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Abstract. Distributed Electric Propulsion (DEP) is one of the unconventional airplane 

architectures of interest in the quest for decreasing aviation environmental footprint. This 

configuration integrates strong and innovative couplings between systems and aircraft design 

disciplines. To address limitations of the traditional approach for certification and of the 

associated means of compliance when certifying innovative products, the European Union 

Aviation Safety Agency (EASA) issues in 2017 a novel certification philosophy that relies on 

high-level objective-based safety requirements. In this context, this paper presents a safety and 

certifiability evaluation of DEP airplane in EASA CS-23 category, with a methodology for 

aircraft-level safety assessment during preliminary design, a certification gap analysis with 

regards to existing means of compliance, and some proposals to clear the certification path for 

DEP configuration. 

1.  Introduction 

Among unconventional airplane architectures envisioned to decrease the environmental footprint of 

aviation, the Distributed Electric Propulsion (DEP) is of high-interest for aircraft designers. Such an 

architecture incorporates innovative design choices. By nature, it can also integrate strong couplings 

between traditional disciplines of aircraft design and certification. Those couplings do not usually exist 

on conventional CS-23 normal category airplanes and the resulting complexity may introduce novel 

risks. Therefore, early evaluation of safety and certifiability concerns during preliminary aircraft 

design stage is of importance to ensure that the novel vehicle is safe and that obstacles on the route to 

certification are identified. 

In this context, this paper proposes a methodological contribution to the assessment, at an aircraft 

integration level, of the effects of design choices on safety and certification regulation for DEP 

airplane. A generic configuration based on the NASA X-57 architecture serves as a basis for this 

analysis that is presented through a cross-analysis of high level safety driven requirements, of existing 

means of compliance and of safety hazards identified for such a configuration. 

 

2.  Distributed electric airplane architecture and functions 

Distributed electric propulsion architecture uses multiple electrically-driven propulsors distributed 

about the airframe, thus distributing airflows and forces generated by propulsion system in such a way 

to yield a net benefit in total efficiency of the airplane [1]. The typical DEP architecture is a spanwise 

distribution of motor-propeller units along the wing leading edge (Figure 1, Figure 2). This synergistic 



 

 

 

 

 

 

propulsion-airframe integration leads to a large spectrum of possible airplane configurations, enabling 

new capabilities and functionalities that include: lift generation and/or augmentation by blowing wings 

with airflow from propellers possibly resulting in a wing area optimized for cruise; improved 

aerodynamic efficiency from positive interaction between propulsors and wingtip vortices; 

optimization of structural loads distribution;  exploitation of redundancies in propulsion system; use of 

differential thrust for control and stability in normal or degraded modes of operations; optimization of 

the airplane power and energy management exploiting the possibilities offered by electric motor 

technologies. 

 

  
Figure 1. Illustration of the NASA X-57 

Maxwell DEP concept airplane 
(https://www.nasa.gov/specials/X57/) 

Figure 2. Illustration of the Daher - 

Airbus - Safran EcoPulse hybrid-electric 

DEP demonstrator (https://www.daher.com) 

 

It can thus be seen that, as compared to conventional CS-23 airplane architecture, a wide design 

space is available for designers through DEP with possible new ways to perform basic airplane 

functions. For the purpose of this study, a generic DEP architecture similar to NASA X-57, 

complemented with the assumption that differential thrust is used for lateral control of the aircraft in 

combination with traditional primary control surfaces and with an advanced flight control system, 

serves as a basis. This configuration is deemed representative enough to analyze novel hazards and 

failure conditions related to DEP. 

 

3.  Regulatory and certification framework for EASA CS-23 category airplanes 

This safety and certifiability evaluation is conducted in the frame of the European Union Aviation 

Safety Agency (EASA) certification specification CS-23, the airworthiness code applicable to certify 

normal category airplanes.  

