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Abstract

We propose to study quantile-oriented sensitivity indices (QOSA indices) and show some
of their theoretical properties. These have a number of shortcomings, when dealing both
with independent and dependent inputs, which lead us to define new generic indices based
on the Shapley values named goal-oriented Shapley effects (GOSE). In particular, we focus
on quantile-oriented Shapley effects (QOSE) and subsequently perform several calculations
of QOSA indices and QOSE in order to better understand the behaviour and the respective
interest of each.

Keywords: Quantile-oriented sensitivity analysis; Goal-oriented Shapley effects.

1 Introduction
Sensitivity Analysis (SA) is defined by Saltelli et al. (2004) as “the study of how the uncertainty
in the output of a model can be apportioned to different sources of uncertainty in the model
input”. Various tools exist today to perform a SA (see e.g. Iooss and Lemaître (2015) for a
review of SA methods).

We are especially interested in Global Sensitivity Analysis methods - GSA - which allow to
study the effects of simultaneous variation of the inputs on the model output in their entire do-
main. For a detailed description of sensitivity analysis methods, the interested reader can refer
to the various survey papers dedicated to this topic (Saltelli et al., 2004, 2008; Faivre et al.,
2016; Borgonovo and Plischke, 2016; Borgonovo, 2017). Variance-based methods are common
tools in the analysis of complex physical phenomenons. Most of them rest on an ANalysis Of
VAriance (ANOVA) of the model output and give information on the sensitivity around the
mean (as it is variance based). In this paper, we are interested in quantile-oriented indices, in
order to obtain informations on the sensitivity around quantiles. Much less work has been done
on quantile-oriented sensitivity analysis (QOSA). We shall first focus on indices defined in Fort
et al. (2016) and generalized later in Borgonovo et al. (2021) who have established that they
can be interpreted as information value in a reporting problem under a proper scoring rule.
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For the sake of completeness, Section 2 shortly recalls variance-based methods dealing both
with independent and dependent inputs.
Section 3 introduces QOSA indices which allow to quantify the sensitivity over a quantile. It
should be noted that QOSA indices are closely related to the information value when the decision
problem is to report the α-quantile of the output (see Proposition 12 of Borgonovo et al. (2021)),
which gives them a natural interpretation. Other quantile-oriented indices were proposed in
Kucherenko et al. (2019) based on a quadratic scoring rule. Nevertheless, it is well-known that
such a rule is relevant to deal with the problem of choosing a point estimate of the output.
Accordingly, there is a mismatch with the goal to accurately assess the impact of the inputs on
a α-quantile. Shortcomings of such indices regarding the interpretation of the influence of the
inputs on the α-quantile of the output will be highlighted on an example in Section 3. Some
properties of QOSA indices are also proposed within this section. Several calculations of QOSA
indices are done in Section 4 and a preliminary work is carried out in order to understand the
impact of the statistical dependence between the inputs over these indices.
Facing some interpretation issues, new indices based on Shapley values (Shapley, 1953) named
GOSE (goal-oriented Shapley effects) are proposed in Section 5 to quantify the importance of
an input on a specific quantity of interest of the output. In particular, QOSE (quantile-oriented
Shapley effects) are introduced to assess the influence of inputs on the α-quantile of the output
and seem to be a promising alternative.
A natural extension of Cramér-von Mises indices, defined in Gamboa et al. (2018), is also
proposed in this paper. Cramér-von Mises indices rest on the Hoeffding decomposition which
requires the independence assumption between the inputs which could lead to some intepretation
problems when dealing with dependent inputs. To overcome this limitation, we take advantage of
the allocation rule of Shapley values and introduce, in Section 6, new indices named Cramér-von
Mises distance-based Shapley effects, valid for both independent and dependent inputs. These
new indices complement GOSE as they allow to the practitioner to measure the importance of
inputs on the whole distribution of the output and not to a specific feature of interest.
Finally, a first estimator for QOSE is introduced and studied in Section 7 while Section 8 presents
some further perspectives of research.

Consider a model Y = η(X) with d random inputs denoted by X = (X1, X2, . . . , Xd). Let
XJ indicate the vector of inputs corresponding to the index set J ⊆ D where D = {1, 2, . . . , d}.
GSA aims at quantifying the impact of the inputs X1, X2, . . . , Xd, individually or in group, on
the output Y .

2 Variance-based sensitivity indices
We shall briefly recall the framework of Sobol’ indices and variance-based Shapley effects.

2.1 Sobol’ indices
Sobol’ sensitivity indices stem from the works of Fisher and Mackenzie (1923) and Hoeffding
(1948) on the U-statistics taken up by various authors over time such as Efron and Stein (1981).
Let us mention that Pearson (1905) discussed the correlation ratio and Kolmogoroff (1933)
recognized this as an estimator of the variance of a conditional expectation.
The theoretical basis for the definition of Sobol’ indices is a functional ANOVA expansion of the
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model output η:

Y = η(X) = η0 +
d∑
i=1

ηi(Xi) +
∑

16i<j6d
ηij(Xi, Xj) + · · ·+ η1,...,d(X)

=
∑
u⊆D

ηu (xu) .

(2.1)

This decomposition is unique under orthogonality constraints (see Sobol (1993)), that are verified
when dealing with independent inputs, and therefore each term writes as follows,

ηu (xu) =
∑
v⊆u

(−1)|u|−|v| E [Y |Xu = xu] , u ⊆ D .

The orthogonality of the terms ηu leads us to the following decomposition of the global variance

Var(Y ) =
d∑
i=1

Vi +
∑

16i<j6d
Vij + · · ·+ V1,...,d

=
∑
u⊆D

Var (ηu (Xu)) .

(2.2)

The so-called Sobol’ indices given in Sobol (1993) are derived from (2.2):

Su = Var (ηu (Xu))
Var(Y ) =

∑
v⊆u (−1)|u|−|v|Var (E [Y |Xu = xu])

Var(Y ) , u ⊆ D . (2.3)

The sum of Sobol’ indices over all subsets of inputs being equal to one, they can be directly
interpreted as the contribution of each subset of inputs to the output variance. In particular, the
first-order index Si (also called main effect) measures the part of variance of the model output
that stems from the variability in Xi, the second-order index Sij measures the part of variance
of the model output due to the interaction between Xi and Xj and so on for higher interaction
orders.

Using Si, Sij and higher order indices given above, one can build a picture of the importance
of each variable in the output variance. However, when the number of variables is large, the
computation of all Sobol indices requires the evaluation of 2d − 1 indices, which can be too
computationally demanding. For this reason, another popular variance based coefficient called
Total-order index by Homma and Saltelli (1996) is used. It measures the contribution to the
output variance of Xi, including its main effect as well as all its interaction effects, of any order,
with any other input variables. This index is defined by

STi = Si +
∑

16i<j6d
Sij + · · ·+ S1,...,d

= 1− Var (E [Y |X−i])
Var(Y ) = E [VarXi (Y |X−i)]

Var(Y ) ,

(2.4)

where the notation X−i indicates the set of all variables except Xi. The following property can
easily be deduced (the independence assumption is crucial here):

0 6 Si 6 STi 6 1 .

Hence, the closer the index STi is to 1, the more influential the variable is. It should be noted
that the case of equality Si = STi occurs if we have a purely additive model.
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Sobol’ indices are well-defined for independent inputs. Indeed, the functional decomposition
of the output variance given in (2.2) is unique in this context. This makes possible to clearly
identify the contribution of each input or group of inputs to the variance output.

However, in many applications, it is common that inputs have a statistical dependence struc-
ture: X may have support in a non-rectangular region or physical constraints may impose a
probabilistic dependence structure. If the independence assumption is not satisfied, the unique-
ness of the functional ANOVA decomposition is no longer guaranteed. The classical Sobol’
indices can still be calculated but their interpretation becomes difficult. Indeed, as mentioned
in Song et al. (2016), the sum of first-order effects may exceed the total variance of the output
or the sum of the total effects may be lower than the total variance of the output.

Several works have been carried out to overcome this limitation and extend Sobol’ indices
to the case of stochastic dependence such as Caniou (2012); Kucherenko et al. (2012); Mara
and Tarantola (2012); Mara et al. (2015). However, none of these works has given an univocal
definition of the functional ANOVA decomposition for dependent inputs as the one provided
by Sobol (1993) when inputs are independent. A new variable importance measure has been
defined in Chastaing et al. (2012) through a generalization of ANOVA when inputs are dependent
(Stone, 1994). But this measure comes with two conceptual problems: it requires some restrictive
conditions on the joint probability distribution of the inputs as underlined in Owen and Prieur
(2017) and its interpretation remains difficult because it can be negative.

New indices called Shapley effects have been proposed in Owen (2014). They present good
properties in the presence of dependence: they are non-negative, they sum to the total output
variance and they are easy to interpret as highlighted by Song et al. (2016); Owen and Prieur
(2017); Benoumechiara and Elie-Dit-Cosaque (2019); Iooss and Prieur (2019) .

2.2 Shapley effects
Shapley values have been introduced in game theory by Shapley (1953). The motivation, in
the context of cooperative game theory, was to define an attribution method to allocate fairly
the value created by a team effort to its individual members. Turning now to variance-based
sensitivity analysis, it appears that the idea of assigning a portion of the output variance to each
input variable has some similarities. These were highlighted and brought to the SA community,
in the context of variance-based sensitivity analysis, by Owen (2014).

