N

N

Maritime Data Processing in Relational Databases
Laurent Etienne, Cyril Ray, Elena Camossi, Clément Iphar

» To cite this version:

Laurent Etienne, Cyril Ray, Elena Camossi, Clément Iphar. Maritime Data Processing in Rela-
tional Databases. Guide to Maritime Informatics, Springer International Publishing, pp.73-118, 2021,
10.1007/978-3-030-61852-0_3 . hal-03137050

HAL Id: hal-03137050
https://hal.science/hal-03137050
Submitted on 10 Feb 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-03137050
https://hal.archives-ouvertes.fr

Maritime Data Processing in Relational
Databases

Laurent Etienne, Cyril Ray, Elena Camossi, Clément Iphar

Abstract Maritime data processing research has long used spatio-temporal rela-
tional databases. This model suits well the requirements of off-line applications
dealing with average-size and known in advance geographic data that can be rep-
resented in tabular form. This chapter explores off-line maritime data processing
in such relational databases and provides a step-by-step guide to build a maritime
database for investigating maritime traffic and vessel behaviour. Along the chapter,
examples and exercises are proposed to build a maritime database using the data
available in the open, heterogeneous, integrated dataset for maritime intelligence,
surveillance, and reconnaissance that is described in [41]. The dataset exemplifies
the variety of data that are nowadays available for monitoring the activities at sea,
mainly the Automatic Identification System (AIS), which is openly broadcast and
provides worldwide information on the maritime traffic. All the examples and the
exercises refer to the syntax of the widespread relational database management sys-
tem PostgreSQL and its spatial extension PostGIS, which are an established and
standard-based combination for spatial data representation and querying. Along the
chapter, the reader is guided to experience the spatio-temporal features offered by
the database management system, including spatial and temporal data types, in-
dexes, queries and functions, to incrementally investigate vessel behaviours and the
resulting maritime traffic.

Laurent ETIENNE

LabISEN, FRANCE, e-mail: laurent .etienne@isen—-ouest.yncrea. fr

Cyril RAY

Naval Academy Research Institute, FRANCE, e-mail: cyril.ray@ecole-navale.fr
Elena CAMOSSI

NATO STO Centre for Maritime Research and Experimentation, ITALY, e-mail: elena.
camossi@cmre.nato.int

Clément IPHAR
NATO STO Centre for Maritime Research and Experimentation, ITALY, e-mail: clement.
iphar@cmre.nato.int

2 Laurent Etienne, Cyril Ray, Elena Camossi, Clément Iphar

1 Introduction

The analysis and the processing of data from automated surveillance technologies
like the Automatic Identification System (AIS), Synthetic Aperture Radar (SAR),
satellite images and coastal radars (cf. the chapter of Bereta et al. [7]) is an emerging
topic. Once fused with contextual information like coastlines, nautical charts, fishing
areas, maritime protected areas, sea state and weather conditions, these positioning
data can be analysed in order to understand vessel mobility, monitor maritime traffic,
uncover activities or risks for the environment, living resources and navigation, and
soon [41]. The research is expeditiously progressing, and many analysis techniques
are applied to attain the above major goals using maritime navigational data. Some
of the leading maritime informatics research topics include:

o Vessel trajectory analysis and prediction, recently focusing mainly on AIS and
complementary sources to predict and analyse vessel trajectories [8].

Traffic forecasting, like port volume handling and cargo throughput forecast [24].
Collision prevention, analysing risk of ships collisions through the analysis of
their navigational behaviour [22].

e Ship detection, classification and identification, analysing videos from cameras
in delimited areas, for instance to detect small vessels [25], or remote sensing
images in larger areas [14].

e Anomaly detection, mostly adopting data-driven methods to model normal traffic
against which any irregular behaviour is associated to potential threats [44].

e Analysis of human activities at sea, such as fishing, illegal traffic (human beings,
narcotics, goods), piracy [39].

e Multi-source information fusion, to reduce uncertainty in the data available and
achieve better accuracy in analysis [33].

e Dynamics of maritime transportation networks, where trajectory data are con-
sidered at an aggregated level through network abstractions designed to analyse
behavioral patterns [60].

Research work processing maritime data requires modelling and analysing mov-
ing objects associated to maritime navigation and traffic. Considering an existing
batch of data, two main processing approaches exist. Some works consider di-
rect processing of data files, using general-purpose data science environments (e.g.
Python, R, Matlab) or developing customised tools for spatio-temporal data pro-
cessing (e.g. [3]). Other works use database management systems (DBMS), which
nowadays offer a native support for modelling spatial information, optimised func-
tionalities for spatial indexing and analysis, and efficient integration with the query
language.

The latter approach, which is the one illustrated in this chapter, enables a quick
development of moving object applications. Thanks to built-in spatial data types
and extended DBMS support, developers can exploit the spatial dimension of the
application entities. For instance, they can explicitly represent spatial objects and
execute spatial queries to compare their topological properties or to calculate their
geographical distance. The available spatial types of such DBMS can be extended

Maritime Data Processing in Relational Databases 3

with user-defined data types and functions, tailored to the specific application or
task. The soundness and the efficiency of the resulting model are guaranteed by the
DBMS.

This chapter focuses on the support offered by relational DBMS, which are pro-
posed for maritime data storage and querying. While time-consuming for handling
very large datasets, and while being mainly used for off-line analysis, relational
DBMS suit well the requirements of applications dealing with average-size het-
erogeneous data that can be described according to a known structured and fixed
schema, i.e. where data properties are known in advance and can be represented in
tabular form.

Along the chapter, many SQL (Structured Query Language) [35] examples are
presented to the reader, who is asked to solve some exercises.! A basic knowledge
of relational databases and SQL is necessary to understand the examples and solve
the exercises. All together, examples and exercises illustrate the spatio-temporal ca-
pabilities of DBMSs that can be progressively combined to analyse maritime data
for investigating vessel traffic. The examples in this chapter refer to PostgreSQL.?
a widespread relational DBMS. PostgreSQL is a very popular DBMS, fully open
source, very robust, and its spatial support, which is provided by PostGIS [53],
is compliant to well established standards for representing spatial features. Post-
greSQL also integrates a native temporal support, which is necessary to analyse
vessel movements, that corresponds to Allens algebra operators [1].

The rest of the chapter is organised as follows. In Section 2 we overview the
existing approaches for representing and managing spatial data and moving ob-
jects. Section 3 introduces the software the reader needs in order to create, query
and visualise a maritime database. Section 4 explains the steps required to create
a maritime database, given the heterogeneous, integrated dataset for maritime in-
telligence, surveillance, and reconnaissance that is described in [41]. Using this
maritime dataset, section 5 illustrates typical queries and functions, useful to derive
additional information and reason on vessel movements. Finally, Section 6 con-
cludes the chapter.

2 Systems for spatial data and moving objects

In this section, we overview how spatial, specifically geographic data, and moving
objects are handled, either using Geographic Information Systems (GIS), or DBMS.
The approaches and software products supporting only spatial data are introduced
first, followed by some of the existing systems for spatio-temporal data.