To foster, from the airworthiness and certification point of view, the introduction of new 

technologies and innovations in CS-23 category airplanes, EASA released in 2017 the amendment 5 of 

CS-23[2], in a harmonized way with Federal Aviation Administration FAA CFR Part 23. This revision 

is a key-enabler for the certification of DEP airplanes. Indeed, previous amendments of CS-23 that 

were historically structured around assumptions based on conventional designs, prove to have become 

too prescriptive - thus constraining design solutions - and increasingly misaligned with the new 

airplanes being certified [3]. 

The revision of CS-23 enforces a novel certification philosophy much more adapted to introduce 

novelties in designs and to address existing and future vehicles. It relies on a performance-based 

approach supported by high level safety criteria. To appropriately consider the diversity of airplane 

types and operations encompassed in its scope of application, it furthermore adopts a risk-based 

approach and a safety continuum where safety requirements are proportionate to the complexity and 

performance of airplanes to certify, instead of the previous categorization based on maximum take-off 

mass and propulsion. 

Two significant evolutions introduced in this revision are duly considered for the certifiability 

analysis of DEP airplane. First is the shift from very detailed and prescriptive previously existing 

certification requirements, to objective-based and design-independent requirements through a non-

prescriptive wording. Technical solutions or design limitations are no more led or imposed by the 



 

 

 

 

 

 

regulation, thus opening the way to develop appropriate procedures and means to demonstrate the 

level of safety of innovative solutions. Second is the possibility offered to extensively rely on existing 

or to be developed standards as acceptable means of compliance (AMC) to safety requirements. Those 

standards shall contain all the necessary detailed compliance requirements. Even though issuance of 

AMC by aviation safety authorities remains possible, development of those standards by aviation 

community, e.g. through standardization bodies, or by a manufacturer is strongly promoted. As 

development of standards can be dynamic, this gives the opportunity to the industry and the 

community to come up with specifications well-adapted to given new technologies, architectures or 

concepts of operations. ATSM International standards for general aviation aircraft (F44) and aircraft 

system (F39) have been considered in the present evaluation. 

 

4.  Methodology overview 

The present work aims at evaluating if a novel airplane configuration, as defined during an early 

aircraft design stage, is suitable from a safety and certification perspective. The evaluation allows an 

early interactive loop between design and safety so as to ensure a viable preliminary design for which 

new hazards are identified and mitigation strategies adopted, existing technical assumptions that may 

be challenged by innovative solutions are addressed, certification difficulties and adequate 

certification basis are properly anticipated.  

To address and formalize this certifiability evaluation of the generic DEP configuration within the 

scope of the abovementioned regulatory and certification framework, an Aircraft Functional Hazard 

Assessment (AFHA) is first conducted as defined in ARP4754A[4] and detailed in ARP4761[5]. By 

analyzing each airplane functions, the novelties in the way they are implemented and the functional 

interactions, outputs of the AFHA are the identification of failure conditions related to DEP, their 

effects at aircraft level and their severity (i.e. Catastrophic, Hazardous, Major, Minor or No Safety 

Effect).  Then, the appropriateness of certification requirements and means of compliance is assessed 

for the purposes of establishing a gap analysis between existing and needed requirements, and, when 

necessary, of formulating proposals for regulatory adjustments. Inputs from previous investigation 

conducted by NASA [6] for X-57 as an experimental airplane, EASA proposed special condition on 

Electric-Hybrid Propulsion Systems (EHPS) [7] and from EASA special condition SC-VTOL-01 [8] 

for Vertical-Take-Off-and-Landing aircraft that assumes distributed propulsion as a common key 

design driver, are used to complement the analysis of EASA CS-23 Amdt. 5 and its related AMC. 

Finally, to address complexity of DEP architecture, lessons learned from this process are 

synthesized through the proposal of a methodology to integrate aircraft-level safety assessment for 

safety and certifiability evaluations combined with preliminary design activities. 