In cooperative game theory, a d-player game with the set of playersD = {1, 2, . . . , d} is defined
as a real-valued function that maps a subset of D to its corresponding cost, i.e., c : 2D 7→ R

with c(∅) = 0. Hence, c(J ) represents the cost that arises when the players in the subset J
of D participate in the game. Then, thanks to an attribution method, denoted v, the amount
c(D) earned by the entire team is fairly shared between all the players. The latter should satisfy
some intuitive properties and the following ones are classical.

• Efficiency:
d∑
i=1

vi = c (D). The sum of the values attributed to the players must be equal

to what the coalition of all the players can obtain.

• Symmetry: if c(J ∪{i}) = c(J ∪{j}) for all J ⊆ D\{i, j}, then vi = vj . The contribution
of two players should be the same if they contribute equally to all possible coalitions.

• Dummy: if c(J ∪ {i}) = c(J ) for all J ⊆ D\{i}, then vi = 0. A player who does not
change the predicted value, no matter to which coalition of players it is added, should have
a contribution value of 0.
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• Additivity: if the i-th player has a contribution vi (resp. v′i) in the coalitional game
described by the gain function c (resp. c′). Then, the contribution of the i-th player in
the new coalitional game described by the gain function c+ c′ is vi + v′i for i ∈ D.

Shapley (1953) showed that the unique valuation vi that satisfies these properties is given by

vi =
∑

J⊆D\{i}

(d− |J | − 1)!|J |!
d! (c (J ∪ {i})− c (J )) , (2.5)

defined for the player i with respect to the cost function c(·) and where |J | indicates the size of
J . In other words, vi is the incremental cost of including player i in the set J averaged over all
sets J ⊆ D\{i}. It has to be noted that there are alternative representations also satisfying
the properties.

In the framework of GSA, we may consider the set of inputs of η(·) as the set of players D.
We then need to define a c(·) cost function such that for J ⊆ D, c(J ) measures the part of
variance of Y caused by the uncertainty of the inputs in J . To this aim, we want a cost function
that verifies c(∅) = 0 and c(D) = Var(Y ).

Owen (2014) first proposed the cost function c̃(J ) = Var (E [Y |XJ ]) for considering the
Shapley value in the framework of variance-based sensitivity indices. Song et al. (2016) showed
later in their Theorem 1 that Shapley values defined using cost functions c̃(J ) and c(J ) =
E [Var (Y |X−J )] are equal. They used the term Shapley effects to describe variance-based Shap-
ley values as new importance measures in SA. Note that in Owen (2014); Song et al. (2016),
the cost function is not normalized by the variance of Y , whereas, in this paper, we consider
its normalized version to quantify relative importance of each input with respect to the output
variance. We denote hereafter the Shapley effect by Shi and a generic Shapley value by vi.
Shapley effects rely on an equitable allocation of part of the output variance to each input. In case
of dependent inputs, several test-cases where the Shapley effects can be analytically computed
have been investigated in Owen and Prieur (2017); Iooss and Prieur (2019); Benoumechiara and
Elie-Dit-Cosaque (2019) in order to understand the effect of the dependence between inputs
on the variance-based Shapley values. Benoumechiara and Elie-Dit-Cosaque (2019) have also
compared the Shapley effects with the strategy proposed in Mara et al. (2015) based on the
estimation of four sensitivity indices per input. In this last case, Shapley effects can be a good
alternative to the existing extensions of classical Sobol indices. Indeed, Shapley effects allow
an apportionment of the interaction and dependence contributions between the inputs involved,
making them condensed and easy-to-interpret indices.

3 Quantile-oriented sensitivity indices
In the previous section, variance-based measures have been reviewed. Even if these indices are
extremely popular and informative importance measures, they only study the impact of the input
variables around the expectation of the output distribution as they use the variance as a distance
measure, in order to compare conditional expectations with the unconditional expectation of the
output distribution. However, as highlighted by Borgonovo (2006), in some cases, this one poorly
represents the variability/uncertainty of the output distribution. Different approaches have
been developed to overcome this issue including, for example, moment independent importance
measures proposed by Borgonovo (2007); Borgonovo et al. (2011); Luyi et al. (2012); Gamboa
et al. (2018) that quantify the influence of an input over the whole distribution of the output.

Another approach presented in Fort et al. (2016) is to define indices that quantify the impact
of inputs X = (X1, . . . , Xd) on a feature of interest of the output distribution depending on

5



the problem (mean, quantiles and so on). They refer to this method as goal-oriented sensitivity
analysis (GOSA). These indices rely on contrast functions and are members of a wider family
containing sensitivity indices based on dissimilarity measures (Da Veiga, 2015). We shall consider
the specific case of quantile-oriented sensitivity analysis (QOSA).

3.1 First-order QOSA indices
Let us focus on QOSA indices measuring the impact of the inputs over the α-quantile of the
output distribution. Given a level of quantile α ∈ ]0, 1[, let us recall the expression of the
first-order QOSA index:

Sαi =
min
θ∈R

E [ψα (Y, θ)]− E
[
min
θ∈R

E [ψα (Y, θ)|Xi]
]

min
θ∈R

E [ψα (Y, θ)]

= E [ψα (Y, qα (Y ))]− E [ψα (Y, qα (Y |Xi))]
E [ψα (Y, qα (Y ))] ,

(3.1)

where ψα : (y, θ) 7→ (y − θ)
(
α− 1{y6θ}

)
is the contrast function associated to the α-quantile

and the q’s are the quantiles

qα (Y ) = arg min
θ∈R

E [ψα (Y, θ)] and qα (Y |Xi = xi) = arg min
θ∈R

E [ψα (Y, θ)|Xi = xi] .

For α ∈]0, 1[ and if Y admits a positive density on its support, then the denominator in (3.1)
does not vanish. Remark that replacing ψα in the above equation by (y, θ) 7→ (y − θ)2 leads
to the definition of first-order Sobol indices. In order to interpret QOSA indices, one has to
consider ψα(Y, θ) as a dispersion measure of Y which is minimized for θ = qα(Y ). Hence QOSA
indices compare the dispersion of Y around its quantile with its conditional counterpart.
The first-order QOSA indices have been defined in Fort et al. (2016), studied and estimated
in Browne et al. (2017); Maume-Deschamps and Niang (2018); Elie-Dit-Cosaque and Maume-
Deschamps (2021). They may be rewritten as follows

Sαi =
E

[
Y 1{Y 6qα(Y |Xi)}

]
− E

[
Y 1{Y 6qα(Y )}

]
αE [Y ]− E

[
Y 1{Y 6qα(Y )}

] = 1−
αE [Y ]− E

[
Y 1{Y 6qα(Y |Xi)}

]
αE [Y ]− E

[
Y 1{Y 6qα(Y )}

] .

Firstly, it should be noted that the properties of the term E

[
(E [Y ]− Y )1{Xi6qα(Xi)}

]
instead of

E

[
(E [Y ]− Y )1{Y 6qα(Y |Xi)}

]
, used in the equation above, have been studied as cusunoro curves

in Plischke (2012). Secondly, first-order QOSA indices are closely related to the recent quantile
sensitivity measures defined in Proposition 12 of Borgonovo et al. (2021), i.e., the information
value when the decision problem is to report the α-quantile of the output. It supports the use of
QOSA indices as sensitivity measures when the goal of the practitioner is to assess the impact
of the inputs on the α-quantile of the output.

Another quantile-oriented index has also been proposed in Kucherenko et al. (2019) to assess
the impact of inputs over the α-quantile of the output distribution. Instead of considering the
expression of the first-order Sobol index based on a contrast function as in (3.1), they consider
the expression of Sobol’ indices with numerator Var (E [Y |Xi]) = E

[
(E [Y |Xi]− E [Y ])2

]
and

simply replace the expectations by α-quantiles to define the following indices

q̄αi,1 = E [|qα (Y )− qα (Y |Xi)|] and q̄αi,2 = E

[
(qα (Y )− qα (Y |Xi))2

]
.
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They also provide the normalized versions as follows

Qαi,1 =
q̄αi,1
d∑
j=1

q̄αj,1

and Qαi,2 =
q̄αi,2
d∑
j=1

q̄αj,2

.

These measures thereby quantify the mean distance between quantiles qα (Y ) and qα (Y |Xi)
rather than the mean distance between average contrast functions like in the first-order QOSA
index given in (3.1). The indices q̄αi,1 and Qαi,1 will be called below absolute value indices; q̄αi,2 and
Qαi,2 will be called below squared indices. The example below shows that their interpretation as
sensitivity indices is questionable, it is why we shall focus on QOSA indices.

