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Abstract: This research investigates fundamental problems in object recognition in earthen heritage
and addresses the possibility of an automatic crack detection method for rammed earth images.
We propose and validate a straightforward support vector machine (SVM)-based bidirectional
morphological approach to automatically generate crack and texture line maps through transforming
a surface image into an intermediate representation. Rather than relying on the application of
the eight connectivity rule to a combination of horizontal and vertical gradient to extract edges,
we instruct an edge classifier in the form of a support vector machine from features computed on each
direction separately. The model couples a bidirectional local gradient and geometrical characteristics.
It constitutes of four elements: (1) bidirectional edge maps; (2) bidirectional equivalent connected
component maps; (3) SVM-based classifier and (4) crack and architectural line feature map generation.
Relevant details are discussed in each part. Finally, the efficiency of the proposed algorithm is verified
in a set of simulations that is satisfactorily conforming to labeled data provided manually for surface
images of earthen heritage.

Keywords: earthen heritage; rammed earth; crack detection; connected component; morphological
approach; machine learning; SVM

1. Introduction

Earthen structures are essential elements of world heritage. Among the most widely documented
structural types, rammed earth is significantly spread. Conservation and restoration of earthen cultural
heritage are firmly bound to the identification and characterization of existing cracks, which provide
accurate quantitative data upon which conservation strategies are based. Severe cracks may propagate
along the surface of an earthen wall, which may lead to severe structural problems and failure. This fact
highlights the need to point out crack regions and manage surface cracks from their early stage from
the safety point of view, which is fundamental for preservation purposes. This is the reason why
it’s crucial to provide a crack detection algorithm that matches rammed earth images at the best of
our possibilities.
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In order to build a rammed earth wall, soil mixture is poured into a rigid formwork and compacted
in layers. The wall is built a section at a time, and the formwork is moved from section to section,
horizontally and vertically, until the full wall height is reached. The formworks for rammed earth are
usually made of two panels and several long bolts in the middle to extend through the form and hold
panels together. Once the wall is completed, the panels are removed, and the bolts are driven out of
the wall. At the removal of the formwork, some characteristic joints are left in the wall, which are often
seen as a feature of the rammed earth architecture, as shown in Figure 1.
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Figure 1. Rammed earth. (a) Schematic illustration and (b) a rammed earth house.

Even though rammed earth is one of the oldest construction materials, there are still fundamental
questions about the structure’s performance for researchers and engineers to solve. A large number of
image processing techniques have been previously developed for detecting surface cracks from digital
images for various purposes [1–30]. These techniques, however, can only be applied to specific types of
images and purposes. In particular, crack identification and characterization in rammed earth heritage
is a topic not yet addressed in the literature. This study, carried out in the framework of Tech4Culture
project, addresses this issue by studying and developing an automatic crack detection methodology
for surface images of rammed earth buildings.

The existing automatic image-based techniques present some limitations for analyzing rammed
earth images. Above all, detection results of existing image processing techniques are strongly
influenced by the presence of architectural features, which may be misidentified as cracks. Automatic
and accurate detection of cracks in the surface images of earthen structures is hence a challenging task.

This research attempts to propose an effective automatic crack detection algorithm focused on
rammed earth, by exploiting the strong feature learning capabilities of learning-based approaches.
We developed an automatic technique that allows the accurate generation of a crack map and
architectural feature map that can describe the real condition of the structure, and thus avoid
automatic misidentification.