 

5.  Results of safety and certifiability evaluation 

5.1.  DEP Aircraft Functional Hazard Assessment (AFHA) 

The following top-level aircraft functions, decomposed into sub-functions, are selected for the 

assessment: 1. Sustain efficient airborne flight, 2. Control aircraft speed and direction, 3. Navigation 

and guidance, 4. Provide power, 5. Support flight crew, 6. Provide protection and 7. Support 

maintenance and servicing crew activities. Phases of flight representative of a typical point-to-point 

trip with a small aircraft are considered for this AFHA. The exhaustive evaluation of functional failure 

conditions and their effects for the given generic DEP configuration, with available or assumed 

preliminary design information, highlights to following key findings. 

 

First, as the DEP architecture may combine provision of thrust, lift and control, the most significant 

novel failure conditions are resulting from asymmetrical forces (thrust, lift, drag) across the wings, and 

from loss of power leading to a loss of control and a loss of powered lift. Sub-functions “Lift 



 

 

 

 

 

 

generation through high-lift propulsors”, “Provision of lateral and directional control” and 

“Minimization of drag through wing-tip vortex interaction” are the most impacted by novel hazards, 

with severity of effects ranging from Major to Catastrophic. Second, even though it is not specific to 

DEP architecture, the function “Provision of electrical power” (including storage, generation and 

distribution) obviously presents a high level of criticality due to the cascading effects of total or partial 

loss of electric power on propulsive power generation, lift generation and provision of control. Third, 

failure conditions resulting from common modes, exposure to particular risks and cascading effects of 

an initial failure linked to proximity of propulsors (motors, propellers) require a detailed assessment 

related to design choices with regards to sub-functions for protection against lightning, 

electromagnetic interference, high intensity radiated field, and bird strike.  

Finally, as functions and associated architectures can be designed with varying levels of 

complexity, it can be retained from the implementation of this AFHA that flexibility and 

proportionality in certification approach, safety requirements and compliance demonstration is needed 

to secure viable design choices.  

5.2.  Certifiability evaluation and certification gap analysis 

The latest revision of EASA CS-23 has expanded the scope of normal category aircraft by 

transitioning to performance based requirements, but there is a lack of available standards to satisfy 

these requirements for novel designs. Demonstrating that the innovative design can be certified, 

operated, and maintained in an existing aeronautical environment can pose a significant challenge as 

design space is large. In order to move towards certification of such a system, it is necessary to 

consider a higher level approach towards certification. 

CS-23 Amdt. 5 is analyzed to determine if the newly introduced performance objectives adequately 

cover the novel design features and if the defined acceptable means of compliance are directly 

applicable. It is desirable to use established certification methods and activities as it simplifies the 

process for the designer. With that goal, Table 1 presents the synthetic view of the gap analysis and the 

qualitative quantification of how the existing regulations, AMC and standards may be impacted to 

adequately address DEP in a type certification process.  

 

 

Table 1. Synthesis of gap analysis for each subpart of EASA CS-23 Amdt. 5 and related AMC and 

standards 

 Quantification of impact 

of DEP on existing 

regulation and standards 

Significant Gaps identified 

Subpart-A General Not Impacted No Significant Gaps. 

Subpart-B Flight Significant Impact Lack of available performance standards to 

certify DEP. 

Subpart-C Structures Not Impacted No Significant Gaps. 

Subpart-D Design and 

Construction 

Slightly Impacted Implementation of advanced flight controls 

would require additional specifications. 

Subpart-E Powerplant 

Installation 

Significant Impact Lack of available standards and 

specifications for electric propulsion and 

integration. 

Subpart-F Systems 

and Equipment 

Slight Impact Expanded scope of Safety Assessment. 

Requirements for Electric Systems. 

Subpart-G Flight 

Crew Interface and 

Other Information 

Slight Impact Integration of Advanced Flight Control 

Systems. 

Standards for display of required 

information. 

 



 

 

 

 

 

 

The following sections describe the certification disciplines that present the most significant 

challenges to address. 