Consider the simple model also studied in Fort et al. (2016): Y = X1 − X2 where X1 and
X2 are two independent exponential random variables with expectation 1. Hence Y follows a
Laplace distribution. QOSA indices have closed form formulas that may be found in Fort et al.
(2016). The indices proposed in Kucherenko et al. (2019) may also be computed. Indeed, with

γ1 =
{
− log (2α (1− α)) if α ≥ 1

2
log(2) if α < 1

2
,

and

γ2 =
{

log(2) if α ≥ 1
2

− log (2α (1− α)) if α < 1
2
,

we have
q̄α1,1 = γ1 + 2e−γ1 − 1 and q̄α2,1 = γ2 + 2e−γ2 − 1 ;

q̄α1,2 = γ2
1 − 2γ1 + 2 and q̄α2,2 = γ2

2 − 2γ2 + 2 .
Below, the behaviour of QOSA, q̄αi,1 and q̄αi,2 indices is shown in Figure 1. As expected, QOSA
indices show that X1 has more influence on quantiles of level higher that 1

2 and X2 is more
influent for α lower than 1

2 . The interpretation of q̄αi,j is not so clear since q̄α1,j are constant for α
less than 1

2 and q̄α2,j are constant for α greater than 1
2 . Moreover, the q̄αi,2’s are not monotonic.
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Figure 1: Un-normalized first-order QOSA, absolute value and squared indices as a function of
the α level for the model Y = X1 −X2

The normalized indices, presented in Figure 2 below, show that the interpretation for Qαi,j
remains questionable while the normalized QOSA indices keep the interpretation of the un-
normalized ones.
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Figure 2: Normalized first-order QOSA, absolute value and squared indices as a function of the
α level for the model Y = X1 −X2

3.2 Some elementary properties of QOSA indices
Let us turn to some elementary properties of QOSA indices.
The following lemma is useful, it is closely related to the proof of sub-additivity of TVaR1 in
risk theory (see e.g. Marceau (2013)).

Lemma 3.1.
Consider any event E such that P(E) = α. Then, for any random variable X, we have

E

[
X1{X6qα(X)}

]
6 E [X1E ] ,

with qα(X) the α-quantile of X.

Proof of Lemma 3.1.

We have:

E

[
X1{X6qα(X)}

]
− E [X1E ] = E

[
X
(
1{X6qα(X)} − 1E

)]
= E

[
(X − qα(X))

(
1{X6qα(X)} − 1E

)]
6 0 .

�

As a consequence, since P (Y 6 qα (Y |Xi)|Xi) = α and P (Y 6 qα (Y )) = α, we get that

αE [Y ]− E
[
Y 1{Y 6qα(Y |Xi)}

]
= E

[
(Y − qα (Y |Xi))

(
α− 1{Y 6qα(Y |Xi)}

)]
> 0 (3.2)

αE [Y ]− E
[
Y 1{Y 6qα(Y )}

]
= E

[
(Y − qα (Y ))

(
α− 1{Y 6qα(Y )}

)]
> 0 (3.3)

E

[
Y 1{Y 6qα(Y |Xi)}

]
− E

[
Y 1{Y 6qα(Y )}

]
> 0 . (3.4)

This implies that 0 6 Sαi 6 1 as already noticed in Fort et al. (2016). The index Sαi also has
the three following interesting properties.

Proposition 3.2.
1Recall that the definition of TVaR of level α ∈]0, 1[ for a continuous random variable X is given by:

TVaRα(X) = E(X | X > qα(X)).
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1. Sαi is invariant with respect to translations of the output Y .

2. Sαi is invariant by scale change with positive ratio of the output Y .

3. A scale change with negative ratio of the output Y gives the index S1−α
i associated to the

1− α level.

Proof of Proposition 3.2.

Let us consider any model Y = η (X). We will denote by S′αi the QOSA indices related to a
r.v. Y ′.

1. Let Y ′ = Y+k, k ∈ R. Then, we have qα (Y ′) = qα (Y )+k and qα (Y ′|Xi) = qα (Y |Xi)+k.
It is easy to check that S′αi = Sαi .

2. Let Y ′ = k×Y, k > 0. Then we have, qα (Y ′) = k×qα (Y ) and qα (Y ′|Xi) = k×qα (Y |Xi).
We can easily show that S′αi = Sαi .

3. Let Y ′ = k × Y, k < 0. Then we have, qα (Y ′) = k × q1−α (Y ) and qα (Y ′|Xi) =
k × q1−α (Y |Xi). It leads to S′αi = S1−α

i .

�

Now, we are going to investigate the sum S of the first-order QOSA indices:

S =
d∑
i=1

Sαi =

d∑
i=1

E

[
Y 1{Y 6qα(Y |Xi)}

]
− dE

[
Y 1{Y 6qα(Y )}

]
αE [Y ]− E

[
Y 1{Y 6qα(Y )}

] .

We see that S 6 1 if and only if
d∑
i=1

E

[
Y 1{Y 6qα(Y |Xi)}

]
− dE

[
Y 1{Y 6qα(Y )}

]
6
(
αE [Y ]− E

[
Y 1{Y 6qα(Y )}

])
. (3.5)

Or equivalently:

αE [Y ] + (d− 1)E
[
Y 1{Y 6qα(Y )}

]
−

d∑
i=1

E

[
Y 1{Y 6qα(Y |Xi)}

]
> 0 .

As proved in the following proposition, S is smaller than 1 in the case of an additive model with
independent inputs. Unfortunately, this result is not true in the general case as shown with a
counterexample in Subsection 4.1.

Proposition 3.3.

Let X = (X1, . . . , Xd) with independent Xi’s. Let Y = m0 +
d∑
i=1

mi (Xi) be an additive model.
Then, the sum of the first-order QOSA indices S satisfies S 6 1.

Proof of Proposition 3.3.

Given a random variable X, we denote by qα(X) its α-quantile. For any i = 1, . . . , d, let
Xs(−i) = ∑

16j6d
j 6=i

mj(Xj). Due to the independence between the Xi’s, we have

qα (Y |Xi) = m0 +mi(Xi) + qα
(
Xs(−i)

)
, and {Y 6 qα (Y |Xi)} = {Xs(−i) 6 q

α
(
Xs(−i)

)
} .

9



We have

g(α) = αE [Y ] + (d− 1)E
[
Y 1{Y 6qα(Y )}

]
−

d∑
i=1

E

[
Y 1{Y 6qα(Y |Xi)}

]

= αE [Y ] + (d− 1)E
[
Y 1{Y 6qα(Y )}

]
−

d∑
i=1

(
α×m0 + E

[
mi(Xi)1{Xs−(i)6qα(Xs(−i))}

]
+ E

[
Xs(−i)1{Xs−(i)6qα(Xs(−i))}

])
.

The independence of the Xi’s implies that E
[
mi(Xi)1{Xs(−i)6qα(Xs(−i))}

]
= αE [mi(Xi)] and

thus,

g(α) = (d− 1)E

 d∑
j=1

mj(Xj)

1{Y 6qα(Y )}

− d∑
i=1

E

[
Xs(−i)1{Xs(−i)6qα(Xs(−i))}

]
.

Now, we use Lemma 3.1 which gives:

(d− 1)E

 d∑
j=1

mj(Xj)

1{Y 6qα(Y )}

 =
d−1∑
i=1

(
E

[
mi(Xi)1{Y 6qα(Y )}

]
+ E

[
Xs(−i)1{Y 6qα(Y )}

])

>
d−1∑
i=1

(
E

[
mi(Xi)1{Y 6qα(Y )}

]
+ E

[
Xs(−i)1{Xs(−i)6qα(Xs(−i))}

])
.

As a consequence,

g(α) >
d−1∑
i=1

E

[
mi(Xi)1{Y 6qα(Y )}

]
− E

[
Xs(−d)1{Xs(−d)6qα(Xs(−d))}

]
= E

[
Xs(−d)1{Y 6qα(Y )}

]
− E

[
Xs(−d)1{Xs(−d)6qα(Xs(−d))}

]
> 0 using again Lemma 3.1.

�

First-order QOSA indices capture only the main effect of the i-th input. Following Kala
(2019), we consider below higher order QOSA indices.

3.3 Higher order QOSA indices
Kala (2019) introduced second-order QOSA indices in order to assess the impact of the interac-
tion effect of two inputs on the α-quantile. He proposes to measure the joint effect of the pair
(Xi, Xj) by:

Sαij =
min
θ∈R

E [ψα (Y, θ)]− E
[
min
θ∈R

E [ψα (Y, θ)|Xi, Xj ]
]

min
θ∈R

E [ψα (Y, θ)] − Sαi − Sαj .

Higher-order QOSA indices can be expressed analogously. Hence, one obtain a variance-like
decomposition for quantiles in the case of independent inputs:

d∑
i=1

Sαi +
∑

16i<j6d
Sαij + · · ·+ Sα1,...,d = 1 . (3.6)

10



Although this decomposition appears similar to that of Sobol’ indices, it is quite different since
it does not stem from an unique decomposition.

The indices Sαi , Sαij and higher order allow to assess thoroughly the impact of each input
over the α-quantile of the output distribution. However, as for Sobol’ indices, in the case of
a large number of inputs, it would require the evaluation of 2d − 1 indices, which could be
computationally demanding. Therefore, it is suitable to introduce the so-called total QOSA
index as suggested by Kala (2019) that measures the contribution of an input, including its
main effect as well as its interactions effects, of any order, with other input variables:

STαi =
E

[
min
θ∈R

E [ψα (Y, θ)|X−i]
]

min
θ∈R

E [ψα (Y, θ)] = E [ψα (Y, qα (Y |X−i))]
E [ψα (Y, qα (Y ))] .

The total QOSA index may be rewritten as follows

STαi =
αE [Y ]− E

[
Y 1{Y 6qα(Y |X−i)}

]
αE [Y ]− E

[
Y 1{Y 6qα(Y )}

] .

As for the first-order QOSA index, the total one has the three following interesting properties.

Proposition 3.4.

1. STαi is invariant with respect to translations of the output Y .

2. STαi is invariant by scale change with positive ratio of the output Y .

3. A scale change with negative ratio of the output Y gives the index ST 1−α
i associated to the

1− α level.

Proof of Proposition 3.4.

