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A Fresh Geometrical Look
at the General S-Procedure
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February 10, 2021

Abstract

We revisit the S-procedure for general functions with “geometri-
cal glasses”. We thus delineate a necessary condition, and almost a
sufficient condition, to have the S-procedure valid. Everything is ex-
pressed in terms of convexity of augmented sets (convex hulls, conical
hulls) of images built from the data functions.

Keywords. S-lemma, Convexity of image sets, Separation of convex
sets, Theorem of alternatives.

Introduction
The so-called S-procedure takes roots in Automatic Control Theory; an

excellent survey-paper on its origin and developments is [4]. In the field of
Optimization, the subject has also been studied thoroughly, beginning with
the quadratic data and further with general functions. As a result, papers
concerning the S-procedure abound; fortunately, there are from time to time
survey-papers which allow to take stock of what has been done and what
needs to be done; two examples are [1] and [6]. With that in mind, for the
convenience of the reader who is not necessarily “immersed” in the subject,
we recall in Section 1 some of the main known results.
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The keypoint of the message conveyed in our note is the following: the
essential is not the convexity of the image set of the vector-valued mapping
obtained from all the involved real-valued functions, but the convexity of
an enlarged version of this image (via operations like adding the positive
orthant (R+)q, or taking the conical hull), an assumption weaker than the
mere convexity of the image itself.

The S-procedure is intimately linked with the validity of a duality result
in a certain mathematical optimization problem (see a recent overview of
that in [9]); this was already the main motivation in Fradkov’s paper ([3]).
But this aspect is not broached here.

Our approach is essentially geometrical ; the validity of the necessary/sufficient
conditions that we develop are expressed in terms of convexity of sets. As
expected in such contexts, the main used mathematical tool is the separa-
tion of convex sets by hyperplanes (in finite-dimensional vector spaces). Our
main results (Theorem 2, Theorem 3) have similarities with some in Frad-
kov’s old paper [3]; they could have been there, as much as the method as
indications around some remarks led to them. To a certain extent, our note
is a revisit and an extension of Section 1 in [3].

1. The S-procedure for quadratic functions
We recall here some basic results on the S-procedure when only quadratic

functions are involved.
Let Q0, Q1, ..., Qp be 1+p real n×n symmetric matrices, let c0, c1, ..., cp ∈

Rn, let d0, d1, ..., dp ∈ R, and let qi(·) be the associated quadratic functions

x ∈ Rn 7→ qi(x) =
1

2
〈Qix, x〉+ 〈ci, x〉+ di ,

where 〈·, ·〉 denotes the scalar product on Rn. When ci = 0 and di = 0, one
speaks of quadratic form qi instead of quadratic function. When Qi = 0,
one speaks of linear ( or affine) function, and of linear form when, moreover,
di = 0.

What is called S-procedure in Automatic Control Theory is the relation-
ship between

(I) (qi(x) > 0 for all i = 1, 2, ..., p)⇒ ( q0(x) > 0)
and

(C)

{
There exist α1 > 0, ..., αp > 0 such that

q0(x)−
∑p

i=1
αiqi(x) > 0 for all x ∈ Rn.
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The implication [(C)⇒ (I)] is trivial. The issue is therefore the con-
verse implication; we say that the S-procedure is valid ( or favorable, or loss-
less) when this converse [(I)⇒ (C)] holds true, that is to say the equiv-
alence between the two statements (I) and (C). The equivalence may be
used in its negative form, i.e. [(not I)⇔ (not C)], whose essential content is
[(not C)⇒ (not I)] .

Let us recall some important cases when the S-procedure is known to be
valid:

- When p = 1, provided that there exists x0 such that q1(x0) > 0.
- When all the involved functions qi are linear forms. In that case, this is

just the Minkowski-Farkas lemma (in its homogeneous form). Indeed, to
have

〈a0, x〉 −
∑p

i=1
αi 〈ai, x〉 > 0 for all x ∈ Rn

amounts to having a0 =
∑p

i=1
αiai.

- When all the functions qi involved are linear functions. In that case, this
is again the Minkowski-Farkas lemma (non-homogeneous form). Indeed,

(〈ai, x〉 − bi > 0 for all i = 1, 2, ..., p)⇒ ( 〈a0, x〉 − b0 > 0)

is equivalent to{
There exist α1 > 0, ..., αp > 0 such that

a0 =
∑p

i=1
αiai and b0 −

∑p

i=1
αibi 6 0.
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2. The S-procedure for general functions
Let f0, f1, ..., fp : Rn → R be 1 + p (general) functions. For such a

collection of functions, we mimic the S-procedure presented for quadratic
functions. The objective is to have the equivalence between the two next
assertions:

(I) (fi(x) > 0 for all i = 1, 2, ..., p)⇒ (f0(x) > 0)
and

(C)

{
There exist α1 > 0, ..., αp > 0 such that

f0(x)−
∑p

i=1
αifi(x) > 0 for all x ∈ Rn.