5.2.1.  Flight certification requirements. Certification of Flight characteristics involve the 

determination of design speeds and corresponding performances of the aircraft in established 

conditions, phases of flight and with probable failures. Conventionally, one of the most critical failure 

conditions impacting flight performance is considered as failure of one engine. The aircraft needs to 

demonstrate a certain level of performance and control margin in this condition. In a DEP 

configuration multiple scenarios exist for propulsive failures each with a different impact on the 

performances and controllability. To have a similar demonstration for all failure combination may not 

be feasible or even practical. Same reasoning is applicable for example for stall speed, minimum 

control speeds, take-off and landing speeds. 

A conventional approach would either require extensive testing and demonstration to satisfy the 

conventional methodology or to force simplification of the design to reduce the level of testing 

required. A conservative design would mean that maximum benefit from DEP configuration will not 

be achievable. A similar demonstration may not guarantee safety of the design either, since the 

existing methodology does not consider the novel relationship between functions. 

5.2.2.  Flight controls certification requirements. In conventional design, the flight controls need to 

ensure the aircraft remains controllable in all phases of flight with probable failures which can affect 

the controllability. The primary factors affecting controllability are the control effectiveness due to 

aircraft speed and moments which reduce the control margin. One of the most adverse conditions for 

conventional aircraft is landing with asymmetric thrust after loss of one engine where there is an 

adverse moment condition on the aircraft which needs to be managed with less effective controls due 

to low speed. 

While the overall objective remains the same for the DEP aircraft, the factors which affect the 

handling qualities are larger in number and with varying degrees of impact because of the complex 

relation between thrust and available lift. It may be necessary to manage the aircraft configuration 

using a suitably complex flight management system. Such a system may be a fly-by-wire system 

working in conjunction with the propulsion management system, the failure of which can also affect 

performances and certifiability of the aircraft.  

Certification of complex flight control systems is not a novel concept and has been widely used in 

EASA CS-25 large airplane category. The Handling Qualities and Ratings Method [9] is one such 

example which relies on determination of the impact of failures of associated systems on handling 

characteristics combined with probable atmospheric disturbances. This method combines using a 

safety assessment to develop the systems with focused testing of the aircraft characteristics in reduced 

control margins to validate the design in probable failure scenarios. Such a method needs to be part of 

the design process at an early stage with comprehensive identification of probable failure scenarios 

which would need to be investigated. 

5.2.3.  Powerplant and Propulsion certification requirements. Distributed propulsion is only feasible 

using some form of electric propulsion To certify electric propulsion systems, EASA proposed the 

special condition EHPS [7] that offers promising elements to address the certification of an electric 

propulsion system as a complete system including elements at aircraft level, and not necessarily with a 

Type Certificate of its own as allowed by the EASA Basic Regulation. 

 The proposed special condition also includes requirements for supporting systems for the engines 

(such as fuel, electricity, etc.), which are conventionally part of the aircraft, in the electric propulsion 

system. The intent is to consider all elements responsible for producing thrust in the same context. 

This is beneficial for the DEP configuration as it simplifies the development process since these 

systems will also be responsible for managing lift and controllability. However, since the standards 



 

 

 

 

 

 

and specifications for certification of electric propulsion systems are under development this 

intermediate conclusion will need to be re-evaluated when they are available. 

5.2.4.  Flight Crew Interface certification requirements. Since an increased reliance on aircraft 

systems for managing the aircraft is considered, it is also important to consider human factors in 

operating such equipment. Usually, the pilots operating CS-23 aircraft are not dealing with complex 

systems. Even though digital cockpits are more common recently, the relationships between aircraft 

functions have remained simple. It is important to develop the cockpit environment considering such 

constraints. CS-23.2600 adequately set the high level safety objective for a flight deck. In order to 

meet these objectives, it is necessary to develop new standards for cockpit design considering novel 

designs with an objective to minimize crew errors resulting in additional hazards [2]. Determination of 

crew qualification criteria is identified as a key concern but not addressed in this paper. 

