteriori error estimator on the last mesh of the
hierarchy, where the efficiency of an estimator η is defined as follows:

eff :=
η

ηerr
, (45)

where ηerr is a higher order approximation of the exact error computed either from the knowledge
of the analytical solution or from a higher-order finite element method on a fine mesh.

7 Poisson problems

7.1 L-shaped domain

We consider a 2D L-shaped domain Ω = (−1, 1)2 \ [−1, 0]2. We solve eq. (1) with f = 0, ΓD = Γ,
uD given by the analytical solution defined below and ΓN = ∅. In polar coordinates, the exact
solution is given by uexact(r, θ) = r2/3 sin

(
2/3(θ+π/2)

)
. The exact solution belongs to H5/3−ε(Ω)

for any ε > 0 and its gradient admits a singularity at the vertex of the reentrant corner [39, Chapter
5]. L-shaped domains are widely used to test adaptive mesh refinement procedures [53]. In both
linear and quadratic finite elements all the estimators reach an expected convergence rate (≈ −0.5
in the number of degrees of freedom for linear elements and ≈ −1 for quadratic elements). The
choice of a posteriori error estimator is not critical for mesh refinement purposes, every estimator
leading to a hierarchy of meshes on which the corresponding errors ηerr are similar. For brevity we
have not included the convergence plots of these results.

Linear elements. On fig. 2 we can see the initial mesh (top left) used to start the adaptive
refinement strategies. Then, we can see the different refined meshes we obtain after seven refine-
ment iterations
As we can see on fig. 3 the Zienkiewicz–Zhu estimator ηzz seems to perform the best in terms

of efficiency while the second best estimator is η2,1bw . The bubble Bank–Weiser estimator ηbbw is
outperformed by almost all the other Bank–Weiser estimators. The residual estimator ηres largely

overestimates the error while the estimators η
k+,k

−

bw for k− > 1 largely underestimates it, leading to

poor error approximations. Among the poor estimators, η3,2bw is surprisingly off for linear elements
on this test case. This behavior seems to be specific to the L-shaped test cases with linear finite
elements as we will see below.

Quadratic elements. As shown on fig. 4, the best estimator in terms of efficiency is η2,0bw

which nearly perfectly matches the error ηerr. We can also notice the very good efficiencies of η4,2bw

and η3,2bw . Once again the Bank–Weiser estimators with k− > 2 drastically underestimate the error.
We can notice that the residual estimator is less efficient as the finite element degree increases.

7.2 Mixed boundary conditions L-shaped domain

We solve eq. (1) on the same two-dimensional L-shaped boundary domain as in section 7.1 but
with different boundary conditions. We consider f = 0, ΓN = {(x, y) ∈ R2, x < 0, y = 0} and
ΓD = Γ \ ΓN . The boundary data are given by g = 0 and uD = uexact = r1/3 sin

(
1/3(θ + π/2)

)
.

The exact solution belongs to H4/3−ε(Ω) for any ε > 0 and its gradient has a singularity located
at the reentrant corner of Γ (see [39, Chapter 5]). As before, each estimator is leading to a a con-
vergence rate close to the expected one (≈ −0.5 for linear elements, ≈ −1 for quadratic elements)
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ηzz
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Figure 5: Mixed boundary conditions L-shaped Poisson problem with linear elements: efficiencies

of η
k+,k

−

bw and other estimators on the last mesh of an adaptively refined hierarchy.
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Figure 6: Mixed boundary conditions L-shaped Poisson problem with quadratic elements: efficien-

cies of η
k+,k

−

bw and other estimators on the last mesh of an adaptively refined hierarchy.

and the choice of the estimator does not impact the quality of the mesh hierarchy.

Linear elements. First thing we can notice from fig. 5 is that the estimators efficiencies are
quite different from those in fig. 3. Most of the Bank–Weiser estimator efficiencies have improved,
except when k− > 1. The Zienkiewicz–Zhu estimator ηzz is no longer the most efficient and has
been outperformed by η2,0bw , η2,1bw and η3,0bw . The Bank–Weiser estimator η3,2bw still performs poorly as
in fig. 3, while the residual estimator ηres once again largely overestimates the error.

Quadratic elements. As for linear elements, the efficiencies in fig. 6 are very different from
fig. 4, many Bank–Weiser estimators are now underestimating the error. The most efficient esti-
mator is η2,1bw closely followed by the bubble Bank–Weiser estimator ηbbw. As for the previous test
cases, the Bank–Weiser estimators with k− > 2 are largely underestimating the error.