Machine learning seeks to enhance the ability of computers to understand the real world through
the creation of methods and techniques to obtain and process high-level information from images. Even
though machines have seen much success in handling huge amounts of data with ease that humans have
failed to achieve, the task of obtaining high-level information from an image turns out to be complex.
In fact, it is often not sufficient to implement the machine learning algorithms by merely regarding the
raw images as training examples. Instead, there are geometrically coherent fundamental elements in
images that should be exploited in conjunction with learning techniques. This paper concentrates on
the development of a novel support vector machine (SVM)-based approach for solving a real-world
pattern recognition problem by transforming a surface image into an intermediate representation,
which in turn can provide a set of mathematical rules for desirable tasks such as crack detection.
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Our approach to crack detection couples a bidirectional local gradient and geometrical cues to
a robust framework by using Connected Components Analysis (CCA) [31]. Rather than relying on
the application of the eight connectivity rule to a combination of the horizontal and vertical gradient
to extract edges, we instruct an edge classifier in the form of a support vector machine (SVM) [32]
from features computed in each direction separately. The local cues, computed by employing oriented
gradient operators, enable the determination of crack and architectural feature characteristics. From this,
we derive a generalized feature selection problem and solve for surface images that encode edge
information. Using a classifier to recombine these fundamental features with the local-oriented cues,
we obtain a model for identification and labeling of both crack and architectural line features for surface
images of rammed earth heritage.

We make two distinct contributions. First of all, we provide a labeled dataset of geometrical
characteristics of crack and architectural line features for training and evaluating the performance of
the proposed algorithm on rammed earth images. Secondly, we propose an algorithm for the automatic
generation of a crack map and an architectural feature map for rammed earth images. Given the
importance of crack detection in the conservation of earthen heritage, we believe these data and this
algorithm will help advances in research in the field.

2. Developed Methodology

The algorithm is developed on the Matlab 2018a. The basic building block of the established
procedure is the computation of an oriented gradient in horizontal and vertical directions at every
pixel in an image (Figure 2). This computation proceeds by CCA [31], which is equivalent to fitting
an ellipse having the same second-moments as the connected component (CC), whose major axis is
oriented along direction θ (Figure 3). The properties of cracks and non-cracks at a location (x, y) are
equivalent to the geometrical properties estimated by the fit. An example of such an equivalent image
can be seen in Figure 3.

After constructing CC maps in horizontal and vertical directions, the algorithm proceeds by the
analysis of connected components, whose area is more than 30 pixels, from the largest to the smallest
ones. For each CC, the algorithm classifies it as a crack or architectural feature using an SVM-based
classification scheme. Then, it constructs the crack map and the architectural feature map by adding
up the corresponding horizontal and vertical derivatives of pixel intensities followed by binarization
using Otsu’s method [33]. This entire procedure is repeated until all pixels belonging to horizontal and
vertical CCs are analyzed once.



Appl. Sci. 2020, 10, 5077 4 of 20Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 23 

Appl. Sci. 2020, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/applsci 

 

Figure 2. Scheme of the developed methodology. 

Figure 2. Scheme of the developed methodology.



Appl. Sci. 2020, 10, 5077 5 of 20
Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 23 

Appl. Sci. 2020, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/applsci 

  

(a) (b) 

Figure 3. An example of (a) the connected component map and (b) the bounding ellipse. 

2.1. Constructing Edge Maps 

As the first step in this process, the input image is converted to grayscale, and oriented edge 

maps are constructed by applying edge detection operators in horizontal and vertical directions 

independently (Figure 2). This section presents a review of edge detection algorithms and reports 

the results of performance evaluation in rammed earth images for this task. The purpose of this 

study is to evaluate the capability of these methods to separate crack objects from the background. 

This framework discusses two aspects of detection performance, including performance in crack 

detection and performance in the identification of architectural features. Shortcomings of existing 

techniques and relevant details are taken into account. Such an analytical framework is necessary for 

the selection of an edge detection technique for the problem at hand. Focus is particularly given to 

find solutions that overcome limitations. The main requirement that is expected from the solution is 

a reasonably good accuracy in the automatic identification of the presence of multiple cracks and 

architectural objects in a rammed earth image. Motivated by the observed inconsistencies and 

inaccuracies to distinguish between cracks and architectural features, this section concentrates on 

the selection of an edge detection technique, whose main algorithm is inspired by the performance 

analysis. 

A broad family of approaches to crack detection relies on modeling cracks as sharp 

discontinuities in the brightness, which is a characteristic of our approach as well. While this is by no 

means the only path taken, local edge detection operators appear to be the most widely used. 

The edge detection method is a simple but effective tool to identify and locate the pixels that 

correspond to the boundaries of an object in the image, which can be obtained by mask processing 

techniques [34]. The output of this operation is a binary image with the detected edge pixels. 