! Exercise solutions are available, with additional material (e.g. resulting geographic data), online
[NEW DOI OBJECT TO CREATE ON ZENODO], together with the reference dataset used in the
examples.

2 https://www.postgresqgl.org

4 Laurent Etienne, Cyril Ray, Elena Camossi, Clément Iphar

2.1 Handling spatial data

For decades, the representation and analysis of geographical information have been
investigated in the area of Geographic Information Systems (GIS). GIS, like Ar-
cGIS®, GRASS*, and QGIS? naturally evolved from the digitalisation of carto-
graphic maps. GIS have efficient geographic visualisation and rendering capabil-
ities, which can be combined with multi-layer spatial analysis functions like dis-
tance/buffer and topological queries, overlay operations, surface and terrain anal-
ysis. However, traditional GIS alone cannot deal with the increasing quantity of
data, and do not suite the semantically-driven integration of heterogeneous infor-
mation that involves both spatial and non-spatial attributes, or complex knowledge
discovery tasks like supervised classification. All these tasks require an integrated
representation of geographic and descriptive data features, and a greater flexibility
in low-level data manipulation than the one offered by traditional GIS, which keep
the management of geospatial data and other data types separated [43].

To address the needs of emerging spatial-driven applications, relational database
systems, once geared towards providing efficient support for simple objects with
discrete attributes, have been extended to represent and query geographic data in a
natural way. For instance, Oracle® and Postgres (now PostgreSQL), were expanded
with spatial modules, respectively Oracle Spatial [26] (now fully integrated in the
main DBMS) and PostGIS. Nowadays, all the main DBMS, including Microsoft
SQL’, MySQL3, SQLite® with SpatiaLite, provide support to cope with geographic
data.

The data model of these DBMS has been extended with data types and structures
for managing geometric data, relying on established international standards and rec-
ommendations '©>.!! Spatial operations and types are fully integrated with the query
language, and the DBMS engine is enhanced to map from the query language to the
spatial features. Also, spatial indexing is provided for query optimisation. Most of
the products include B-Tree+ and R-Tree [17] indexes. PostgreSQL additionally im-
plements the Generalized Search Tree (GiST) [18] to develop customised indexing,
mixing, for instance, spatial and non-spatial optimisation.

3 https://arcgis.com

4https://grass.osgeo.org

Shttps://qgis.org

Shttps://www.oracle.com
Thttps://www.microsoft.com/en-us/sql-server/sql-server—2017

8 https://www.mysql.com

https://sqlite.org

10 Open Geospatial Consortium (OGC) Simple Features Specification for SQL: Simple Feature Ac-
cess - Part 1: Common Architecture https://www.opengeospatial.org/standards/
sfa; Simple Feature Access - Part 2: SQL Option https://www.opengeospatial.org/
standards/sfs

! International Standard Organization’s (ISO) ISO19107:2003 Geographic InformationSpatial
Schema https://www.iso.org/standard/26012.html

Maritime Data Processing in Relational Databases 5

Most DBMS spatial extensions provide mature support for geometric data. Some
products include also extensions for raster data (e.g. Oracle Raster and pgraster,
which is integrated in PostGIS). Also, few products support 3D representations,
including PostGIS.

This support can be further enhanced with novel abstract data types to represent
spatial (and spatio-temporal) data, tailored to the application, analogously to object-
oriented DBMS (OODBMS). These (object-) relational DBMS, taking advantage of
both spatial and object-oriented functionalities, have been established as main play-
ers on the market for storing and querying spatial data. For this reason, nowadays
most of GIS enable the use of a spatial DBMS as data storage layer. This hybrid
solution combines the advantages of the efficient front-end of GIS and the robust
and efficient storage and retrieval capabilities of spatial DBMS.

Few NoSQL, or Not-only-SQL, DBMS, i.e. all the DBMS that adopt alternative
models to the (object-)relational one, offer spatial extensions. Among them, few
research proposals exist to extend OODBMS to support spatial features, leverag-
ing the model extensibility as described above. More recent NoSQL DBMS, like
MongoDB and DocumentDB, which adopt a semi-structured document-based data
model, enable the definition of spatial entities supporting GeoJSON objects and
geo-spatial queries. ArangoDB is a multi-model (key value, graph and document)
NoSQL DBMS that supports natively geo-spatial querying and indexing. Rasdaman
(which stays for raster data manager) is a multi-dimensional DBMS for scientific
data, which can be queried with an SQL-like language.

NoSQL DBMS relax some data modelling constraints to handle unstructured or
semi-structured data, and improve scalability performance as required for big data
and parallel processing. For instance, in order to process in parallel multiple vessel
trajectories, and multiple areas, they enable to increase, seamlessly for the applica-
tion, the number of nodes in the infrastructure that are used to host the database, and
maintain replicas of the data. However, the gain in efficiency and flexibility comes
at the price of relaxing some of the properties that, in traditional SQL databases,
guarantee data consistency (namely, ACID properties: i.e. atomicity, consistency,
isolation, and durability).

It should be noted that NoSQL solutions do not always outperform relational
DBMS. For instance, the authors in [32] compare PostgreSQL/PostGIS and Mon-
goDB performance on a maritime dataset of vessel positions, and show that Post-
greSQL/PostGIS outperforms MongoDB. As shown in the Knowledge base of re-
lational and NoSQL DBMS,'? relational DBMS remain amongst the most popular
DBMS.

2 https://db-engines.com/en/ranking

6 Laurent Etienne, Cyril Ray, Elena Camossi, Clément Iphar

2.2 Spatial-temporal and movement data in databases

While widely studied, the representation of the temporal dimension of spatio-
temporal and moving object data in databases remains rather limited or in the re-
search phase [48]. In [19] the authors illustrate a spatio-temporal extension of the
Object Data Management Group (ODMG) model, which is a de facto standard
model for OODBMS, and of its query language, OQL. A renowned spatio-temporal
model is the SECONDQO’s one, which exploits abstract data types to model moving
objects [57] and spatio-temporal operations among them.

PostgreSQL natively integrates a support for temporal data that nicely com-
bines with the spatial extension of PostGIS. Additionally, the reader may consider
two groups of alternatives. As a first option, a time-series DBMS can be used.
For instance, TimescaleDB'? is an open-source time-series DBMS developed as
PostgreSQL’s extension, fully SQL and PostgreSQL compliant, which can inte-
grate PostGIS to efficiently handle spatio-temporal time-series data like Internet-
of-Things observations. Given an SQL table with temporal and location attributes,
it transforms it and partitions the data according to the temporal and spatial dimen-
sions and adds indexes for improving access performance. It also offers a small set
of analytic functions (e.g. first, which provides the first value of time ordered series)
that can be used jointly with PostGIS’s functions.

The second group of options implements a full spatio-temporal support. For in-
stance, PostGIS-T extends PostgreSQL on the basis of a formal spatio-temporal al-
gebra [50]. Analogously, Pg-Trajectory [28] which is developed by the Data Mining
Lab of the Georgia State University, is a PostgreSQL/PostGIS extension designed for
spatio-temporal data.