7.3 Boundary singularity

We solve eq. (1) on a two-dimensional unit square domain Ω = (0, 1)2 with u = uexact on ΓD = Γ,
(ΓN = ∅) and f chosen in order to have u(x, y) = uexact(x, y) = xα, with α > 0.5. In the following
results we chose α = 0.7. The gradient of the exact solution u admits a singularity along the left
boundary of Ω (for x = 0). The solution u belongs to H6/5−ε for all ε > 0 [45, 52]. Consequently,
the value of α determines the strength of the singularity and the regularity of u.

Unlike the previous test cases, all the estimators are achieving a convergence rate close to −0.2
instead of −0.5 for linear elements. Moreover, this rate does not improve for higher-order elements
(for brevity, the results for higher-order elements are not shown here). The low convergence rate
shows how computationally challenging such a problem can be. Once again the choice of estimator
is not critical for mesh refinement purposes.
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Figure 7: Boundary singularity Poisson problem with linear elements: efficiencies of η
k+,k

−

bw and
other estimators on the last mesh of an adaptively refined hierarchy.
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Figure 8: Boundary singularity Poisson problem with linear elements: efficiencies of η
k+,k

−

bw and
other estimators on the last mesh of an adaptively refined hierarchy.

Linear elements. The best estimator in terms of efficiency is η2,1bw which slightly overestimates

the error, closely followed by η4,2bw underestimating the error as we can see on fig. 7. Unlike the
previous test case, here the Zienkiewicz–Zhu estimator ηzz grandly underestimates the error. The
worst estimator is the residual estimator ηres which gives no precise information about the error.
We can notice that the poor performance of the estimator η3,2bw on the L-shaped test case does not
reproduce here.

Quadratic elements. Again, fig. 6 shows that the best estimator is η2,1bw closely followed by

η2,0bw and the bubble estimator ηbbw. The residual estimator is getting worse as the finite element
degree increases.

7.4 Goal-oriented adaptive refinement using linear elements

We solve the L-shaped domain problem as described in section 7.1 but instead of controlling error
in the natural norm, we aim to control error in the goal functional J(u) = (c, u) with c a smooth
bump function

c(r̄) :=

{
ε−2 exp

(
− 1

r̄2

)
0 ≤ r̄2 < 1,

0 r̄2 ≥ 1.
(46)

where r̄2 = ((x− x̄) /ε)
2
+((y − ȳ) /ε)

2
, with ε ∈ R a parameter that controls the size of the bump

function, and x̄ ∈ R and ȳ ∈ R the position of the bumps function’s center. We set ε = 0.35
and x̄ = ȳ = 0.2. With these parameters the goal functional is isolated to a region close to the
re-entrant corner.

We use the goal-oriented adaptive mesh refinement methodology outlined in section 5.2. We

16







k−
k+

3

2

1

0

1 2 3 4

6.22 7.24 8.06 8.8

∅ 4.94 7.75 10.02

∅ ∅ 0.0 1.66

∅ ∅ ∅ 0.25

ηres

ηbbw

ηzz

50.22

11.14

3.04

Figure 11: L-shaped goal-oriented Poisson problem with linear elements: efficiencies of the dual

weighted estimators derived from η
k+,k

−

bw and other estimators on the last mesh of an adaptively
refined hierarchy.
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Figure 12: Nearly-incompressible elasticity (ν = 0.3) problem with Taylor–Hood elements: effi-

ciencies of the Poisson estimators derived from η
k+,k

−

bw and other estimators on the last mesh of an
adaptively refined hierarchy.

it is sharper than in all the previous test cases. As we can notice on fig. 13, all the estimators are
robust with respect to the incompressibility constraint. All the efficiencies have slightly increased
and some estimators (η2,0bw and η3,0bw ) that where a lower bound of the error previously are now an
upper bound.

7.6 Human femur linear elasticity

In this test case we consider a linear elasticity problem on a domain inspired by a human femur
bone 1.

The goal of this test case is not to provide an accurate description of the behavior of the femur
bone but to demonstrate the applicability of our implementation to 3D dimensional goal-oriented
problem with large number of degrees of freedom: the linear elasticity problem to solve on the
initial mesh, using Taylor-Hood element has 247, 233 degrees of freedom while our last refinement
step reaches 3, 103, 594 degrees of freedom.