However, several of those pixels may be the result of noise or surface features. Early local 

approaches, such as the Sobel operator [35], quantifies the presence of a boundary through 

discontinuity measurements in the local brightness. Another family of methods, such as wavelet 

transform, aims at representing the image through a collection of sub-bands, more basic images 

containing different fine-scale and large-scale information of the original image. An example is fast 

Haar transform (FHT) [36], which produces essentially three directional edge maps, namely 

horizontal, vertical and diagonal. The most commonly used edge detection algorithms are Sobel [35], 

Canny [37], Prewitt [38], Laplacian of Gaussian (LoG) [39] and FHT [36]. In this section, these 

algorithms are applied to extract crack pixels from selected parts of rammed earth images. 

Depending on the application, these algorithms may produce missing or extra edges on complex 

surface images. Investigating these algorithms can help in the choice of an edge detection technique 

over another for automatic crack detection of rammed earth heritage. 

Edge detection methods usually determine the sharp variation in the gray level intensities 

based on the calculation of the first and second derivatives of the local intensities. The first and 

Figure 3. An example of (a) the connected component map and (b) the bounding ellipse.

2.1. Constructing Edge Maps

As the first step in this process, the input image is converted to grayscale, and oriented edge
maps are constructed by applying edge detection operators in horizontal and vertical directions
independently (Figure 2). This section presents a review of edge detection algorithms and reports
the results of performance evaluation in rammed earth images for this task. The purpose of this
study is to evaluate the capability of these methods to separate crack objects from the background.
This framework discusses two aspects of detection performance, including performance in crack
detection and performance in the identification of architectural features. Shortcomings of existing
techniques and relevant details are taken into account. Such an analytical framework is necessary for
the selection of an edge detection technique for the problem at hand. Focus is particularly given to
find solutions that overcome limitations. The main requirement that is expected from the solution
is a reasonably good accuracy in the automatic identification of the presence of multiple cracks
and architectural objects in a rammed earth image. Motivated by the observed inconsistencies and
inaccuracies to distinguish between cracks and architectural features, this section concentrates on the
selection of an edge detection technique, whose main algorithm is inspired by the performance analysis.

A broad family of approaches to crack detection relies on modeling cracks as sharp discontinuities
in the brightness, which is a characteristic of our approach as well. While this is by no means the only
path taken, local edge detection operators appear to be the most widely used.

The edge detection method is a simple but effective tool to identify and locate the pixels that
correspond to the boundaries of an object in the image, which can be obtained by mask processing
techniques [34]. The output of this operation is a binary image with the detected edge pixels. However,
several of those pixels may be the result of noise or surface features. Early local approaches, such as
the Sobel operator [35], quantifies the presence of a boundary through discontinuity measurements
in the local brightness. Another family of methods, such as wavelet transform, aims at representing
the image through a collection of sub-bands, more basic images containing different fine-scale and
large-scale information of the original image. An example is fast Haar transform (FHT) [36], which
produces essentially three directional edge maps, namely horizontal, vertical and diagonal. The most
commonly used edge detection algorithms are Sobel [35], Canny [37], Prewitt [38], Laplacian of
Gaussian (LoG) [39] and FHT [36]. In this section, these algorithms are applied to extract crack pixels
from selected parts of rammed earth images. Depending on the application, these algorithms may
produce missing or extra edges on complex surface images. Investigating these algorithms can help
in the choice of an edge detection technique over another for automatic crack detection of rammed
earth heritage.

Edge detection methods usually determine the sharp variation in the gray level intensities based
on the calculation of the first and second derivatives of the local intensities. The first and second
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derivatives of an image are calculated by the gradient vector and Laplacian Operator. The Sobel [35]
edge operator provides vertical and horizontal edges defined by two horizontal and vertical masks.
Like Sobel [35], Prewitt [38] operator performs a two-dimensional spatial gradient measurement, which
consists of a pair of 3 × 3 convolution kernels. One kernel estimates gradient in the x-direction and
the other estimates gradient in y-direction. The LoG operator [39] has been developed based on the
calculation of the second derivative of the local intensities. In this operator, the sensitivity of Laplacian
operator to noise has been reduced by operating Gaussian filter first.