Just adapting the steps of the proof of the Proposition 3.2 for the total QOSA index. �

Proposition 3.5 below shows that the total QOSA index is greater than or equal to the first-
order one for any α-level in the case of an additive model with independent inputs. This is
a major difference from variance-based methods, specifically Sobol’ indices. Indeed, it is well-
known that for a purely additive model with independent inputs, we have for Sobol’ indices
STi = Si, for all i ∈ D, which is not the case for the QOSA indices. It therefore appears that
the total QOSA index captures some interactions between the inputs when using an additive
model. The origin of this phenomenon is not yet understood at this stage but could be due to the
presence of the indicator random variable 1{Y 6qα(Y |X−i)} in the index. Indeed, when studying,
in reliability oriented sensitivity analysis (ROSA), the importance of inputs on the occurence
of critical failure event given by P (Y > t), where t ∈ R represents a threshold characterizing
the system, it is common to notice interactions between the variables even if the underlying
model is linear. This happens, for instance, in Example 1 of Wei et al. (2012) or in the example
considered in the Section 5.1 of Il Idrissi et al. (2021) when focusing on the indicator variable
of interest 1{Y >t} instead of the model output Y .
Besides, Proposition 3.5 is not verified in the general non-additive case as emphasized with a
counterexample in Subsection 4.3.
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Proposition 3.5.

Let X = (X1, . . . , Xd) with the Xi’s independent. Let Y = m0 +
d∑
i=1

mi (Xi) be an additive model
with mi, i = 1, . . . , d, the one-dimensional nonparametric functions operating on each element
of the vector X. Then,

∀ α ∈ ]0, 1[ , Sαi 6 ST
α
i .

Proof of Proposition 3.5.

We have:

STαi − Sαi =

(
αE [Y ]− E

[
Y 1{Y 6qα(Y |X−i)}

])
−
(
E

[
Y 1{Y 6qα(Y |Xi)}

]
− E

[
Y 1{Y 6qα(Y )}

])
αE [Y ]− E

[
Y 1{Y 6qα(Y )}

] .

As the denominator is non-negative according to Equation (3.3), we just have to show that the
numerator is also non-negative.

Let

g(α) = αE [Y ]− E
[
Y 1{Y 6qα(Y |X−i)}

]
+ E

[
Y 1{Y 6qα(Y )}

]
− E

[
Y 1{Y 6qα(Y |Xi)}

]
,

and for any i = 1, . . . , d, let Xs(−i) = ∑
16j6d
j 6=i

mj(Xj). Due to the independence between the Xi’s,

we have

qα (Y |Xi) = m0 +mi (Xi) + qα
(
Xs(−i)

)
, and {Y 6 qα (Y |Xi)} = {Xs(−i) 6 q

α
(
Xs(−i)

)
} ,

qα (Y |X−i) = m0 +Xs(−i) + qα (mi (Xi)) , and {Y 6 qα (Y |X−i)} = {mi (Xi) 6 qα (mi (Xi))} .

Then,

g(α) = αE [Y ]− E
[
Y 1{Y 6qα(Y |X−i)}

]
+ E

[
Y 1{Y 6qα(Y )}

]
− E

[
Y 1{Y 6qα(Y |Xi)}

]
= αE [Y ]− αm0 − E

[
mi (Xi)1{mi(Xi)6qα(mi(Xi))}

]
− E

[
Xs(−i)1{mi(Xi)6qα(mi(Xi))}

]
+ E

[
Y 1{Y 6qα(Y )}

]
− αm0 − E

[
Xs(−i)1{Xs(−i)6qα(Xs(−i))}

]
− E

[
mi (Xi)1{Xs(−i)6qα(Xs(−i))}

]
.

Now, the independence of the Xi’s implies that E
[
Xs(−i)1{mi(Xi)6qα(mi(Xi))}

]
= αE

[
Xs(−i)

]
and E

[
mi(Xi)1{Xs(−i)6qα(Xs(−i))}

]
= αE [mi(Xi)]. Thus,

g(α) = E

 d∑
j=1

mj (Xj)

1{Y 6qα(Y )}

− E [mi (Xi)1{mi(Xi)6qα(mi(Xi))}
]

− E
[
Xs(−i)1{Xs(−i)6qα(Xs(−i))}

]
=
(
E

[
mi (Xi)1{Y 6qα(Y )}

]
− E

[
mi (Xi)1{mi(Xi)6qα(mi(Xi))}

])
+
(
E

[
Xs(−i)1{Y 6qα(Y )}

]
− E

[
Xs(−i)1{Xs(−i)6qα(Xs(−i))}

])
.

Now, the two last terms are positive according to Lemma 3.1 which concludes the proof. �

Several calculations below will help to better understand the behaviour, the usefulness and
the limitations of QOSA indices.
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4 QOSA calculations on special cases
In this section, we compute for some distributions the first-order and total QOSA indices for
which we obtain the expressions in a closed or nearly closed-form. In particular, the examples
with Gaussian inputs allow to investigate the behaviour of the indices when there is some
statistical dependence between the inputs.

4.1 Product of two exponential input variables
Let Y = X1 · X2, with X1 ∼ E(λ), X2 ∼ E(δ), these two variables being independent. After
simple calculations, we get the first-order QOSA indices

Sα1 = Sα2 = 1− (α− 1) log (1− α)
α− λδ · E

[
Y 1{Y 6qα(Y )}

] ,
and the total QOSA indices

STα1 = STα2 = (α− 1) log (1− α)
α− λδ · E

[
Y 1{Y 6qα(Y )}

] .
The term E

[
Y 1{Y 6qα(Y )}

]
can be approximated by using a Monte-Carlo estimation or a numer-

ical integration.

The equality of the first-order and total QOSA indices for both inputs is a particular case
due to the exponential distribution. Indeed, let X2

L= λ
δX
′
1 with X ′1 an independent copy of X1.

Then, the model writes

Y
L= λ

δ
X1 ·X ′1

L= kZ

with Z = X1 ·X ′1 and k = λ
δ > 0. As the inputs X1 and X ′1 have the same distribution, their

impact over the α-quantile of the model output Z is identical. Therefore, by using item 2. of
Propositions 3.2 and 3.4 (because Y is just a homothety with strictly positive ratio of Z), that
explains why both first-order and total QOSA indices of the inputs are equal.

Figure 3 below presents the behaviour of the indices as a function of the level α for the model
computed with λ = 1/10 and δ = 1. The truncated expectation is estimated with a Monte-Carlo
algorithm and a sample of size n = 109. We observe that the first-order and total QOSA indices
vary in opposite directions. The first-order QOSA indices go to 1 when α tends to 1 while the
total ones go to 0 when α tends to 1. It is interesting to notice that from α ≈ 0.96 the total
QOSA indices are lower than the first-order ones and the sum of the first-order ones is greater
than 1. That corroborates that Propositions 3.2 and 3.4 are not verified outside the additive
model context.

4.2 Linear model with Gaussian input variables
We study in this subsection a linear model with Gaussian inputs which implies that the resulting
output is also Gaussian. This framework facilitates calculations to obtain the analytical values
given below.
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Figure 3: Evolution of the first-order and total QOSA indices at different levels α for the product
of two exponentials with λ = 1/10 for the first input and δ = 1 for the second one.

Proposition 4.1.
Let Y = η (X) = β0 + βTX with β0 ∈ R, β ∈ R

d and X ∼ N (µ,Σ) where Σ ∈ R
d×d is a

positive-definite matrix, then the first-order and total QOSA indices for the variable i at the
α-level are

Sαi = 1−

√
βT
−i

(
Σ−i,−i −Σ−i,iΣ−1

i,i Σi,−i
)

β−i

σY
, (4.1)

STαi =
|βi|

√
Σi,i −Σi,−iΣ−1

−i,−iΣ−i,i
σY

, (4.2)

with σ2
Y = Var (Y ) = βTΣβ.

We observe that as β0 and µ are translation parameters, they do not have any influence.
Nevertheless, no general conclusion can be drawn from Equations (4.1) and (4.2) except that the
values of the first-order and total QOSA indices are the same for all levels α. This phenomenon
is specific to the Gaussian linear model and will be detailed hereafter in dimension 2. Indeed, a
look at the case d = 2 may help to understand why QOSA indices does not depend on α-level
in the Gaussian framework. This feature will be analyzed by studying only the impact of the
variable X1.

We have that

Y |X1 ∼ N
(
β1X1 + β2E [X2|X1] , β2

2Var (X2|X1)
)
.

As we work with Gaussian distributions, the conditional variance Var (X2|X1) does not depend
on the specific value of X1 and is Var (X2|X1) = σ2

2
(
1− ρ2). The conditional quantile of Y

given X1 has the following expression

qα (Y |X1) = β1X1 + β2E [X2|X1] + |β2|
√

Var (X2|X1)Φ−1 (α)

with Φ the standard normal distribution function. One way to assess the impact of the variable
X1 on the quantile qα (Y ) would be to calculate the ratio

E [qα (Y |X1)]− E [Y ]
qα (Y )− E [Y ] .
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Thus, by using that qα (Y ) = E [Y ] + σY Φ−1 (α), the previous ratio equals

E [qα (Y |X1)]− E [Y ]
qα (Y )− E [Y ] = |β2|σ2

√
(1− ρ2)

σY
.