Other spatio-temporal proposals, still based on PostgreSQL, are Hermes and Mo-
bilityDB. Hermes [38] is an in-DBMS framework for data mining, more particularly
for the processing of moving objects. It is a Python library, which is event-driven,
failure-handling and PostgreSQL-talking, and enables an easy implementation of
Python processes that require PostgreSQL communication. MobilityDB [55] is a
PostgreSQL extension for mobility data management, which follows the OGC Mov-
ing Features Access specification'# and defines the operations applicable to time-
varying geometries.

3 Building a maritime information system

A Maritime Information System can be defined as a system for the collection, pro-
cessing, storage and delivering of maritime information through a visualisation in-
terface. The main purpose of a DBMS, when integrated to such a Maritime Informa-

13 TimescaleDB https://www.timescale.com

14 OGC Moving Features Access http://www.opengis.net/doc/is/
movingfeatures—access/1.0

Maritime Data Processing in Relational Databases 7

tion System, is to organise, store, access and process the maritime data. The database
can be handled and queried through a management tool or an external programming
environment (e.g. Python, R, Java). In order to visualise the data, dedicated appli-
cations and Application Programming Interface (API), e.g. Grafana,!> Data Driven
Documents (D3),!¢ Kibana,!” visual analytics tools (cf. the chapter of Andrienko et
al. [2]) or a GIS software like QGIS can be used.

Action required

Download and install the following software to prepare the working environment (let us note
that PostGIS and pgAdmin are in general part of the last PostgreSQL bundles):

e PostgreSQL: https://www.postgresqgl.org;
o PostGIS: https://postgis.net;

e pgAdmin: https://www.pgadmin.org;

o (OGIS:https://www.ggis.org.

3.1 PostgreSQL DBMS

The DBMS employed in this chapter to illustrate the use of relational databases for
maritime data is PostgreSQL. PostgreSQL is an open source, standard compliant and
robust DBMS. It adopts and extends the Structured Query Language (SQL) [35] for
data manipulation and querying. PostgreSQL runs on all major operating systems
and can handle big datasets. PostgreSQL is highly extensible: the users can define
their own data types, build customised new functions and interact with the DBMS
through the query language SQL, using different programming languages like C,
Perl, Java, Python, R, JavaScript, etc., and from shell scripts.

3.2 PostGlIS spatial extension

The spatial component of the maritime dataset plays a fundamental role for maritime
situational awareness. PostGIS is a powerful add-on to PostgreSQL that adds geo-
spatial capabilities to the DBMS. PostGIS integrates both raster and vector types
of data which are fully compliant with the OGC Simple Features Specification for
SQL, and a large number of spatial operations. PostGIS also implements multiple
spatial indexing methods, including R-Tree and GiST. Although PostgreSQL and
PostGIS are usually used with two-dimension (2-D) geometries (coordinates X and
Y), PostGIS supports the addition of a third dimension (Z), allowing to reason with
three-dimensional geometries.

15 Grafana https://grafana.com
16 Data Driven Documents (D3) https://d37s.org
17 Kibana https://www.elastic.co/products/kibana

8 Laurent Etienne, Cyril Ray, Elena Camossi, Clément Iphar

3.3 PGAdmin management tool

Once the DBMS is installed, management tools are useful to setup and query the
database. pgAdmin is a multi-platform software that is dedicated to manipulate
PostgreSQL databases. Once connected to a PostgreSQL cluster (i.e. a collection
of PostgreSQL servers), pgAdmin can create and query new databases and tables. Its
powerful query tool supports colour syntax highlighting and graphical query plan
displaying.

3.4 QGIS visualization tool

QGIS is the last component of our Maritime Information System. It is a user-friendly
open-source GIS, which can retrieve, manage, display and analyse the geographic
data stored in the PostgreSQL/PostGIS database. In this chapter, QGIS will be used
to exemplify the visualisation and creation of maps to show the results of the spatial
queries (see Figure 1). Interested readers can refer to Anita Graser’s blog, “Free and
Open Source GIS Ramblings”,'® for practical illustrations on advanced functional-
ities for movement data. Moreover, the readers can refer to the QGIS online user
guide ! to get started with QGIS.

Fig. 1 The QGIS desktop visualising five geographical layers (all available in the dataset described
in [41]): fishing areas (by [56]), ports of Brittany, Europe coastline, fishing constraints and world
seas.

18 “Free and Open Source GIS Ramblings” https://anitagraser.com/
9 https://docs.qgis.org/3.4/en/docs/user_manual/

Maritime Data Processing in Relational Databases 9

3.5 Getting the maritime dataset

The SQL examples of this chapter are based on a freely available open dataset that
has been processed using PostgreSQL and its spatial extension PostGIS. The dataset
is heterogeneous, and contains four categories of data:

e Navigation data, i.e. historical AIS positions of vessels navigating around a ma-
jor shipping route;

o Vessel-oriented data (e.g. ship registers, i.e. lists of vessels with their character-
istics);

e Geographic data (i.e. cartographic, topographic and regulatory context of vessel
navigation);

e Environmental data (i.e. climatic and sea-state related information).

All data are temporally and spatially aligned to allow for efficient and advanced
spatio-temporal analysis. The dataset covers a time period of six months (i.e. from
October 1% 2015 to March 31% 2016) and provides around 18.6 million ship posi-
tions collected from 4,842 ships over the Celtic sea, the North Atlantic ocean, the
English Channel, and the Bay of Biscay in France. For additional details on the
dataset, see [41].

Action required
Access the dataset at: https://zenodo.org/record/1167595

The AIS data included in the dataset aggregate different message types, and are
stored in two separated files, which contain respectively the positioning messages
of ships, and their nominative messages. Positioning messages are AIS messages of
type ITU 1, ITU 2, ITU 3, ITU 18, and ITU 19, where ITU stands for International
Telecommunication Union. Nominative messages are AIS messages of type ITU 5,
ITU 19, and ITU 24, which contain static information about the emitting vessel, such
as its name, dimensions or destination, identifiers like the International Maritime
Organization - IMO - number and the Maritime Mobile Service Identity - MMSI -
code. Two additional files, containing respectively search and rescue messages, i.e.
ITU 9, and aids to navigation messages, i.e. [TU 21, have been also included.

Remark ! SQL queries

The SQL queries presented in this chapter focus on typical and useful features for maritime
informatics. They complement the integration queries available in folder ”[Q1] Integration
Queries” of the maritime dataset. All the queries presented in this chapter have been prepared
using local installations (on Windows x86-64) of PostgreSQL 11.5, PostGIS 2.5.3, and pgAd-
min4 v4.18.

10 Laurent Etienne, Cyril Ray, Elena Camossi, Clément Iphar

©Naval Academy, France

Fig. 2 AIS navigation data in the open dataset of [41]. The purple polygons represent fishing zones
computed from navigation data by Vespe et al. [56].

4 Creation of the Maritime Database

In this section, a new maritime database will be created and populated. Assuming
that the software packages described in Section 3 have been installed, it is possible
to connect to the PostgreSQL database server from pgAdmin interface, using the
credentials provided during the installation. Once a connection to the database is
established, the following command can be executed (in menu Tools — Query Tool)
to create a new empty database called maritime_informatics.