Haar transform [36] of matrices computes averages and differences of neighboring pixels in
various combinations, which can be used for identifying and locating edges in an image. Haar
transform [36] of an image generates a collection of sub-bands, more basic images; each of them
contains different fine-scale and large-scale information of the original image. Multi-scale features of
the original image can be extracted directly from the Haar decomposition coefficients, namely detail
and approximation coefficients.

Experimental results obtained at this stage describe the performance of the above-mentioned
techniques in practical crack detection in rammed earth heritage. Figures 4 and 5 show some
representative results of the edge detection analysis.
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Figure 4. Performance of edge detection operators on rammed earth images. (a) Sobel, (b) Prewitt and
(c) Laplacian of Gaussian.

As observed through this experimental study (Figure 4), the Sobel edge operator performs better
in the extraction of crack pixels from the background for rammed earth images. In particular, Sobel
predicts fewer missing pixels, although this operator may get a noisier output. Another observation
confirms that the implementation of crack detection algorithms cannot achieve optimal performance by
merely applying an edge detection operator on a rammed earth image. This can be attributed mainly
to the fact that the detection results of the algorithms are influenced by architectural objects. Therefore,
these methods are not appropriate for complex images containing architectural features. As observed
in Figure 6, edge detection algorithms often join horizontal and vertical architectural lines at the
corners (Figure 6a) or architectural lines and cracks at the intersections (Figure 6b,c). To circumvent this
difficulty, we apply Sobel edge detection operators in the horizontal and vertical direction separately
(Figure 2). Taking derivatives in this manner confirms that oriented edge maps themselves carry
high-level feature information.
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map, (b) horizontal edge map, (c) vertical edge map and (d) diagonal edge map.
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Figure 6. Misidentification of connected components (CCs) using existing edge detection methods.
(a) Joining horizontal and vertical architectural lines and (b,c) joining architectural lines and cracks.

Moreover, it is observed that Haar transform method can be an appropriate way to detect
horizontal and vertical line objects. Figure 6 shows representative results for the Haar transform
implemented on a rammed earth image containing horizontal and vertical architectural lines. It can be
concluded that this method can identify horizontal and vertical joints in a rammed earth image and
categorize and map them as architectural features. Although a feature classification can be obtained
by representing an image through three directional edge maps at different scales and orientations,
in rammed earth structures containing multiple cracks and architectural line features, this can lead
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to an incorrect classification, as directed features of an edge are broken up and mapped in different
sub-band images. This means that horizontal sub-band does not contain horizontal lines. Rather,
it includes horizontal features of all lines in an image. From this, we found that constructing a simple
directed edge map is not enough to benefit from feature classification. We solve this limitation by
integrating local intensities and connectivity in each direction and then classifying those directed
connected components based on geometrical features.

Treating each oriented edge map as an image, we apply CCA for each direction, obtaining
equivalent bounding ellipses. This solves the problem of misidentification of CCs at the intersection
of horizontal and vertical lines or architectural lines and cracks that previously lead to errors.
The information from different horizontal and vertical edge maps provides far superior input for
high-level task of crack and non-crack classification, which is then combined to provide an architectural
line map and crack map. Figure 7 breaks down the contributions of oriented edge maps to the
performance of the algorithm.Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 23 
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2.2. Connected Component Analysis

Once an input image was transformed into two separate edge maps using Sobel operators,
each map is treated as an image and is processed independently. As previously observed in Figure 6,
a CC built up from detected edges will often mistakenly join architectural lines and cracks, resulting in
misidentification of geometrical properties. Hence, value exists in producing oriented gradient maps
rather than single-level edge maps. This computation is motivated by the intuition that horizontal
and vertical lines, left on the surface of the rammed earth structures, correspond to horizontal and
vertical discontinuities in intensity and geometrical features provide a robust mechanism for modeling
the content of such image regions. By using oriented edge detection output, CC regions are built by
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exploiting the information in these edge maps by applying the eight connectivity rule [31] to each
group of neighboring pixels in each direction, independently (Figure 7).