Sometimes, the expected result is written in the following “alternative theo-
rem” form, with

(not I)

{
The system of inequations (fi(x) > 0 for all i = 1, 2, ..., p)

and (f0(x) < 0) has a solution x ∈ Rn.

The valid S-procedure then reads: exactly one of the two statements
(not I) and (C) is true.

2.1 First step: when epi-convexity enters into the picture
For real-valued functions ϕ1, ϕ2, ..., ϕk defined on Rn, we use the standard

notation Im(ϕ1, ϕ2, ..., ϕk) for the image set {(ϕ1(x), ϕ2(x), ..., ϕk(x) : x ∈ Rn}.
The main result in this subsection is as follows:

Theorem 11. Suppose that:
- There exists x0 such that fi(x0) > 0 for all i = 1, 2, ..., p

and
- The epi-image Im (f0,−f1,−f2, ...,−fp)+(R+)p+1 is convex (We there-

fore say that the mapping (f0,−f1,−f2, ...,−fp) is epi-convex).
Then the S-procedure is valid, that is to say: (I) and (C) are equivalent.

The first assumption: There exists x0 such that fi(x0) > 0 for all i =
1, 2, ..., p is common in Optimization; it is a Slater-type assumption. We
refer to it hereafter as (S).

A general remark. Suppose that Im (g0, g1, g2, ..., gp) is convex. Then
Im (g0,−g1,−g2, ...,−gp) is also convex (as the image of the previous set

1From J.-B. Hiriart-Urruty, A remark on the general S-procedure. Unpublished
technical note (2020).

4



under the linear mapping (u0, u1, u2, ..., up) 7→ (u0,−u1,−u2, ...,−up). Hence,
Im (g0,−g1,−g2, ...,−gp) + (R+)p+1, sum of two convex sets, is convex.

Example 1. Suppose that g0, g1, g2, ..., gp are all convex functions. Then
Im (g0, g1, g2, ..., gp) is not necessarily convex but Im (g0, g1, g2, ..., gp)+(R+)p+1

is convex, as this is easily seen from the basic definition of convexity of the
gi’s. As a result, it comes from the main theorem above that the S-procedure
is valid whenever f0 is convex and the f1, f2, ..., fp are concave; we therefore
recover a classical result in convex minimization (with convex inequalities).

Example 2 (from [7, Example 3.1 ]). Epi-convex but not convex images.
Let q0 and q1 be defined on R2 as follows:

q0(x, y) = 2x2 − y2, q1(x, y) = x+ y.

Then, Im(q0, q1) = {(u, v) ∈ R2 : u > −2v2} is not convex. However, the
epi-image F = Im(q0,−q1) + (R+)2 = R2 is convex.

Example 3. Indeed a lot of effort has been made by authors to detect
(rather strong) assumptions ensuring that an image set like Im (g0, g1, g2, ..., gp)
is convex, especially with quadratic gi’s (see [2, 5, 7, 8]). In addition to that,
it has recently been proved that Im(q1, q2) + (R+)2 is convex for any pair of
quadratic functions (q1, q2) ([2, assertion (b) in Theorem 4.19]). The ques-
tion remains posed for a collection of three or more quadratic functions. We
conjecture that the evoked convexity result does not hold true, but do not
have any counterexample to offer.

2.2 A further step, via geometrical interpretations of (I) and (C)
In this subsection, we intend to provide a geometrical exact characteriza-

tion of the statement (I) and a “close to exact” geometrical characterization
of the statement (C). For that purpose, we posit:

−
(
R∗+ × (R+)p

)
= K (a polyhedral convex cone in Rp+1);

Im (f0,−f1,−f2, ...,−fp) = F (an image set in Rp+1, from the data).

Given a set S, we denote by coS its convex hull, and by coneS its convex

conical hull, that is to say
{∑k

i=1 λiui : k positive integer, λi > 0 and ui ∈ S for all i
}

.

To link the two definitions, we clearly have that coneS = R∗+coS = co
(
R∗+S

)
.

Theorem 2. We have the following:

(I) holds true ⇔ F ∩K = ∅ ⇔ R∗+F ∩ K = ∅ (1)

(C) holds true ⇒ coF ∩ K = ∅ ⇔ coneF ∩ K = ∅ (2)

(coneF ∩ K = ∅ and (S)) ⇔ (coF ∩ K = ∅ and (S)) ⇒ (C) holds true.(3)
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In short:
- A geometrical equivalent form of (I) is F ∩ K = ∅ or R∗+F ∩ K = ∅.
- Provided the (slight) Slater-type assumption (S) is satisfied on the

fi’s, a geometrical equivalent form of (C) is either coF ∩ K = ∅ or coneF ∩ K = ∅.

Proof of Theorem 2
- For the first equivalence in (1), maybe it is easier to consider (not I).

To have (not I) means that there exists x ∈ Rn such that: fi(x) > 0 for all
i = 1, ..., p, and f0(x) > 0. This exactly expresses that F ∩ K 6= ∅.