SQL Q4.0.1
CREATE DATABASE “maritime_informatics™;

Remark ! Important note about literals

PostgreSQL automatically converts to lower case all tables and fields names. If you want to force
the use of capitals in tables or fields names, you must quote them (i.e. * ‘tableName’’ or
‘‘fieldName’ "). To distinguish field names and strings in queries, PostgreSQL uses double
quotes (* and ’) for field names and single quotes (* and ’) for string values.

Maritime Data Processing in Relational Databases 11

4.1 The database schema and the tables

A database is organised and structured using one or more database schemas and sev-
eral tables. Each schema defines a workspace where new data types, functions and
operators can be defined. Organising a database using different schemas is useful
for various reasons:

To organise database objects within logical groups and to ease their management;
To isolate third-party applications and allow for duplicate objects or function
names in different schemas;

e To grant users (and groups of users) appropriate access to data and functions that
belong to different schemas.

Schema and tables for AIS data

AIS transceivers on board of vessels broadcast vessel positions and interesting in-
formation about static ship characteristics such as the vessel name, callsign (i.e.
unique vessel identifier for radio broadcasts), IMO number and ship type. Each AIS
transceiver has its own Maritime Mobile Service Identity (MMSI), which is regis-
tered and attributed by country of flag. This number identifies the source of the AIS
message (sourcemmsi). Usually, AIS transceivers broadcast this information to
all the ships in the vicinity. However, some AIS messages can be addressed to one
specific AIS transceiver, identified using its MMSI (destinationmmsi). Ship’s
tenders can also have their own AIS transceiver. The tender’s transceiver reports in
the AIS messages the MMSI of the ship it belongs to (mothership).

For the examples presented in this chapter, AIS information will be organised
within a schema named ais_data. The SQL instructions below show how to create
the schema ais_data into the database and create, inside this schema, a new table
static_ships to store voyage and nominative pieces of information. Note that
each attribute has a specific type (integer, text, double, etc.).

12 Laurent Etienne, Cyril Ray, Elena Camossi, Clément Iphar

SQL Q4.1.1
CREATE SCHEMA ~ais_data”;
CREATE TABLE ais_data.static_ships(
id bigserial , — unique identifier of the row in the table
sourcemmsi integer , — MMSI identifier of the source ship’s transceiver
imo integer , IMO number of the ship, linked to the vessel structure
callsign text, — Callsign of the ship
shipname text, — Ship name
shiptype integer, — Type of the vessel . according to AIS specifications
to_bow integer, — Distance of the AIS transceiver from bow (front) of
vessel , rounded to the nearest meter
to_stern integer , — Distance of AIS antenna form stern (back)
to_starboard integer, — Distance of AIS antenna form starboard (right)
to_port integer, — Distance of AIS antenna form port (left)
eta text, — Estimated Time of Arrival to destination
draught double precision , Ship draught
destination text, — Declared ship destination
mothershipmmsi integer , — MMSI of the mothership
ts bigint, — Timestamp of the AIS frame
CONSTRAINT static_ships_pkey PRIMARY KEY (id) Primary Key
)

4.2 Loading the data into the database

The new table can now be populated. Data can be manually inserted into the ex-
isting tables using the SQL statement INSERT INTO or, alternatively, directly
from files using the PostgreSQL command COPY FROM. The following exam-
ple shows how to load into the table static_ship the static ship information
stored in the Comma Separated Values (CSV) file nari_static, which is in-
cluded in the maritime dataset (in folder “[P1] AIS Data”). In the command below,
<path_to_dataset> must be replaced with the local path to the file.

PostgreSOL

COPY ais_data.static_ships
(sourcemmsi ,imo, callsign ,shipname , shiptype ,to_bow ,to_stern ,to_starboard ,
to_port ,eta,draught ,destination , mothershipmmsi, ts)

FROM ’'<path_to_dataset >/[P1] AIS Data/nari_static.csv’,

DELIMITER ’,’ CSV HEADER;

As soon as the database table is filled with static data, it can be queried using
SQL commands. The query in the next example counts how many different ship
names are listed in the table static_ships ([Answer: 4,824]).

SELECT DISTINCT shipname FROM ais_data.static_ships;

The table static_ships contains duplicated information about ships, trans-
mitted at different timestamps, because nominative messages (ITU 5, ITU 19, and
ITU 24) are automatically repeated at regular time intervals. The duplicated rows

Maritime Data Processing in Relational Databases 13

in this table can be grouped together using a SQL view, as shown in the following
example.

SQL Q4.2.3
CREATE OR REPLACE VIEW ais_data.ships AS
SELECT
sourcemmsi, — MMSI identifier of the ship, attributed by country of flag
imo, — IMO number of the ship, linked to the vessel structure
callsign , Callsign of the ship
shipname — Ship name
FROM ais_data.static_ships
GROUP BY sourcemmsi, imo, callsign , shipname;

Using the view ais_data.ships, let assess some quality aspects of static AIS
information, as proposed in the following exercise.

Do it yourself !

How many ships have null, empty or space filled shipname ? [Answer: 14]
How many MMSI numbers are used more than once? [Answer: 327]

The view ais_data.ships and the queries proposed above show that the
static ship information is not always accurate, because both fields shipname and
sourcemmsi have duplicates and null or empty values. Indeed, this information
can be manually modified. Being unreliable and inconsistent, none of these fields
can used as a primary key in our tables.

In order to analyse the movement of ships, it is necessary to load their posi-
tions in the database. In the maritime dataset, vessel positions are stored in the file
nari_dynamic.csv.

Do it yourself !

Within the schema ais_data, create a new table named dynamic_ships. Fill it with the
data of the file nari_dynamic.csv.

The following query counts the number of the ships positions contained in the
table dynamic_ships ([Answer: 19,035,630]).

SELECT COUNT(*) FROM ais_data.dynamic_ships;

4.3 The temporal dimension of data

PostgreSQL defines types, functions and operators to represent, handle and query
dates and time based on Allen’s interval algebra [1]. They enable, for instance, to test
temporal relations and manipulate temporal events and intervals (e.g. the function
overlaps checks if two temporal intervals overlap; “-” and “+” enable to add or
subtract days or hours from a t ime or a t imestamp value).

14 Laurent Etienne, Cyril Ray, Elena Camossi, Clément Iphar

In the table dynamic_ships, the time of each vessel position is represented
as an integer (in attribute ts), which expresses the corresponding epoch UNIX
timestamp, i.e. the time, in seconds, elapsed since 1970-01-01 00:00:00 UTC (Co-
ordinated Universal Time). In the following example, this numerical value is con-
verted into t imestamp, in order to facilitate its interpretation and to express time-
oriented queries. In the following example, a new column is created to store the new
representation.

ALTER TABLE ais_-data.dynamic_.ships ADD COLUMN t timestamp without time zone;

UPDATE ais_data.dynamic_ships SET t=to_timestamp(ts);

This t imestamp column facilitates visualising the temporal component of the
table dynamic_ships and expressing temporal queries. The query in the exam-
ple below asks for the temporal range of the table (i.e. minimum and maximum
timestamp) ([Answer: ”2015-10-01 00:00:01” - ”2016-03-31 23:59:59”]).