Since cracks differ from architectural lines considering physical properties, their geometric
characteristics can be used to classify them into different classes. Therefore, various morphological
parameters can be defined to group them mathematically. For example, a strongly oriented axis
length ratio (Ratio of Major Axis Length to Minor Axis Length) means a CC is more likely to lie on an
architectural line map. In the previous stage, crack and non-crack regions were extracted from images
using a classical edge detection technique, Sobel edge operators, in horizontal and vertical directions.
To classify crack and architectural features, inspecting the detected oriented edge maps pixel by pixel
is not necessary. In this model, we start from CC, a group of neighboring pixels that form a roughly
linear segment. Each CC is represented by an ellipse. CC fundamental and physical properties are
equivalent to those of this ellipse, and are utilized to support subsequent automatic crack analysis.

A wide range of a surface can be acquired with a digital camera [40]. Therefore, fundamental
analyses are performed on patches with 256 × 256 pixels. Moreover, by expressing the geometrical
characteristics in terms of the normalized quantities, we obtain a scale-invariant feature space.
The morphological parameters identified and selected to use for CC analysis are briefly described
in Table 1 and shown in Figure 8. We assign to each CC on each oriented map the morphological
parameters of the corresponding ellipse. The results of CC analysis are shown in Figure 9.

Table 1. Morphological parameters for connected component analysis.

Area Number of Pixels

Density Ratio of pixels in the region to pixels in total image
Major axis length Length (in pixels) of the major axis of the equivalent ellipse
Minor axis length Length (in pixels) of the minor axis of the equivalent ellipse

Length ratio Ratio of the major axis length to 256
√

2
Width ratio Ratio of the minor axis length to 256

√
2

Axis length ratio Ratio of Major Axis Length to Minor axis length

Orientation Absolute value of the angle between the x-axis and the major axis of the
ellipse, ranging from 0 degrees to 90 degrees (Figure 3b).

Orientation ratio Ratio of orientation to 90 degrees
Convex area Number of pixels in convex Image (Figure 8c)

Convex area ratio Ratio of pixels in convex area to pixels in total image
Equivalent diameter Diameter of an equivalent circle with the same area as the region

Equivalent diameter ratio Ratio of Equivalent diameter to 256
Extent Ratio of pixels in the region to pixels in the total bounding box

Solidity Ratio of area to convex area
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Figure 8. Morphological parameters. (a) Bounding box, (b) bounding ellipse and (c) convex hull.
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Figure 9. The results of the connected component analysis. (a) Extent-length ratio, (b) orientation
ratio-length ratio, (c) width ratio-length ratio, (d) convex area ratio-length ratio, (e) solidity-length ratio,
(f) axis ratio-length ratio, (g) equivalent diameter ratio-length ratio and (h) density-length ratio.
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2.3. SVM-Based Classification Scheme

Once a set of features was selected and measured, dimensions are reduced to three fundamental
features. Applying the results of CCA, allows us to represent data in lower dimensions without
compromising the meaning of the data. Figure 10a depicts further visualization of well-separated
data in three-dimensional (3D) feature space. These geometric feature vectors, axis length ratio,
orientation and length, are used as input to train an SVM [32]. This is motivated by the intuition that
monitoring systems and analytical approaches take into account this geometrical information and
make use of crack length and width as fundamental parameters for determining the severity of cracks.
Moreover, in this case, these three parameters yield a high degree of variance, according to Figure 9.
Reduction in computational complexity for analytical systems as outlined above, as well as a high
degree of separability for these three parameters, make our crack detector methodology a practical
tool. As one of the most widely used machine learning techniques, SVM [32] methodology performs
classification by finding the maximum-margin hyperplane that separates two different categories with
the best performance and maximizes the margin between the nearest data points and the hyperplane
in different classes.Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 23 
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The Simple SVM uses binary learners to train the model. However, this type of model tends
to suffer from over-fitting. To solve this problem, cross-validation techniques are employed herein.
In cross-validation techniques, a subset of data called “validation set” is used to test the classifier
during the training stage. In an n-fold cross-validation technique (Figure 11), such as five-fold
cross-validation [41], first, the training set is divided into n subsets equally. In order to ensure the
proper learning, the mechanism is to test one subset using the model trained on the remaining n−1
subsets. This process is repeated n times so that each instance of the whole training set is validated
once. The accuracy of the model is computed based on the average accuracy of n classifiers [41].Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 23 
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Figure 11. An n-fold cross-validation.