The second equivalence in (1) is clear from the relation R∗+K = K.
- To prove the first implication in (2), we use the notation 〈·, ·〉 for the

usual inner product in Rp+1 = R× Rp; thus 〈α, z〉 = α0z0 + α1z1 + ...+ αpzp
whenever α = (α0, α1, ..., αp) ∈ R× Rp and z = (z0, z1, ..., zp) ∈ R× Rp.

By definition of the statement (C) itself, there exists α = (α0, α1, ..., αp) ∈
− K (that is to say α0 > 0 and αi > 0 for all i = 1, ..., p) such that

〈α, z〉 > 0 for all z = (z0, z1, ..., zp) ∈ F .

Clearly, this is equivalent to

〈α, z〉 > 0 for all z = (z0, z1, ..., zp) ∈ coF . (4)

We prove by contradiction that coF ∩ K is empty. Therefore, suppose
there exists some β = (β0, β1, ..., βp) lying in coF ∩ K. Then, according to
the inequality (4) just above, we get that

〈α, β〉 = α0β0 +
∑p

i=1
αiβi > 0. (5)

But, by definition of K, we have β0 < 0 and βi 6 0 for all i = 1, ..., p.
Thus, recalling the signs of the αi’s, one gets at 〈α, β〉 < 0, which contra-
dicts (5).

As for the equivalence in the second part of (2), it is clear from the
following observations: coneS = R∗+coS and R∗+K = K.

- We now are going to prove that (coF ∩ K = ∅ and (S)) ⇒ (C).
As expected in such a context, the proof is based on a separation theorem

on convex sets. Because the two convex sets coF and K in Rp+1 do not inter-
sect, one can separate them properly: there exists α∗ = (α∗0, α

∗
1, α

∗
2, ..., α

∗
p) 6= 0

in R× Rp = Rp+1 such that

sup
b∈K
〈α∗, b〉 6 inf

z∈F
〈α∗, z〉 = inf

z∈coF
〈α∗, z〉 , (6)

inf
b∈K
〈α∗, b〉 < sup

z∈F
〈α∗, z〉 . (7)
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The second property (7) is useless here, due the nonemptiness of the
interior of K.

Due to the specific structure of K, we deduce from (6) that α∗i > 0 for all
i = 0, 1, 2, ..., p and, further, supb∈K 〈α∗, b〉 = 0. Now, what is in the right-

hand side of (6) is just infx∈Rn

[
α∗0f0(x)−

∑p

i=1
α∗i fi(x)

]
. We therefore have

proved that

α∗0f0(x)−
∑p

i=1
α∗i fi(x) > 0 for all x ∈ Rn. (8)

We claim that α∗0 > 0. If not, we would have

−
∑p

i=1
α∗i fi(x0) > 0,

which comes into contradiction with our Slater-type assumption (S): fi(x0) >
0 for all i = 1, 2, ..., p, and α∗i > 0 for all i = 1, 2, ..., p (and one of them is
> 0).

It now remains to divide (8) by α∗0 > 0 to get at the desired result. �

Now, we are at the point for providing a rather general geometrical con-
dition ensuring the validity of the S-procedure.

Theorem 3. Assume the Slater-type condition (S), and suppose there
exists a set Z ⊂ (R+)p+1 containing 0 such that R+(F+Z) is convex. Then
the S-procedure is valid, that is to say: (I) implies ( C) (hence (I) and ( C)
are equivalent).

The set Z plays the role of a “convexifier” of the extended image-set
R+F . Let us see how the made assumption covers the three following known
cases:

- (The most stringent one). When the image set F itself is convex; the
assumed condition is satisfied with Z = {0} .

- The epi-convex case (see §2.1): Take Z = (R+)p+1 to fulfill the proposed
assumption. Here, instead of considering F solely, one takes its so-called
“upper set” F + (R+)p+1.

- The “conical convex” case, i.e. when R+F is convex; again the consid-
ered assumption is verified with Z = {0} .

Proof of Theorem 3.
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First step. We start from the assumption (I) in its equivalent form
F ∩ K = ∅ (see (1) in Theorem 2). We make it a bit more general by observ-
ing that (F + Z) ∩ K = ∅ for every set Z contained in (R+)p+1. This is easy
to check, as Z is contained in a cone placed “oppositely” to K. We even go
further by observing that R∗+ (F + Z) ∩ K = ∅, since K is a cone. Finally,
because 0 /∈ K, we summarize the result of this first step in:

R+ (F + Z) ∩ K = ∅. (9)

Second step. Since 0 ∈ Z, we have F ⊂ F + Z; hence F ⊂ R+ (F + Z).
By the assumed convexity of R+(F + Z), we get at

coF ⊂ R+ (F + Z) . (10)

Final step. We infer from (9) and (10) that coF∩ K = ∅. It remains to
apply the result (3) in Theorem 2 to get at the desired conclusion (C). �

Conclusion
We have expressed all the ingredients of the general S-procedure in purely

geometrical forms, as this was initiated in the seminal paper by Fradkov
([3, pages 248− 251]. In doing so, we hope to have shed a fresh new light at
this kind of results, which could help to explain or to get at new conditions
for the S-procedure to be valid.
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