SELECT min(t), max(t) FROM ais_data.dynamic_ships;

4.4 Make it faster !

The queries of the previous section may take a while to complete. This is due to the
size of the table dynamic_ships and because the table needs to be fully scanned
for reading and sorting every timestamp in order to execute the queries. Querying
very large tables can take a long time to execute. In order to optimise the queries,
especially if they are executed frequently, the PostgreSQL commands EXPLAIN
and ANALYZE can be used to understand how the DBMS plans to execute them. For
example, the following command asks the PostgreSQL planner what is the execution
plan for the last query in the previous section.

PostgreSQOL

EXPLAIN ANALYZE SELECT min(t), max(t) FROM ais_data.dynamic_ships;

In the answer, the PostgreSQL planner indicates that it would perform a sequen-
tial scan (Seq Scan) of the table. The sequential scan can be avoided if the col-
umn t, which appears in the SELECT clause of the query, is previously sorted and
indexed. Indexes can require time to build up, and use storage space on the Post-
greSQL server, but they can drastically decrease the time required to execute a query.

In the SQL example below, a Binary Tree (BTREE) index is created on column t.
This index is particularly efficient for reading attributes whose values have a linear
ordering like temporal, numerical or string attributes.

Maritime Data Processing in Relational Databases 15

CREATE INDEX idx_dynamic_ships_t name of the index
ON ais_data.dynamic_ships — name of the table to index
USING btree (t) ; — indexing technique (columns to index)

After creating the index, a new investigation of the query plan (as for the example
above) shows that the Index Scan of the query would take a few milliseconds.

In order to optimise the queries on very large tables, do not forget to define indexes on the
columns that are often queried.

Do it yourself ! A4.4.1

Find how many different ships have broadcast their positions on AIS on January 1* 2016 and
display their ship names. Which tables are required to answer this question? Do you require
indexes on these tables?

[Answer: 79 rows, 78 different ship names]

4.5 Make it geographic !

The geo-spatial component is an important feature of the maritime dataset. Ships
move in a specific spatial context made of coastlines, straights, ports, mooring ar-
eas, restricted areas and bathymetry. This information should be considered when
analysing the maritime situation. In order to support this variety of geographic ob-
jects, PostgreSQL can be extended with PostGIS that adds geographic types, func-
tions and indexes to the DBMS. In order to activate the PostGIS extension on a
PostgreSQL database, it is sufficient to execute the command below.

PostgreSOL

CREATE EXTENSION postgis;

Geographic objects

A way to represent spatial objects, such as moving vessels, is to use simple geo-
metric features such as points, lines and polygons along with extra alpha-numerical
attributes, e.g. the name of the spatial features. This way of modelling spatial objects
is called vector representation. The coordinates of spatial objects are expressed in
a given Coordinate Reference System (CRS). Thanks to PostGIS, PostgreSQL can
handle the following geometric data types:

e POINT, defined using spatial coordinates in a CRS;
e LINESTRING, ordered set of POINTS;

16 Laurent Etienne, Cyril Ray, Elena Camossi, Clément Iphar

e POLYGON, defined based on a collection of rings, at least one outer and pos-
sibly inner rings (representing, e.g. enclaves in countries, reservoirs), given as
LINESTRINGS;

e MULTIPOINT, MULTILINESTRING, MULTIPOLYGON, i.e. sets of geometric
objects of the same base type;

e GEOMETRYCOLLECTION, a set of geometric objects of various nature.

In table dynamic_ships, vessel positions are given by their coordinates, i.e.
longitude and latitude, specified in two separated columns, 1on and lat, respec-
tively. The PostGIS function ST MakePoint creates a POINT from two coordi-
nates, given their CRS. In the example below, the World Geodesic System 1984
(WGS84) is used. It is identified in PostGIS through its Spatial Reference Identifier
(SRID) as defined by the European Petroleum Survey Group (EPSG:43262%). The
World Geodetic System 1984 is extensively used to define worldwide locations by
longitude and latitude. This CRS is used by the GPS satellite navigation system inte-
grated into AIS transceivers. The PostGIS function ST_Set SRID is used to specify
the CRS’ SRID of the newly created column. As the table dynamic_ships has
19 million positions, the update process may take a while (about 10 minutes).

ALTER TABLE ais_-data.dynamic-ships ADD COLUMN geom geometry (Point,4326);

UPDATE ais_data.dynamic_ships
SET geom=ST_SetSRID (ST_-MakePoint(lon,lat) ,4326);

The database must be aware of the data’s CRS before executing the com-
mands in the example above. Data’s CRS must be listed in the system table
spatial_ref_sys, which is included in the PostgreSQL database public schema.
The public schema is automatically created in every PostgreSQL database and con-
tains system tables and functions. It is also used to store all the user-defined tables
that are created without referring to any specific schema.

Geographic positions on Earth can also be projected on a flat plane, introducing some distor-
tions. Each map projection preserves important properties (direction, angle, shape, area, dis-
tance, efc.) while distorting others. Once projected, distances between objects can be computed
using the reference metric of the map projection (e.g. meters). Each CRS is usually customised
for a specific area. The maritime dataset covers Europe and provides data expressed using CRS
WGS84, and ETRS89 / LAEA Europe (EPSG:3035¢). The CRS ETRS89/LAEA Europe typ-
ically suits statistical mapping at all scales and covers the European Union (EU) countries on-
shore and offshore.

“https://epsg.io/3035

PostGIS can project geometric objects from one CRS to another. In the example
below, the function ST_Transformis used to project vessel positions expressed in
WGS84 into the projection ETRS89/LAEA Europe CRS (EPSG:3035).

O nttps://epsg.io/4326

Maritime Data Processing in Relational Databases 17

ALTER TABLE ais_data.dynamic_ships ADD COLUMN geom3035 geometry (Point ,3035);

UPDATE ais_data.dynamic_ships
SET geom3035=ST_Transform (geom,3035);

4.6 Integrating contextual data

The maritime dataset contains also complementary data like ports’ positions, re-
stricted and protected areas, coastlines, weather and ocean conditions. These data
have a different nature than AIS data, which are continuously streamed, and provide
information useful to contextualise and understand the vessel movements. Conve-
niently, a dedicated database schema, with name context_data, can be created
for these data.

Action required
Create a new schema context_data in the database maritime_informatics.

Loading spatial Shapefile data

All contextual (geographic) data in the dataset are in the same format, i.e. Shapefile,
which is a well-known format for vector (i.e. geometric) data. Shapefile data are
stored in multiple files, which have the same name and different extensions and
represent different geometric aspects, as follows:

SHP: is the shape of the geometric objects;

DBF: contains alpha-numerical attributes;

PRIJ: is the coordinate reference system of the geometric objects;
SHX: is a shape geometric index.

Do it yourself !

Download the file “[C2] European Coastline.zip” from the dataset. Unzip the folder in your
working directory and look at the different files. Have a look at the PRJ file. What is the coor-
dinate reference system of the “Europe Coastline (Polygon)” shapefile (SHP)?