In order to classify crack and architectural line features, a cross-validated SVM is applied to
train a binary model, exploiting a three-dimensional feature space (Figure 10). In total, 80% and 20%
of data are considered as training and test data, respectively. To ensure proper learning, five-fold
cross-validation is performed. The classifier achieves an accuracy of 98.10%.

2.4. Map Generation

We then utilize the output of the classifier as well as associated horizontal and vertical edge
pixel intensities for each CC to construct crack and architectural feature maps. In order to do
this, the algorithm considers all CCs with areas more than 30 pixels, in horizontal and vertical CC
maps, from largest to smallest one. Once each CC is classified as crack or architectural feature, the
corresponding pixel information from oriented edge maps is extracted and then combined to generate
desirable feature maps. Crack and architectural line maps are generated by adding up associated pixel
intensities in horizontal and vertical edge maps. This entire procedure is repeated for all CCs in such a
way that each pixel of the whole CCs is analyzed once. As a consequence, the output is represented as
the ultimate crack map and architectural feature map (Figure 2).

3. Model Evaluation

To evaluate the performance of the algorithm, we report two important results. First, we conduct
some initial experiments in an attempt to determine the performance of the classifier on a new set of
data from rammed earth heritage images. These data have not been used in training and validating
the classifier. Figure 12 presents the data used for this experiment.
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Figure 12. Cont.



Appl. Sci. 2020, 10, 5077 14 of 20
Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 23 

Appl. Sci. 2020, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/applsci 

  

(f) (g) 

  

(h) (i) 

Figure 12. Data for classifier evaluation framework. (a) Geometry of cracks and architectural lines, (b) 

Extent-length ratio, (c) orientation ratio-length ratio, (d) width ratio-length ratio, (e) convex area ratio-length 

ratio, (f) solidity-length ratio, (g) axis ratio-length ratio, (h) equivalent diameter ratio-length ratio and (i) 

density-length ratio. 

We also analyze the sensitivity of the accuracy of the developed model to variations in three 

fundamental parameters for identifying cracks and architectural lines (Figure 13). According to this 

analysis following observations can be made: 

-  For a specific orientation, the boundary value of the axis length ratio, the maximum value of the 

axis length ratio for an equivalent ellipse to be considered as a crack, increases with an increase 

in crack length. This highlights the high accuracy of the model in the identification of severe 

and thin cracks for any directions rather than horizontal and vertical ones, which can be 

indications of structural crack initiation. 

-  When orientation approaches horizontal and vertical directions, the boundary value of axis 

length ratio decreases for a specific length of the feature. This justifies the accuracy of the 

developed model in detecting the presence of very thin architectural lines left on the walls due 

to the construction technology of rammed earth buildings. On the other hand, this confirms the 

ability of the model to detect severe cracks in horizontal and vertical directions. 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

S
o

li
d

it
y

 

Length Ratio 

Architectural Line Crack

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1

A
xi

s 
Le

ng
th

 R
at

io

Length Ratio 

Architectural Line Crack

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.2 0.4 0.6 0.8 1

Eq
u

iv
al

en
t 

D
ia

m
et

er
 R

at
io

Length Ratio 

Architectural Line Crack

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 0.2 0.4 0.6 0.8 1

D
e

n
si

ty

Length Ratio 

Architectural Line Crack

Figure 12. Data for classifier evaluation framework. (a) Geometry of cracks and architectural lines,
(b) Extent-length ratio, (c) orientation ratio-length ratio, (d) width ratio-length ratio, (e) convex area
ratio-length ratio, (f) solidity-length ratio, (g) axis ratio-length ratio, (h) equivalent diameter ratio-length
ratio and (i) density-length ratio.