A simple calculation shows that Sα1 = 1 − |β2|σ2
√

1− ρ2

σY
and gives the relation with QOSA

indices. In a more general way, the following equality holds for all variables i = 1, . . . , d when
using a linear Gaussian model and explains why the first-order and total QOSA indices do not
depend on the α-level:

αE [Y ]− E
[
Y 1{Y 6qα(Y |Xi)}

]
αE [Y ]− E

[
Y 1{Y 6qα(Y )}

] = E [qα (Y |Xi)]− E [Y ]
qα (Y )− E [Y ] .

We now study the particular case µ1 = µ2 = 0, β1 = β2 = 1, σ1 = 1 and σ2 = 2. The
analytical values of the indices are depicted in Figure 4 on the left-hand graph for independent
inputs and on the right-hand plot as a function of the correlation coefficient between the two
inputs in order to investigate the influence of the dependence.
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Figure 4: First-order and total QOSA indices with independent (resp. dependent) inputs on the
left (resp. right) graph.

For the independent case, it appears that the variable X2 has the higher impact over the
α-quantile, which is consistent with the setting established. Besides, we have Sαi 6 STαi , i = 1, 2
as proved in Proposition 3.5.
Regarding the dependent case, we observe that the total QOSA indices tend to zero as |ρ| → 1.
It is also interesting to notice that STαi 6 Sαi for some correlation coefficients. The behaviour
of these indices is similar to that of the Sobol’ indices in the context of dependent inputs as
studied in Kucherenko et al. (2012); Iooss and Prieur (2019). Indeed, by making an analogy
with the method proposed by Mara et al. (2015) based on four Sobol’ indices, we could say that
in the case of dependent inputs:

• the first-order QOSA index describes the influence of a variable including its dependence
with other variables,

• the total QOSA index describes the influence of a variable without its dependence with
other variables.
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4.3 Gaussian input variables, Lognormal output
We analyze in this subsection a model with Gaussian inputs whose output is a Log-normal
distribution so that we no longer have identical indices for any α-level. Using Gaussian inputs
makes calculations possible and we obtain the following analytical values.

Proposition 4.2.
Let Y = η (X) = exp

(
β0 + βTX

)
with β0 ∈ R, β ∈ Rd and X ∼ N (µ,Σ) where Σ ∈ Rd×d is

a positive-definite matrix, then the first-order and total QOSA indices for the variable i at the
α-level are

Sαi = 1−
α− Φ

(
Φ−1 (α)−

√
βT
−i

(
Σ−i,−i −Σ−i,iΣ−1

i,i Σi,−i
)

β−i

)
α− Φ (Φ−1 (α)− σ) , (4.3)

STαi =
α− Φ

(
Φ−1 (α)− |βi|

√
Σi,i −Σi,−iΣ−1

−i,−iΣ−i,i
)

α− Φ (Φ−1 (α)− σ) , (4.4)

with σ2 = βTΣβ and Φ the standard normal distribution function.

We observe that β0 and µ do not play any role as these are scale parameters in this example.
Let us consider the particular case d = 2 with

µ =
(
µ1
µ2

)
, β =

(
β1
β2

)
and Σ =

(
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

)
, −1 ≤ ρ ≤ 1, σ1 > 0, σ2 > 0.

We have σ2 = β2
1σ

2
1 + 2ρβ1β2σ1σ2 + β2

2σ
2
2 and obtain from Equations (4.3) and (4.4)

Sα1 = 1−
α− Φ

(
Φ−1 (α)− |β2|σ2

√
1− ρ2

)
α− Φ (Φ−1 (α)− σ) ,

Sα2 = 1−
α− Φ

(
Φ−1 (α)− |β1|σ1

√
1− ρ2

)
α− Φ (Φ−1 (α)− σ) ,

(4.5)

and

STα1 =
α− Φ

(
Φ−1 (α)− |β1|σ1

√
1− ρ2

)
α− Φ (Φ−1 (α)− σ) ,

STα2 =
α− Φ

(
Φ−1 (α)− |β2|σ2

√
1− ρ2

)
α− Φ (Φ−1 (α)− σ) .

(4.6)

In all further tests, we take µ1 = µ2 = 0, β1 = β2 = 1, σ1 = 1 and σ2 = 2.
Figure 5 presents the analytical values of the first-order and total QOSA indices for both inde-
pendent inputs and correlated inputs with ρ1,2 = 0.75. In the independent setting, the influence
of the variable X1 is close to 0 except for large values of α. We also note that the first-order
and total QOSA indices vary in reverse direction and from some α-level, STαi 6 Sαi , i = 1, 2.
This supports that Proposition 3.5 is not true outside the additive framework with independent
inputs.
The behaviour of the indices is similar in the dependent case. However, the influence of the
input X1 is reinforced in this scheme due to its large correlation with X2 that is an influential
variable. Indeed, the index Sα1 increases faster than in independent case. On the contrary, the
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Figure 5: First-order and total QOSA indices with independent (resp. dependent) inputs on the
left (resp. right) graph.

index STα2 decreases to 0 quicker than in the independent case because of its high dependence
with X1.

To get another perspective on the impact of the dependence over the indices, we plot in
Figure 6, for several levels α, the evolution of the latter as a function of the correlation coefficient.
As for the linear Gaussian model, we observe that the total QOSA indices tend to zero as |ρ| → 1
and they are lower than the first-order ones for some correlation coefficients.
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Figure 6: Evolution of the first-order and total QOSA indices at different values of ρ for several
levels α.

Hence, we have Si 6 STαi , i = 1, . . . , d for additive models with independent inputs. But
this context is far from reality for many concrete examples and this inequality is no longer valid
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outside this framework as outlined by examples presented in Subsections 4.1 and 4.3. This
therefore makes the interpretation of the indices complicated.
Furthermore, in the case of dependent inputs, the behaviour of the QOSA indices should be
compared to that of Sobol’ indices. Indeed, whatever the model (additive or not), it may happen
in this scheme that the first-order QOSA indices are higher than the total ones depending on
the correlation level. We have also observed that total indices tend to zero as the absolute value
of the correlation goes to 1. These observations led us to turn to Shapley values which present
good properties for both independent and dependent inputs. Indeed, they allocate fairly to each
input its contribution due to dependence and interaction.

5 Goal- and quantile-oriented Shapley effects
In this section, we propose to use Shapley values defined in Equation (2.5), and recalled below,
in order to quantify the impact of each input over the α-quantile of the output distribution

vi =
∑

J⊆D\{i}

(d− |J | − 1)!|J |!
d! (c (J ∪ {i})− c (J )) ,

with c(·) a generic cost function which maps the exploratory power generated by each subset
J ⊆ D.

Shapley value was first adapted within the framework of variance-based sensitivity measures
to measure how much of Var (Y ) can be attributed to each Xi. Indeed, Owen (2014) and Song
et al. (2016) proposed to use the two following unnormalized cost functions to measure the
variance of Y caused by the uncertainty of the inputs in the subset J ⊆ D also named as being
the explanatory power created by J :

c̃(J ) = Var (E [Y |XJ ]) and c(J ) = E [Var (Y |X−J )] . (5.1)

Measuring the variance of Y caused by the uncertainty of the inputs in J is equivalent to
assess the impact of the inputs over the expected output. Thus, when using the cost functions
given in (5.1), the feature of interest of the output considered is the expectation denoted by
θ∗ (Y ) = E [Y ]. We show in the left-hand column in Table 1 that both cost functions may be
rewritten according to the contrast function related to the expectation as well as the conditional
feature θ∗ (Y |XJ ) = E [Y |XJ ] for the first cost function and θ∗ (Y |X−J ) = E [Y |X−J ] for
the second one.

Let us now use θ∗ (Y ) , θ∗ (Y |XJ ) and θ∗ (Y |X−J ) for J ⊆ D as generic expressions to
designate a feature of interest and the conditional ones related to a contrast function ψ. The
impact of the inputs over θ∗ (Y ) is therefore assessed by measuring their contribution to the
average contrast function E [ψ (Y, θ∗ (Y ))]. This one can be seen as a relevant distance allowing
to quantify the variability around the feature of interest. The contributions of the inputs are
then calculated with the following cost functions measuring the explanatory power of the subset
J ⊆ D

c̃(J ) = E [ψ (θ∗ (Y |XJ ) , θ∗ (Y ))] and c(J ) = E [ψ (Y, θ∗ (Y |X−J ))] . (5.2)

These cost functions are valid choices if they satisfy that the empty set creates no value, and
that all inputs generate E [ψ (Y, θ∗ (Y ))].

This is, for example, verified for all contrast functions listed in Fort et al. (2016) which allow
to propose new indices named goal-oriented Shapley effects (GOSE). The relevance of these new
indices is, for instance, highlighted in Il Idrissi et al. (2021) in order to quantify the importance of
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Table 1: Analogy of the cost functions used for quantifying the impact of the inputs over the
expectation for the case where the quantile is the feature of interest.