 

6.  Lessons learned and proposals 

The lessons learned from the evaluation demonstrate: 

 Strong interactions between systems and airplane functions (e.g. couplings between flight 

controls/propulsion/lift generation, multiple possible aerodynamic configurations, effects 

on controllability in degraded situation) that are not well addressed in AMC; this deserves a 

formalized interdependence analysis in safety assessment process; 

 The highly integrated nature of the DEP architecture and the possible higher complexity of 

systems necessitate an integration of safety assessment methodologies during preliminary 

design stage to reach viable designs; 

 Cascading effects and propagation of failures may be emphasized by the density of 

components necessary for the distributed propulsion (e.g. propellers and motors proximity, 

exposure to external events such as bird strike) and requires an appropriate analysis. 

Those challenges can be addressed by taking benefit from already existing safety assessment 

techniques, and it is proposed to iteratively conduct a preliminary aircraft level safety and design 

assessment during initial design stage. The format of this assessment is derived from SAE ARP4761 

and the work of Voros [10] to improve system design and safety evaluation for small airplanes.  

Indeed, the safety assessment process described in the SAE ARP4761 is the most common 

methodology for most complex designs. This process covers majority of the factors which affect 

safety of the system and gives a good baseline for adapting the process depending on the complexity 

of the design. The same process forms the core of the proposed methodology for developing the DEP 

airplane. However, the key difference is introduction of some new factors which are not covered in the 

ARP4761 process. It is key to know that the proposed methodology will have a wider implementation 

in the design process and will need to start at an early design stage. The proposed approach is depicted 

in Figure 3. 

The process starts with defining the aircraft functions which will include basic aircraft functions 

originating from the design and functions originating from performance requirements stated in or 

derived from the CS-23 Amdt. 5 and associated AMC. As an example to illustrate the latter, the 

following function can be derived for compliance to requirement CS-23.2120 of determining climb 

performance after propulsive failure: “Maintain Steady Climb gradient of 1% after probable loss of 

thrust”. 

These functions would serve as an input for the Preliminary Aircraft level Functional Hazard 

Assessment (AFHA). This process needs to be started early in the design phase to minimise forced 

design changes due to non-compliance to certification requirement. This AFHA will be necessary to 

identify failure conditions which may not be acceptable regardless of their probability of occurrence. 



 

 

 

 

 

 

 
Figure 3. Proposed methodology for a preliminary aircraft level safety and design 

assessment. 

 

The Preliminary Aircraft Safety Assessment (PASA) would depend on the available data for the 

components used in the design. At the system level sufficient standards are available for development, 

as well as historical data for failure rates which can be used to estimate the safety assessment process. 

At this stage, as a conclusion arising from the safety and certifiability evaluation of the 

abovementioned generic DEP configuration, the particular risk analysis (PRA) and common mode 

analysis (CMA) has to be complemented by an Interdependence Analysis as well as Analysis of 

Handling Qualities to determine that the overall design remains safe.   

The remaining process would follow the conventional approach defined in the SAE ARP4761 

which would require identification of design assurance levels and safety objectives for various systems 

and validation and verification activities carried out to verify the accuracy of the design. 

 

7.  Conclusion 

DEP architecture introduces a level of complexity that is not common for small CS-23 airplanes. This 

paper synthesizes a safety and certifiability evaluation of a generic DEP architecture based on NASA 

X-57. The adequacy of the novel certification philosophy and performance-based requirements 

introduced by EASA in CS-23 Amendement 5 to certify a DEP airplane has been checked through a 

gap analysis on regulatory requirements. Further developments of means of compliance and standards 

are necessary to cover innovative solutions introduced by DEP and to incorporate the large available 

design space especially for design speeds determination, electric propulsion system and cockpit 

design. 

To address this existing complexity, the paper proposes to take benefit, during preliminary CS-23 

airplane design stage, from existing safety assessment techniques and to apply them to an integrated 

design – safety – early certifiability engineering practice. A generic methodology is then proposed for 

certifiability evaluation through a preliminary aircraft level safety and design assessment derived from 

SAE ARP4754A and ARP4761. Initiated during preliminary airplane design stage, this evaluation is 

of high interest to derisk novel architectures (e.g. functions implementation, airframe & systems 



 

 

 

 

 

 

designs choices) and to clear the path to certification with anticipation of challenges and development 

of needed standards. 
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