We also analyze the sensitivity of the accuracy of the developed model to variations in three
fundamental parameters for identifying cracks and architectural lines (Figure 13). According to this
analysis following observations can be made:

- For a specific orientation, the boundary value of the axis length ratio, the maximum value of the
axis length ratio for an equivalent ellipse to be considered as a crack, increases with an increase in
crack length. This highlights the high accuracy of the model in the identification of severe and
thin cracks for any directions rather than horizontal and vertical ones, which can be indications of
structural crack initiation.

- When orientation approaches horizontal and vertical directions, the boundary value of axis length
ratio decreases for a specific length of the feature. This justifies the accuracy of the developed
model in detecting the presence of very thin architectural lines left on the walls due to the
construction technology of rammed earth buildings. On the other hand, this confirms the ability
of the model to detect severe cracks in horizontal and vertical directions.

Then, the developed algorithm is evaluated against experimental data for producing crack map.
We evaluate performance with respect to the crack and non-crack labels provided manually for
equivalent ellipses. Figures 14–17 illustrates the results of the evaluation of the algorithm for producing
the crack map from images of rammed earth heritage as an input. Note that of the 287 regions examined
for classifier evaluation, 98.26% is reported as true positive and false negative. False positives (0.70%)
are concentrated on very thin cracks, whose misclassification as architectural features is still acceptable,
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since these cracks usually represent texture cracks rather than structural ones. The results of this study
also indicate that true negatives (1.04%) may be observed on rammed earth images with very specific
texture characteristics.
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Figure 14. Evaluation of the algorithm on surface images of earthen heritage. (a) Image 1, (b) horizontal
edge map, (c) vertical edge map, (d) horizontal CCs (area > 30 pixels), (e) vertical CCs (area > 30 pixels),
(f) architectural feature map and (g) crack map.
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Figure 15. Evaluation of the algorithm on surface images of earthen heritage. (a) Image 2, (b) horizontal
edge map, (c) vertical edge map, (d) horizontal CCs (area > 30 pixels), (e) vertical CCs (area > 30 pixels),
(f) architectural feature map and (g) crack map.
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Figure 16. Evaluation of the algorithm on surface images of earthen heritage. (a) Image 3, (b) horizontal
edge map, (c) vertical edge map, (d) horizontal CCs (area > 30 pixels), (e) vertical CCs (area > 30 pixels),
(f) architectural feature map and (g) crack map.
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Figure 17. Evaluation of algorithm on surface images of earthen heritage. (a) Image 4, (b) horizontal
edge map, (c) vertical edge map, (d) horizontal CCs (area > 30 pixels), (e) vertical CCs (area > 30 pixels)
and (f) architectural feature map.

4. Conclusions

With special attention to morphological characteristics of cracks and architectural line features in
surface images of earthen heritage, the current study proposes a scale-invariant SVM-based framework
whose main algorithm associates with each object morphological characteristics of bidirectional
bounding ellipses, namely axis length ratio, orientation ratio and length ratio, and uses an SVM
classifier to create crack and architectural line feature maps. Rather than relying on the application
of the eight connectivity rule to the combination of horizontal and vertical gradient to extract edges,
features are computed in each direction separately.

It turns out that equivalent ellipse, representing a connected component, is a sufficiently good
approximation for our purpose. Inclusion of three directed morphological characteristics, axis length
ratio, orientation ratio and length ratio, contributes positively to the performance of the crack detection
algorithm for rammed earth images. The algorithm performs well on complex images, which contains
a combination of different cracks and architectural line features. This approach is quite accurate at
the classification of horizontal texture lines, the characteristics of most rammed earth walls. Another
advantage of this approach is its ability to distinguish severe vertical cracks, one of the most common
cracks in rammed earth heritage, and vertical architectural lines. The results indicate a high degree of
accuracy in producing crack and architectural feature maps.

The accuracy with very thin cracks is slightly lower than with the wider ones. However, their
misclassifications as architectural line features are still acceptable, since these cracks usually represent
texture cracks rather than structural ones. The results of this study also indicate that the algorithm adds
some true negatives in rammed earth structures with particular texture characteristics. The authors
are currently addressing this issue by investigating a different methodology, aiming at overcoming
this problem.
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