Feature of interest
θ∗ (Y ) = E [Y ] θ∗ (Y ) = qα (Y )

Contrast function
ψ (y, θ) = (y − θ)2

ψ (y, θ) = (y − θ)
(
α− 1{y6θ}

)
Average contrast function

Var (Y ) = E [ψ (Y, E [Y ])]
= E [ψ (Y, θ∗ (Y ))]

Υ (Y ) = E [ψ (Y, qα (Y ))]
= E [ψ (Y, θ∗ (Y ))]

First cost function
c̃(J ) = Var (E [Y |XJ ])

= E [ψ (E [Y |XJ ] , E [Y ])]
= E [ψ (θ∗ (Y |XJ ) , θ∗ (Y ))]

c̃(∅) = 0 c̃(D) = Var (Y )

c̃(J ) = E [ψ (θ∗ (Y |XJ ) , θ∗ (Y ))]
= E [ψ (qα (Y |XJ ) , qα (Y ))]

c̃(∅) = 0 c̃(D) = Υ (Y )
Second cost function

c(J ) = E [Var (Y |X−J )]
= E [ψ (Y, E [Y |X−J ])]
= E [ψ (Y, θ∗ (Y |X−J ))]

c(∅) = 0 c(D) = Var (Y )

c(J ) = E [ψ (Y, θ∗ (Y |X−J ))]
= E [ψ (Y, qα (Y |X−J ))]

c(∅) = 0 c(D) = Υ (Y )

independent or dependent inputs on a failure probability in a reliability assessment. Indeed, the(
`2
)
-target Shapley effect T − Sh`2i , i = 1, . . . , d, proposed by the authors is a particular case of

GOSE when considering the random variable Z = 1{Y >t} as model output instead of Y directly
where t ∈ R represents a threshold characterizing the failure of the system. In this scheme, the
feature of interest is the expectation of Z, i.e., θ∗ (Z) = E [Z] = P (Y > t) and the use of the
associated contrast functions (i.e., c̃(J ) = Var (E [Z|XJ ]) or c(J ) = E [Var (Z|X−J )]) therefore
allows to measure the contribution of each input to the failure probability of the system.

In our context, this property is verified in particular for cost functions related to quantiles
presented in Table 1. Hence we may propose Shapley effects subordinated to quantiles. However,
we define the quantile-oriented shapley effects (QOSE) denoted by Shαi with the second cost
function because it verifies that the incremental cost c (J ∪ {i}) − c (J ) is non-negative. This
is a desirable property for cost functions which implies that the index Shαi is non-negative and
can be interpreted as a percentage of the global cost E [ψ (Y, θ∗ (Y ))] allocated to the input
Xi, i = 1, . . . , d. Indeed, for J ⊆ D\{i}, we have

c (J ∪ {i})− c (J ) =
(
αE [Y ]− E

[
Y 1{Y 6qα(Y |X−J∪{i})}

])
−
(
αE [Y ]− E

[
Y 1{Y 6qα(Y |X−J )}

])
= E

[(
Y − qα

(
Y |X−J∪{i}

)) (
1{Y 6qα(Y |X−J )} − 1{Y 6qα(Y |X−J∪{i})}

)]
> 0 .

At this stage, this property has not yet been demonstrated for the first cost function c̃.

We study in the next subsections examples whose analytical values of the index Shαi are
computed by using the cost function normalized by the quantity Υ (Y ) introduced in Table 1,

so that
d∑
i=1

Shαi = 1. Our aim is to show that these new indices give sensible answers compared
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to the classical QOSA indices defined in Section 3.

5.1 Linear model with Gaussian input variables
We obtain the following analytical values for the linear model with Gaussian inputs.

Proposition 5.1.
If Y = η (X) = β0 + βTX with β0 ∈ R, β ∈ R

d and X ∼ N (µ,Σ) where Σ ∈ R
d×d is a

positive-definite matrix, then the quantile-oriented Shapley effect for the variable i at the α-level
is

Shαi = 1
d · σY

∑
J⊆D\{i}

(
d− 1
|J |

)−1 [√
βT
J+i

(
ΣJ+i,J+i −ΣJ+i,−J−iΣ−1

−J−i,−J−iΣ−J−i,J+i
)

βJ+i

−
√

βT
J

(
ΣJ ,J −ΣJ ,−JΣ−1

−J ,−JΣ−J ,J
)

βJ

]
(5.3)

with σ2
Y = Var (Y ) = βTΣβ, and J + i (resp. −J − i), a notational compression for J ∪ {i}

(resp. −J ∪ {i}).

As for the QOSA index, we may notice that β0 and µ do not play any role as translation
parameters and that the index does not depend on the α-level which is a specificity of the linear
Gaussian model as explained previously. Let us consider the case d = 2 with

µ =
(
µ1
µ2

)
, β =

(
β1
β2

)
and Σ =

(
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

)
, −1 ≤ ρ ≤ 1, σ1 > 0, σ2 > 0.

We have σ2
Y = V ar (Y ) = β2

1σ
2
1 + 2ρβ1β2σ1σ2 + β2

2σ
2
2 and obtain from(5.3)

Shα1 = 1
2 −
|β2|σ2

√
1− ρ2

2 · σY
+ |β1|σ1

√
1− ρ2

2 · σY
,

Shα2 = 1
2 −
|β1|σ1

√
1− ρ2

2 · σY
+ |β2|σ2

√
1− ρ2

2 · σY
.

(5.4)

We observe that the correlation effects on the first-order QOSA indices (e.g. σY −|β2|σ2
√

1− ρ2

for X1) and on the total QOSA indices (e.g. |β1|σ1
√

1− ρ2 for X1) are allocated half to the
quantile-oriented Shapley effects - QOSE. We also see that QOSE are equal when the correlation
is maximum (i.e. |ρ| = 1).

Figure 7 presents the first-order and total QOSA indices as well as QOSE for the particular
case µ1 = µ2 = 0, β1 = β2 = 1, σ1 = 1 and σ2 = 2.
On the left-hand graph of the figure, we see that QOSE are constant and they are brackected
by the first-order and total QOSA indices : Sαi 6 Shαi 6 STαi , i = 1, 2.

We illustrate on the right-hand graph the evolution of the indices as a function of the corre-
lation between the two inputs. As X2 is the more uncertain variable, its sensitivity indices are
larger than those of X1. Then, although the values are not identical, we can note that the shape
of the curves is exactly the same as that observed for the variance-based Shapley effects calcu-
lated for the two-dimensional Gaussian linear model (with the same setting) in Iooss and Prieur
(2019). Indeed, we observe that in the presence of correlation, QOSE lie between the first-order
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Figure 7: First-order and total QOSA indices as well as the QOSE with independent (resp.
dependent) inputs on the left (resp. right) graph.

QOSA indices and the total ones with either Sαi 6 Shαi 6 STαi or STαi 6 Shαi 6 Sαi , i = 1, 2.
This phenomenon is called the “sandwich effect” within the variance framework in Iooss and
Prieur (2019). Finally, as for the variance-based Shapley effects, it also seems that the depen-
dence between the two inputs lead to a rebalancing of their respective QOSE.

5.2 Gaussian input variables, Lognormal output
We analyze in this subsection the analytical values below for the model with Gaussian inputs
and the resulting output Log-normal distributed.

Proposition 5.2.
If Y = η (X) = exp

(
β0 + βTX

)
with β0 ∈ R, β ∈ Rd and X ∼ N (µ,Σ) where Σ ∈ Rd×d is a

positive-definite matrix, then the quantile-oriented Shapley effect for the variable i at the α-level
is

Shαi = 1
d ·A

∑
J⊆D\{i}

(
d− 1
|J |

)−1 [
Φ
(
Φ−1 (α)−B (J )

)
− Φ

(
Φ−1 (α)− C (J , i)

)]
(5.5)

with

A = α− Φ
(
Φ−1 (α)− σ

)
and σ2 = βTΣβ ,

B (J ) =
√

βT
J

(
ΣJ ,J −ΣJ ,−JΣ−1

−J ,−JΣ−J ,J
)

βJ ,

C (J , i) =
√

βT
J+i

(
ΣJ+i,J+i −ΣJ+i,−J−iΣ−1

−J−i,−J−iΣ−J−i,J+i
)

βJ+i ,

where J + i (resp. −J − i) is a notational compression for J ∪ {i} (resp. −J ∪ {i}).

As for the QOSA indices, we observe that β0 and µ do not play any role and that the indices
depend on α compared to the linear Gaussian model. However, it is difficult to reach a conclusion
from Equation (5.5). Accordingly, we consider the particular case d = 2 with

µ =
(
µ1
µ2

)
, β =

(
β1
β2

)
and Σ =

(
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

)
, −1 ≤ ρ ≤ 1, σ1 > 0, σ2 > 0.
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We have σ2 = β2
1σ

2
1 + 2ρβ1β2σ1σ2 + β2

2σ
2
2 and obtain from (5.5)

Shα1 = 1
2 + 1

2 ·
Φ
(
Φ−1 (α)− |β2|σ2

√
1− ρ2

)
α− Φ (Φ−1 (α)− σ) − 1

2 ·
Φ
(
Φ−1 (α)− |β1|σ1

√
1− ρ2

)
α− Φ (Φ−1 (α)− σ) ,

Shα2 = 1
2 + 1

2 ·
Φ
(
Φ−1 (α)− |β1|σ1

√
1− ρ2

)
α− Φ (Φ−1 (α)− σ) − 1

2 ·
Φ
(
Φ−1 (α)− |β2|σ2

√
1− ρ2

)
α− Φ (Φ−1 (α)− σ) .

(5.6)

We adopt the next settings in all further tests: µ1 = µ2 = 0, β1 = β2 = 1, σ1 = 1 and σ2 = 2.

The analytical values of the first-order, total QOSA indices and QOSE are illustrated in
Figure 8 for both independent inputs and correlated inputs with ρ1,2 = 0.75. The “sandwich
effect” which was noticed in the linear Gaussian model in the presence of correlation is also
observed here. Indeed, both in the dependent and independent cases and for all the levels α,
QOSE lie between the first-order and total QOSA indices.