The 3D mesh for analysis is build from the surface model using the C++ library CGAL [4]
via the Python front-end pygalmesh. The parameters of the linear elasticity problem for this test
cases are the following: the Young’s modulus is set to 20 GPa and the Poisson’s ratio to 0.42 (see
e.g. [64]). In addition, the load is given by f = (0, 0, 0), the Dirichlet data by uD = 0 on ΓD ( Γ
represented as the left dark gray region of the boundary in fig. 14 and g the traction data is defined
as g = (0, 0, 0) on the center light gray region of the boundary and is constant on the right dark
gray region of the boundary g = (−10−7,−10−7, 10−6). The femur-shaped domain Ω as well as

1The STL model of the femur bone can be found at https://3dprint.nih.gov/discover/3dpx-000168 under a
Public Domain license.
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Figure 13: Nearly-incompressible elasticity (ν = 0.499) problem with Taylor–Hood elements: effi-

ciencies of the Poisson estimators derived from η
k+,k

−

bw and other estimators on the last mesh of an
adaptively refined hierarchy.

the initial and last meshes are shown in fig. 14. As we can see, the refinement occurs mainly in the
central region of the femur, where the goal functional J focus. Some artefacts can be seen as stains
of refinement in the central region due to the fact that we use the initial mesh as our geometry
and on the left due to the discontinuity in the boundary conditions.

In fig. 15 the primal solution is given by the couple (u2, p1) and the dual solution by (z2, κ1).
As we can notice and as expected, the weighted estimator ηw converges twice as fast as the primal
and dual estimators.

8 Conclusions

In this paper we have shown how the error estimator of Bank–Weiser, involving the solution
of a local problem on a special finite element space, can be mathematically reformulated and
implemented straightforwardly in a modern finite element software with the aid of automatic code
generation techniques. Through a series of numerical results we have shown that the Bank–Weiser
is highly competitive in accurately predicting the total global error and in driving an adaptive
mesh refinement strategy. Furthermore, the basic methodology and implementation for the Poisson
problem can be extended to tackle more complex mixed discretizations of PDEs including nearly-
incompressible elasticity or Stokes problems.
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Appendices

A The residual estimators

A.1 Poisson equation

The class of residual estimators, the explicit residual estimator is part of, have been introduced for
the first time in [10]. Let hT be the diameter (see e.g. [65]) of the cell T and hE be the diameter
of the face E in dimension three and the length of E in dimension two. The explicit residual
estimator [3] on a cell T for the Poisson problems eqs. (2) and (4) is defined as

η2res,T := h2T ‖fT +∆uk‖
2
T +

∑

E∈EI∩∂T

1

2
hE‖[[∂nuk]]E‖

2
E +

∑

E∈EN∩∂T

hE‖gE − ∂nuk‖
2
E , (1)

where fT := 1
|T |

∫
T
f is the average of f on the cell T and gE := 1

|E|

∫
E
g is the average of g on the

edge E. The global residual estimator reads

η2res :=
∑

T∈T

η2res,T . (2)

A.2 Linear elasticity equations

The residual estimator for the linear elasticity problem eqs. (39a), (39b), (41a) and (41b) is given
by

η2res,T := ρT ‖RT ‖
2
T + ρd‖rT ‖

2
T +

∑

E∈∂T

ρE‖RE‖
2
E , (3)

where the residuals RT , rT and RE are respectively defined in eqs. (42a) to (42c) and the constants
ρT , ρd and ρE are given by

ρT :=
hT (2µ)

−1/2

2
, ρd :=

(
λ−1 + (2µ)−1

)−1
, ρE :=

hE(2µ)
−1

2
, (4)

with hT the diameter of the cell T and hE the length of the edge E. The global estimator reads

η2res :=
∑

T∈T

η2res,T . (5)

B The Zienkiewicz–Zhu estimator

The Zienkiewicz–Zhu estimator is a gradient recovery estimator based on an averaging technique
introduced in [71]. This estimator belongs to a general class of recovery estimators, see [24, 25, 70]
for recent surveys and a reformulation of the recovery procedure in an H(div)-conforming space
that has superior performance for problems with sharp interfaces. Despite the fact that some
recovery estimators are now available for higher order finite elements (see for example [72]) we
only consider the original estimator, defined for a piecewise linear finite element framework.

Given the finite element solution u1 ∈ V 1 the numerical flux ρ1 := ∇u1 is a piecewise constant
vector field. For each vertex χ ∈ N in the mesh we denote ωχ the domain covered by the union
of cells T having common vertex χ. The recovered flux G(ρ1) ∈ [V 1]2 has values at the degrees of
freedom associated with the vertices N given by

G(ρ1)(χ) :=
1

|ωχ|

∫

ωχ

ρ1 dx ∀χ ∈ N . (6)
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The local Zienkiewicz–Zhu estimator is then defined as the discrepancy between the recovered flux
and the numerical flux

ηzz,T := ‖G(ρ1)− ρ1‖T ∀T ∈ T . (7)

The global Zienkiewicz–Zhu estimator is given by

η2zz :=
∑

T∈T

η2zz,T . (8)

The code in the supplementary material contains a prototype implementation of the Zienkiewicz–
Zhu estimator in FEniCS. We have implemented the local recovered flux calculation in Python
rather than C++, so the runtime performance is far from optimal.
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