[Answer: GRS 1980]

Shapefile data can be imported in a spatially enabled PostgreSQL database us-
ing the PostGIS tool shp2pgsqgl. The example below uses shp2pgsqgl to load
the Shapefile data stored in Europe Coastline (Polygone) .shp. Data
are loaded into the database maritime_informatics. A coordinate system
(ETRS89 / ETRS-LAEA, 3035) must be specified to correctly import them. Fig-
ure 3 shows the interface of the shp2pgsqgl tool.

18 Laurent Etienne, Cyril Ray, Elena Camossi, Clément Iphar

e PostGlS Shapefile Import/Export Ma

PostGl5 Connection

View connection details...

Import Export
Import List
Shapefile Schema Table
DACLOUDYpublications\201 context_data ports
DACLOUDNpublications\201 context_data coastlines
DACLOUDYpublications\201 context_data fishing_interdiction

Add File
Options... Import

Log Window

Connecting: host=localhost port=35432 user=postgres password="%|
client_encoding=UTF3
Connection succeeded.

PostGIS Connection

- x
Geo Column SRID Mode Rm
geom 4326 Create]
geom3035 3035 Create [
geom 4326 Create]
)| O PostGIS connection — O *

Username: postgres

Password: TTTTTTT]

Server Hostt | localhost 3432

Database: maritime_informatics
oK

Fig. 3 The shp2pgsql interface is used to load Shapefile data into a spatially enabled Post-

greSQL database.

Action required

the following steps:

rename the target table into coastlines;
select the schema context_data;

ARl ES NS

In order to load the European coastline in the maritime_informatics database, execute

start the shp2pgsql interface (shp2pgsgl-gui);
load the file Europe Coastline (Polygone) .shp;

set the coordinate system to ETRS89 / ETRS-LAEA (3035);
once the import parameters are set up, import the data.

Upon a successful upload, pgAdmin can be used to preview the first 100 rows of

the newly populated table.

Maritime Data Processing in Relational Databases 1

]

Action required

Using pgAdmin, to preview the first 100 rows of table coastlines:

1. right click on the table coastlines;
2. select View/Edit data, then First 100 rows.

In pgAdmin, the “eye” button on a geometric column header enables to see the geometric shape
of the first 100 rows in a spatial table.

Action required

In pgAdmin, click on the “eye” button on the column geom3035 of the table coastlines
to visualise their geometric shape. Now, start QGIS, connect to PostgreSQL database using the
Data Source Manager then, add the coast1ines geographic layer in a new map.

Readers having trouble to connect QGIS to PostgreSQL can refer to QGIS user

Do it yourself ! A4.6.2

=)
)
=
o
)
=N
=

Using pgAdmin, find the type of the column geom3035 in the table coastlines. What is
the primary key of the table?
[Answer: MULTIPOLYGON - column gid]

Action required

From the dataset, select the following Shapefiles and load them in the database
maritime_informatics as explained above:

e [C1] Ports of Brittany (EPSG:4326);
e [C4] Fishing Areas (European commission) (EPSG:4326);
e [C5] Fishing Constraints (EPSG:4326).

Once loaded, as for the examples in Section 4.5, add to all tables a new geometric column
named geom3035 and project the geometric data into the CRS EPSG 3035.

Action required

In QGIS, add the ports, fishing areas and fishing constraints geographic layers in your map as
illustrated in Figure 1. Layers can be ordered using the QGIS Layer Panel. Layers should be
positioned wisely. To be visible, the Port layer should be displayed above the coastline layer.

4.7 Executing spatial queries

Spatial queries evaluate the relationships that hold among objects’ geometries. Post-
GIS supports the 8 region connection calculus (RCC8) [40] and the Dimension-
ally Extended nine-Intersection Model (DE-9IM) [11], and complies with the OGC

21

https://docs.ggis.org/3.4/en/docs/user_manual/managing_data_
source/opening_data.html#database-related-tools

20 Laurent Etienne, Cyril Ray, Elena Camossi, Clément Iphar

Simple Feature Access ([20]), which defines the supported routines to test spa-
tial relationships between two geometric objects. PostGIS functions that output a
value, either a distance (i.e. ST_Distance) or a Boolean value (all the others) are
shown in Figure 4. PostGIS functions that output a geometry are shown in Figure 5.
All functions can be applied between geometries of various types (i.e. POINTS,
LINESTRINGS or POLYGONS), as far as the coordinates of these objects are de-
fined in the same CRS. These spatial relationship functions can be combined with
temporal operators, enabling to express complex spatio-temporal queries.

Within — 5T_Within Contains — 5T_Contains Equals — 57 _Equals

AB
A B AlB
Equals(A,B)
Within(A,B) Contains(A,B) = Within(A,B) & Contains(A,B)
Covers — ST_Covers |Is Covered —5T_CoveredBy| Touches— ST Touches
A|lB
AlB A|B
Covers(B,A) CoveredBy(B,A) Touches(A,B)

Crosses — 57 Crosses | Overlaps — ST _Overlaps

B B
A Distance — 5T_Distance

Dimension(A) = Dimension(B) | Dimension{A) = Dimension(B)

Intersects — 5T_Intersects Is Disjoint — 5T_Disjoint
A n B A B
Intersects = -(Disjoint) Disjoint = -(intersects)

Fig. 4 PostGIS functions that output a numerical (distance) or a boolean value. On top of each
box, the PostGIS function and the corresponding spatial relation are reported (relation - PostGIS
function).

The functions ST_Equals, ST_Disjoint,ST_Intersects, ST_Touches,
ST_Crosses,ST_Within, ST_Contains,and ST_Overlaps evaluate whether
the corresponding spatial relationship holds between two input geometries, and re-
turn a boolean value. The function ST_Distance returns a real number represent-
ing the minimum distance between the two geometries. Other functions return the
geometries resulting from the application of geometric operations (ST_Buffer and
ST_ConvexHull) (cf. Figure 5) or set-based operations (e.g. ST_-Intersection,
ST_Difference, ST_-Union, ST_-SymDifference) (cf. Figure 6) . An exten-

Maritime Data Processing in Relational Databases

21

Input geometries

e

Buffer — ST_Buffer

®
%@@@

Convex Hull — 5T_ConvexHull

Fig. 5 Examples of PostGIS functions that output a spatial geometry (buffer and convex hull). Out-
put geometries are shown in grey. On top of each box, the PostGIS function and the corresponding

spatial function are reported.

Input geometries

A

ST _Intersection

ST Difference (s,4)

ST_Union

ST_SymDifference

ST _Difference (a8

Fig. 6 Example of PostGIS functions that apply set-based operations and output a geometry. Out-
put geometries are shown in grey. On top of each box, the corresponding PostGIS function is

reported.

sive presentation of all these geometry processing functions is available on PostGIS

website 22

The query in the following SQL example illustrates the use of such spatial func-
tions. It searches for ships (name and unique identifier, i.e. the ship MMSI) that
stopped within 500m from a port in Brittany on January 1%, 2016. For each ship,
the name of the port and the time spent by the vessel in the port is also shown.