Besides, with the three indices, we obtain the same ranking of the inputs for all α-levels
but QOSE is easier to interpret because it properly condenses all the information (dependence
and interaction effects). For instance, let us focus over the input X1 on the right-hand graph
at the level α = 0.2. If we use the first-order QOSA index Sα1 , we conclude that the impact
of the input X1 is low, but not so small because, conversely its total QOSA index is high
enough. But, ultimately, it is difficult to quantify precisely on the basis of these two indices
the contribution of the input X1 at level α = 0.2. The Shapley index, in contrast, contains the
marginal contribution of the variable but also those due to dependence and interaction effects
that are correctly allocated to it. It therefore makes easier to express an opinion on the impact
of the variable by taking into account all possible contributions. This observation is valid for all
the levels α.
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Figure 8: First-order and total QOSA indices as well as QOSE with independent (resp. depen-
dent) inputs on the left (resp. right) graph.

Again, to get another insight on the impact of the dependence over the indices, we plot in
Figure 9, for several levels α, the evolution of the latter as a function of the correlation coefficient.
As explained before, QOSE give a condensed information of all contributions. That explains
why we observe that the Shapley effects of both variables are almost equal for small values of α.
Conversely, for large values, the variable X2 is the most influential overall except when |ρ| → 1
where both inputs have the same contribution.
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Figure 9: Evolution of the first-order and total QOSA indices as well as the quantile-oriented
Shapley effects at different values of ρ for several levels α.

6 Cramér-von Mises distance-based Shapley effects
Various indices presented in the previous sections only allow to quantify the influence of the
inputs on a feature of interest of the output Y such as the mean, a quantile, the median, etc.
In order to measure the importance of the inputs on the whole distribution of the output,
various moment independent importance measures based on either the density, the cumulative
distribution function or the Csizár f -divergence, just to name a few, were developed in Borgonovo
(2007); Borgonovo et al. (2011); Luyi et al. (2012); Da Veiga (2015). One can also mention the
first-order indices recently introduced in Gamboa et al. (2018) based on the Cramér-von Mises
distance to compare the distribution of the output Y to its conditional one which are defined by

Si2,CVM =
∫
R
E

[(
F i (t)− F (t)

)2]
dF (t)∫

R
F (t) (1− F (t)) dF (t) , i = 1, . . . , d,

where F is the cumulative distribution function of Y

F (t) = P (Y 6 t) = E

[
1{Y 6t}

]
, ∀t ∈ R,

and F i is the conditonal distribution function of Y given Xi

F i (t) = P (Y 6 t|Xi) = E

[
1{Y 6t}

∣∣∣Xi

]
∀t ∈ R.

These indices arise from the application of Sobol’ indices to the set of random variables
(
Z (t) = 1{Y 6t}

)
t∈R

.
However, as detailed in subsection 2.1, Sobol’ indices rest on the Hoeffding decomposition which
requires the independence assumption between the inputs. Therefore, Cramér-von Mises indices
are well-designed and easy to interpret when the inputs are independent. When dealing with
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dependent inputs, the latter can still be computed but their interpretation becomes difficult as
noted in Remark 3.3 of Gamboa et al. (2018). Thus, it is proposed to overcome the limitation
of Cramér-von Mises indices by defining a new index based on Shapley values which will allow
to assess the contribution of independent or dependent inputs to the whole distribution of Y .

Similarly to the approach followed in Gamboa et al. (2018), the contribution of each input
Xi will be first assessed for any point t ∈ R of the output distribution, i.e. on the following
feature of interest:

θ∗ (Z (t)) = E [Z (t)] = E

[
1{Y 6t}

]
= F (t), for all t ∈ R ,

by applying the framework presented in Section 5. In more detail, the influence of each input
on the expectation of the random variable Z (t) = 1{Y 6t} will be measured by decomposing
Var (Z (t)) = F (t) (1− F (t)) by means of the following cost functions associated to this feature
of interest :

c̃ (J ) = Var (E [Z (t)|XJ ]) and c(J ) = E [Var (Z (t)|X−J )] .

Hence, by plugging, for instance, the first cost function c̃(J ) within the Shapley values defined
in (2.5), the following decomposition of Var (Z (t)) over the inputs is obtained:

Var (Z (t)) = F (t) (1− F (t))

=
d∑
i=1

1
d

∑
J⊆D\{i}

(
d− 1
|J |

)−1(
Var

(
E

[
Z (t)|XJ∪{i}

])
−Var (E [Z (t)|XJ ])

)
=

d∑
i=1

1
d

∑
J⊆D\{i}

(
d− 1
|J |

)−1(
E

[(
FJ∪{i} (t)− F (t)

)2
]
− E

[(
FJ (t)− F (t)

)2
]) .

(6.1)

Then, in order to quantify the impact of each input on the whole distribution of Y , the terms in
(6.1) are integrated in t ∈ R with respect to the distribution of Y in the same way as in Gamboa
et al. (2018):∫
R

F (t) (1− F (t)) dF (t)

=
d∑
i=1

1
d

∑
J⊆D\{i}

(
d− 1
|J |

)−1(∫
R

E

[(
FJ∪{i} (t)− F (t)

)2
]
dF (t)−

∫
R

E

[(
FJ (t)− F (t)

)2
]
dF (t)

)
(6.2)

It is then recognized, in the right-hand side of (6.2), the Cramér-von Mises type distance of
order 2 between the distribution of Y and the distribution of Y given XJ∪{i} and XJ on which
the indices introduced in Gamboa et al. (2018) are based. To ease the interpretation of the new
indices introduced thereafter, the previous equation is normalized by

∫
R
F (t) (1− F (t)) dF (t).

That leads us to the following definition of the Cramér-von Mises distance-based Shapley effect.

Definition 6.1.
The Cramér-von Mises distance-based Shapley effect related to the input Xi is given by

ShCVMi = 1
d

∑
J⊆D\{i}

(
d− 1
|J |

)−1

(c̃ (J ∪ {i})− c̃ (J ))
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with respect to the cost function

c̃ (J ) =

∫
R

Var (E [Z (t)|XJ ]) dF (t)∫
R

Var (Z (t)) dF (t)
=

∫
R

E

[(
FJ (t)− F (t)

)2
]
dF (t)∫

R

F (t) (1− F (t)) dF (t)
.

These indices therefore complete GOSE previously introduced as they allow to quantify the
importance of inputs on the whole distribution of the output and not to a specific feature
of interest. It should be noted that these indices share several properties of the variance-based
Shapley effects. Firstly, they are non-negative and sum up to one so that they can be interpreted
as the percentage of the expectation on t of the variance of the indicator random variable
Z (t) = 1{Y 6t}, i.e. EY ′

[
VarY

(
1{Y 6Y ′}

)]
where Y ′ is an independent copy of Y , allocated to

the input Xi. It can also be shown that the Cramér-von Mises distance-based Shapley effects
presented in Definition 6.1 above are equivalent to those defined by using the following cost
function

c (J ) =

∫
R

E [Var (Z (t)|X−J )] dF (t)∫
R

Var (Z (t)) dF (t)
=

∫
R

E

[(
1{Y 6t} − F−J (t)

)2
]
dF (t)∫

R

F (t) (1− F (t)) dF (t)
.

by simply adapting the proof of Theorem 1 of Song et al. (2016). In addition, based on the
results of Owen (2014), one can also show that these indices are bracketed by the first-order
and total Cramér-von Mises indices introduced in Gamboa et al. (2018) when dealing with
independent inputs. At last, it is worth noting that the previous definition of the Cramér-von
Mises distance-based Shapley effects naturally extends to the case of multivariate outputs.

7 Estimation methods of QOSE and numerical experiments
An estimator of QOSE, Shαi , defined in Section 5 is first proposed in this section followed by a
numerical study of its performance on toy examples.

7.1 Estimation methods of QOSE
The estimators developed below are based on those defined in Song et al. (2016) for the variance-
based Shapley effects tailored to our quantile-oriented context. Therefore, the former are briefly
recalled below and their transposition to our framework will be naturally established.

First of all, a generic Shapley value with respect to a cost function c can also be expressed in
terms of all possible permutations of the inputs. Let us denote by Π (D) the set of all possible
permutations with the inputs set D. Given a permutation π ∈ Π (D), define the set Pi (π) as
the inputs that precede the input i in π. Thus, a generic Shapley value can also be rewritten in
the following way

vi = 1
d!

∑
π∈Π(D)

(
c (Pi (π) ∪ {i})− c (Pi (π))

)
.

From this formula, Castro et al. (2009) proposed to estimate vi with v̂i by drawing randomly m
permutations in Π (D) and thus we have

v̂i = 1
m

m∑
l=1

(
c (Pi (π) ∪ {i})− c (Pi (π))

)
.
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Section 4 of Song et al. (2016) proposed some improvements on the Castro’s algorithm by
including the Monte-Carlo estimation ĉ of the cost function c (J ) = E [Var [Y |X−J ]] /Var (Y )
in order to estimate the normalized variance-based Shapley effects. The estimator writes

Ŝhi = 1
m

m∑
l=1

(
ĉ (Pi (πl) ∪ {i})− ĉ (Pi (πl))

)
,

where m refers to the number of permutations. Song et al. (2016) proposed the following two
algorithms, the main features of which are spelled out below:

• The exact permutation method if d is small, one does all possible permutations between
the inputs (i.e. m = d!);

• The random permutation method which consists in randomly sampling m permutations of
the inputs in Π(D).

For each iteration of this loop on the inputs’ permutations, a conditional variance expectation
must be computed. The cost C of these algorithms is the following C = Nv + m(d − 1)NoNi

with Nv the sample size for the variance computation of Y , No the outer loop size for the
expectation, Ni the inner loop size for the conditional variance of Y and m the number of
permutations according to the selected method.

In our quantile-oriented context, the cost C of these algorithms remains unchanged, i.e.,
C = Nv +m(d− 1)NoNi with m the number of permutations according to the selected method.
But, now as illustrated in Table 1 from Section 5,

• the sample of size Nv is used to estimate the α-quantile of Y and compute the average
contrast function Υ (Y ),

• No the outer loop size for the expectation of the second cost function,

• and Ni the inner loop size to estimate the conditional quantile of Y given X−J as well as
the conditional average contrast function E [ψ (Y, qα (Y |X−J ))|X−J ].

The estimators of QOSE obtained from these tailored algorithms will be denoted Ŝhαi in the
sequel. Likewise, the strategies based on a bootstrap sampling implemented in Benoumechiara
and Elie-Dit-Cosaque (2019) to estimate confidence intervals for the variance-based Shapley
effects remain valid for QOSE.

Optimal values, based on theoretical results, for the parameters of the exact and random
permutation methods were given in Song et al. (2016) when estimating variance-based Shapley
effects. Unfortunately, we do not have such theoretical results at this stage and it seems rea-
sonable to think that these are obsolete in our framework as the complexity is definitely not the
same to estimate an (resp. conditional) expectation and a (resp. conditional) quantile. Accord-
ingly, by using a toy example, we empirically study how the algorithm settings can influence the
estimation of QOSE in the next subsection.

7.2 Numerical experiments
As defined previously, three parameters of the algorithm govern the estimation accuracy of
QOSE: Nv, No and Ni. The average contrast functions are estimated through Monte Carlo
procedures. Υ (Y ) is computed from a sample {Y j = η

(
Xj
)
}j=1,...,Nv . Because Nv is a small

proportion of the overall cost C = Nv + m(d − 1)NoNi, especially when d is large, Nv can be
selected as large as possible in order to reach the smallest possible estimation error of Υ (Y ).
However, it is more difficult to choose No and Ni to estimate the expectation of the conditional
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average contrast functions. These choices also depend on the used algorithm: exact or random
permutations.

Therefore, we empirically study the influence of No and Ni on the estimation error and the
coverage probability for several levels α. The Probability Of Coverage (POC) is defined as
the probability to have the true value of the index inside the estimated confidence intervals.
We consider the bidimensional model with Gaussian input variables and a lognormal output of
Section 5.2 as a toy example with independent inputs, β1 = β2 = 1, σ1 = 1 and σ2 = 2. The
POC is estimated with 100 independent algorithm runs and for a 90 % confidence interval. The
confidence intervals are estimated with 500 bootstrap sampling. We also set a large value of
Nv = 105 for all the experiments.

First experiments aim to assess the influence of No on the estimation accuracy and the POC
for the exact permutation algorithm. The Figure 10 shows the variation of the POC (solid
lines) and the absolute error (dashed lines) for three α levels, averaged over the two indices, as
a function of the product mNoNi, where only No is varying and for three values of Ni at 200,
1500 and 3000. Because the errors are computed for 100 independent runs, we show in color
areas the 95% quantiles.

104 105 106

mNoNi

0.0

0.5

1.0

1.5

2.0

2.5

Ab
so

lu
te

 e
rro

r

Ni = 200

104 105 106

mNoNi

Ni = 1500

104 105 106

mNoNi

Ni = 3000

error = 0.1

error = 0.6

error = 0.95

coverage = 0.1

coverage = 0.6

coverage = 0.95

90% c.i.

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

 P
ro

ba
bi

lit
y

Figure 10: Variation of the absolute error and the POC with No for three values of Ni =
200, 1500, 3000 for the exact permutation algorithm (m = d! = 2).

We observe that the estimation error is the smallest for the three α levels with Ni = 200.
One can also notice that the POC tends, at different rates, to the true probability: 90 %.
Nonetheless, when looking at thoroughly the graph with Ni = 200, it appears that the POC
is a little underestimated compared to the plot with Ni = 1500 (with the largest calculation
budget). This could be due to the too small value of Ni leading to somewhat biased indices. In
our scheme, for a same computational cost mNoNi, the smaller the value of Ni and the larger
the value of No. Thus, these results show that in order to have a correct confidence interval, it is
important to have both a sufficiently high value of Ni but also a large value of No compared to
Ni. Indeed, exploring multiple conditional average contrast functions with a reasonable precision
(large No and low Ni) is more important than having less conditional average contrast functions
with a large precision (low No and large Ni).

The Figure 11 is similar to Figure 10 but for the random permutation algorithm and by fixing
No = 10 and by varying the number of permutations.

As for the exact permutation algorithm, we can see that the estimation errors are the smallest
with Ni = 200 and the difference is shown for the POC. We observe that the lower Ni and the
faster the POC converges to the true probability. Indeed, for a same computational cost, the

27



106

mNoNi

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ab
so

lu
te

 e
rro

r

Ni = 200

106

mNoNi

Ni = 1500

106

mNoNi

Ni = 3000

error = 0.1

error = 0.6

error = 0.95

coverage = 0.1

coverage = 0.6

coverage = 0.95

90% c.i.

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

 P
ro

ba
bi

lit
y

Figure 11: Variation of the absolute error and the POC with m for three values of Ni =
200, 1500, 3000 and No = 10 for the random permutation algorithm.

lower Ni and the larger the number of permutations m can be.

To show the influence of No with the random permutation algorithm, the Figure 12 is the
same as Figure 11 but with No = 50. We observe that the convergence rates of the POC are
slower than the ones for No = 10. Thus, it shows that having a lower value of No and a large
value of m is more important to have consistent confidence intervals.
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Figure 12: Variation of the absolute error and the POC with m for three values of Ni =
200, 1500, 3000 and No = 50 for the random permutation algorithm.

From these experiments, we can conclude that the parametrization does not significantly
influence the estimation error but has a strong influence on the POC. Therefore, in order to
have consistent confidence intervals, we can suggest:

• for the exact permutation algorithm to consider Ni = 400 and to take No as large as
possible,

• for the random permutation algorithm to consider Ni = 300, No = 10 and take m as large
as possible.

8 Conclusion
This paper presents a set of new indices named GOSE allowing to assess the contribution of the
dependent or independent inputs on various features of the output such as quantile, threshold
exceedance probabilities, etc. These are based on two main concepts. On the one hand, the
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Shapley values developed in cooperative game theory which enables to fairly allocate the inter-
action and dependence effects between the inputs. On the other hand, the use of a cost function,
within the Shapley values, based on the contrast function related to the feature of interest in or-
der to properly measure the influence of the inputs. When using the contrast function attached
to the expectation of the output, GOSE equal the variance-based Shapley effects developed in
GSA which quantify the impact of the inputs on the expectation. Accordingly, GOSE can be
seen as a generalization of the latter which enable to quantify the contribution of the inputs on
any quantity of interest.

When considering the quantile of the output as feature of interest, QOSE appear to be a
good alternative to the classical QOSA indices. Indeed, they make possible to overcome the
various problems encountered with the QOSA indices such as STαi 6 Sαi outside the additive
framework or when using dependent inputs. Hence, as an allocation method, these indices
therefore allow to quantify precisely the contribution of each input at the α-quantile while
taking into account interaction and dependency effects. An additional work would be to study
the QOSE for Gaussian examples in higher dimension.
A first estimator has been proposed to compute these new indices. Although it performs well
with the right settings, it is quite cumbersome to handle in practice. Indeed, it requires the
ability to sample from the conditional distributions of all possible subsets of inputs but also a
large calculation budget to properly estimate the conditional quantiles as well as the conditional
average contrast functions. These shortcomings prevent the use of such a method in practice
because most of the numerical models used in industrial studies are costly to evaluate and the
inputs distribution is not known. To overcome these limitations, a first step could be to extend
the estimator of the variance-based Shapley effects proposed in Broto et al. (2020) which uses
a single input-output sample without requiring the knowledge of the inputs distribution for the
conditional terms. Then, trying to tailor to our quantile-oriented context the efficient algorithm
developed in Plischke et al. (2021) to reduce the run time of QOSE.

In addition of GOSE and QOSE, Cramér-von Mises distance-based Shapley effects were also
introduced to measure the contribution of the dependent or independent inputs to the whole
distribution of the output and not anymore on a specific quantity of interest. These are an
extension of the first-order indices defined in Gamboa et al. (2018) which can be difficult to
interpret in the case of dependent inputs. Although these indices seem promising, it would be
interesting to perform studies similar to those carried out for the variance-based Shapley effects
(Song et al., 2016; Owen and Prieur, 2017; Iooss and Prieur, 2019; Benoumechiara and Elie-Dit-
Cosaque, 2019) in order to understand exactly how interaction and dependency effects are taken
into account and therefore, interpret them correctly. Regarding their estimation, leveraging the
efficient estimator, based on the Chatterjee’s notion of correlation, of the Cramér-von Mises
indices presented in Gamboa et al. (2020) would be an attractive starting point.

At last, Rabitti and Borgonovo (2019) have recently introduced Shapley-Owen interaction
effects which are a generalization of the variance-based Shapley effects to quantify the interaction
effects between the inputs. A future work could be to adapt these results to the goal-oriented
framework as well as to the Cramér-von Mises distance-based Shapley effects.
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