The distance between ship positions and port locations is calculated using the PostGIS function
ST_dWithin. The distance threshold (500m) can be visualised by creating a buffer around
each port location using the function ST_Buffer.

2 nttps://postgis.net/docs/reference.html#Geometry_Processing

22 Laurent Etienne, Cyril Ray, Elena Camossi, Clément Iphar

SQL Q4.7.1

SELECT port_-name , mmsi, shipname, min_.t, max_t, (max-t—min_t) as dur
FROM (
SELECT libelle_po as port-name, mmsi, min(t) as min_t, max(t) as max-t

FROM context-data.ports as ql — ports location
INNER JOIN ais_data.dynamic_ships as q2 — ship AIS positions
ON (
speed=0 —— not moving
AND t>="2016—01-01 00:00:00"
AND t<’2016—-01-02 00:00:00° —— during Jan 1, 2016
AND ST_dWithin (ql.geom3035,q2.geom3035,500) —— ships by 500m of port

)

GROUP BY libelle_po , mmsi) as q3
LEFT JOIN ais_data.static_ships as q4 — ship names
ON (q3.mmsi=q4.sourcemmsi);

Spatial indexes

Similar to classical SQL queries, spatial queries can be optimised using indexes
applied to spatial columns. PostGIS supports the GiST index, which indexes the
bounding boxes, or minimum rectangles, enclosing the spatial extent of the geome-
tries in a geometric column. For instance, the bounding boxes of the geometries in
Figure 7.a are depicted in Figure 7.b as gray, dotted rectangles, and highlighted by
coloured rectangles in Figure 7.c. The example below shows how to create a GiST
index on the geometry column geom3035 of table dynamic_ships.

SQL Q4.7.2
CREATE INDEX idx_dynamic_ships_geom3035

ON ais_data.dynamic_ships — table name

USING GiST (geom3035); GiST Index on geometric column

O

a) b) c)

Fig. 7 Use of the GiST index for computing spatial queries. When geometries (a) are indexed (c),
spatial queries use the geometries’ bounding boxes to approximate the query.

Bounding boxes allow for a compact, while simplified, representation of geome-
tries, that can be used for efficiently comparing the geometries in spatial queries.
When a SQL query refers to an indexed geometry, a spatial relationship is firstly
evaluated using the spatial extent of the geometry (Figure 7.c). Afterwards, only for

Maritime Data Processing in Relational Databases 23

the subset of the potentially matching geometries, the exact spatial relationship is
processed and refined. In the example of Figure 7, a query on (a) searching for in-
tersecting geometric objects would exclude the yellow circle, because its bounding
box does not intersect with any other geometric object’s bounding box. The precise
computation of the intersection is performed only between the blue pentagon and
both the red line and green triangle (as they are the only boxes to overlap). With
the index, the computation of the complex polygon intersection requires only two
comparisons (first between the blue pentagon and the red line, then between the blue
pentagon and the green triangle). Checking every geometric object with each other

. 4 .
would have required (2) = 6 comparisons.

Do it yourself ! A4.7.1

Execute again the SQL query of the previous example (looking for the ships that stopped at
less than 500m from a port in Brittany on January 1%, 2016). After creating a spatial index
on column geom3035, you should get the answer faster than without the spatial index. Then,
search for the vessels (names and identifiers) that fished more than 15 minutes on January the
2274 2016 within any fishing area. Usually, a fishing vessel fishes at a speed between 2.5 and
3.5 knots.

[Answer: 7 vessels].

4.8 Extending PostgreSQL functions

As described in the previous section, PostGIS defines functions to manipulate and
query geographic data. These functions extend the set of data management func-
tions provided by PostgreSQOL. Novel functions may be created using procedural
programming languages (PL) like PL/pgSQL, PL/Python, PL/Tcl, PL/Perl, PL/Java,
PL/R, PL/sh.®

You can view the PostgreSQL and PostGIS functions in the folder “Functions” which is included
in every database schema.

In the following example, a PL/pgSQL function is defined to search for the name
and the identifier, i.e. the IMO number, of a vessel, given its MMSI. The function
returns the result in formatted text.

B https://www.postgresql.org/docs/11/xplang.html

24 Laurent Etienne, Cyril Ray, Elena Camossi, Clément Iphar

SQL Q4.8.1
CREATE OR REPLACE FUNCTION get_vessel_info (name of the fuction
mmsi integer — list of input argument with types

)
RETURNS text AS $$ — type of the returned value

DECLARE
vessel_imo integer; integer local variable
vessel_-name text; — text local variable
BEGIN

SELECT shipname, imo INTO vessel_name , vessel_imo

FROM ais_data.static_ships

WHERE sourcemmsi=mmsi LIMIT 1;

RETURN "[° || vessel_-imo || '] * || vessel_name; —— return value
END;
$$ LANGUAGE plpgsql; — programming language used

Once defined, the function can be called in a query, as shown below.

SELECT get_vessel_info (227705102);
[Answer: ”[262144] BINDY”]

5 Understanding vessel movements with trajectory-based
queries

A trajectory can be defined as “a record of the evolution of the position (perceived
as a point) of an object moving in space during a given time period” [52]. Position-
based queries (i.e. relying on geometric data of type POINT) are easy to formalise
and can provide meaningful information and statistics about these movement data.
However, they have several limitations. First, there is a computational limit, as such
spatial queries are very expensive. Second, the information they provide is some-
times limited by the update rate or the coverage of the sensor that measures the
object’s position.?* In the maritime domain, for instance, it is difficult to identify
with certainty a vessel that has crossed a narrow passage, in order to check whether
it has entered a restricted area or to calculate exactly the minimum distance to the
coast.

The notion of trajectory, for instance as discussed in [36], whilst sometime com-
plex to implement, has been introduced to address these limitations. It underlies the
use of filtering and clustering techniques that make it possible to clearly define the
starting, intermediate and ending points of a trajectory.

In this section we will create vessel trajectories by connecting the points of the
same ship between them, in the form of polylines. This is a simple implementation
of a stop-move model of trajectories [52]. Ship trajectories are segmented using
time intervals. During these time intervals, the ship positions can stay still (stop) or
change (move).

24 In the case of AIS, vessel positions are reported only in the areas covered by AIS receivers, and
at sparse time intervals. The AIS data in the open dataset are collected from a terrestrial receiver.

Maritime Data Processing in Relational Databases 25

In PostGIS, the move part of the trajectory can be represented as a LINESTRING,
which connects sequences of positions. In order to derive stationary (stop) areas,
multiple AIS positions of anchored ships may be spatially grouped together, which
can be spatially represented by cluster centroids. The overall ship movements can
be modeled with a graph, whose nodes depict the stop locations (e.g. ports, mooring
areas), and edges link stops. Ship trajectories can be grouped along edges and ag-
gregated using statistics. This node-edges model can itself be manipulated, queried,
analysed, for instance to analyse ships’ life cycle as shown in [21].

In order to store the trajectories and the results of the data analysis queries that
will be presented in the following sections, the creation of a new schema named
“data_analysis” is required.

Action required

Define a schema data_analysis to store all the results of the data analysis queries.

5.1 Characterising port areas through spatial partitioning

Spatial partitioning enables to understand the essential characteristics of movement
data. With this aim, Andrienko & Andrienko [3] partition movement data according
to a Voronoi tessellation [4]. A Voronoi diagram is a partition of a plane into regions
(Voronoi cells) around a set of seed points. The voronoi cell around a seed point
encompass all points of the plane closer to that seed point.

In this section, a Voronoi tessellation will be used to get an approximation of the
area of competence of each port. In most official databases, ports are represented
by geometrical points. This is also the case of the data in table ports in schema
context_data. This representation is not effective, in extracting, for instance,
from the database the vessels that are stopped in a port at a certain instant in time.
In order to answer this query, ports should be represented by geometrical regions,
on which e.g. the PostGIS function ST_-Within could be applied. In order to derive
ports’ regions, a space partitioning must be created. Note that, since ports are not
equally distributed along the coast, a uniform partition of the space would not be
accurate to answer the query above.

By constructing a Voronoi tessellation of the space based on port locations, vessel
positions can be dynamically associated to ports. The Voronoi Polygons around a
set of points can be computed using PostGIS ST_-VoronoiPolygons function.
For instance, given the tessellation in Figure 8, stopped vessels (i.e. with null or
negligible speed over ground) can be associated to the closest ports using the spatial
operators described above. Afterwards, the distance between the stop location and
the port can be computed.

In the example below, a new table (ports_voronoi) is created to contain the
Voronoi tessellation based on port locations. A GiST index is created to optimise the
access to the newly created geometry.

26 Laurent Etienne, Cyril Ray, Elena Camossi, Clément Iphar

Fig. 8 Voronoi tessellation of the geographical space, partitioning sea and land to identify the
nearest port of any maritime location in Gulf of Morbihan. The Voronoi cells have random colours.
Land is depicted in white, with the black line representing the coastline. Yellow stars represent
ports’ positions.

SQL Q5.1.1

CREATE TABLE data_analysis.ports_voronoi AS
SELECT por-id as port-id, libelle_-po as port_-name, geom3035,
voronoi-zone3035
FROM context_data.ports
LEFT JOIN (
SELECT (ST-Dump(ST_-VoronoiPolygons(ST_Collect(geom3035)))).geom
as voronoi-zone3035
FROM context_-data.ports) as vp
ON (ST_Within(ports.geom3035, vp.voronoi_zone3035));

CREATE INDEX idx_ports_voronoi-zone ON data_analysis.ports_voronoi
USING gist (voronoi-zone3035);

The following SQL query creates a new table (non_moving_-positions)ded-
icated to the storage of stopped vessel positions. Thanks to the Voronoi tessellation
in table ports_voronoi, each stop position can be matched to a unique port.
Once matched, the distance between a vessel stop and the associated port can be
computed using the built-in function ST_Distance.

Maritime Data Processing in Relational Databases 27

SQL Q5.1.2

CREATE TABLE data_analysis.non_moving_positions AS
SELECT id, mmsi, t, ql.geom3035, port.id, port_name,
ST_Distance (ql.geom3035, ports_voronoi.geom3035) as port_dist
FROM (
SELECT =
FROM ais_data.dynamic_ships
WHERE speed=0 —— non moving ship positions only

as ql
LEFT JOIN data_analysis.ports_voronoi
ON ST_Within(ql.geom3035, ports_voronoi.voronoi_-zone3035); —— ships in

voronoi area

With the execution of the following queries, additional indexes are created to
optimise the access to this new table non_moving_positions (on position ge-
ometry, position identifiers and associated timestamp).

SQL Q5.1.3

CREATE INDEX idx_non_moving_positions_geom3035
ON data_-analysis.non_moving_positions
USING gist (geom3035);

CREATE INDEX idx_non_moving_positions_port_id
ON data_analysis.non_moving_positions
USING btree (port.id);

CREATE INDEX idx_non_moving_positions_t
ON data_analysis.non_moving_positions
USING btree (t);

Do it yourself ! A5.1.1

Using the results of table non_moving_positions, compute the average distance of vessel stops
in the Voronoi area of the Brest port.

[Answer: 1434.75m]

5.2 Detecting and clustering ship stops

As it will be illustrated in the chapter of Andrienko et al. [2], clustering techniques
can be applied to group vessels stops outside ports and for detecting the different
docking areas within a port. In the example of the previous section, many vessel
stops are located outside the ports, in areas which are likely mooring areas.

5.2.1 Detecting ship stops

The analysis of vessel movement begins with the identification of stops. A stop
can be defined as a temporally ordered sequence of vessel positions with speed
(i.e. speed over ground, SOG) equal to zero or below a very low threshold. The
queries presented in the next examples create, for each vessel, the sequences of
stops extracted from the history of the vessel’s positions.

28 Laurent Etienne, Cyril Ray, Elena Camossi, Clément Iphar

To build this sequence, first, an auxiliary table of successive position pairs,
namely segments is created. For each ship, this table enables us to connect with a
line segment every consecutive pair of AIS positions. The table is ordered according
to the MMSI number and the position timestamp (ORDER BY mmsi, t),and the
PostgreSQL function LEAD will be used to access the data in the next row of an
ordered table.

From this table, for each vessel, stop events can be extracted and filtered accord-
ing to the vessel speed that is associated to the preceding and the following posi-
tions of each segment. This table is also useful to detect transmissions gaps between
vessel positions (cf. the chapter of Patroumpas et al. [37]) and GPS malfunctions
(e.g. detecting unfeasible speeds. A new index combining the vessels’ MMSI and
the timestamp of the vessels’ positions is created to optimise the query. The SQL
commands for creating the index and the table are given in the example below.

SaL Q5.2.1

CREATE INDEX idx_dynamic_ships_mmsi_t ON ais_data.dynamic_ships
USING btree (mmsi,t);

CREATE TABLE data_analysis.segments AS
SELECT mmsi, ship identifier
tl, t2, starting and ending timestamps
speedl , speed2, — starting and ending speeds
pl, p2, — starting and ending points
st_.makeline (pl,p2) as segment, — line segment connecting points
st_distance (pl,p2) as distance , distance between points
extract (epoch FROM (t2—tl1)) as duration_s , timestamps in seconds
(st-distance (pl,p2)/extract(epoch FROM (t2—tl)))
as speed_-m.s — speed in m/s
FROM (
SELECT mmsi, ship identifier
LEAD(mmsi) OVER (ORDER BY mmsi, t) as mmsi2, next MMSI
t as tl, — starting time
LEAD(t) OVER (ORDER BY mmsi, t) as t2, — ending time
speed as speedl , initial speed
LEAD(speed) OVER (ORDER BY mmsi, t) as speed2, final speed
geom3035 as pl, — initial point
LEAD(geom3035) OVER (ORDER BY mmsi, t) as p2 — final point
FROM ais_data.dynamic_ships) as ql
WHERE mmsi=mmsi2 ; filter out different mmsi

CREATE INDEX idx_-segments_speed ON data_analysis.segments
USING btree (speedl,speed2);

Once the table segment s is created, stop events can be detected. Aligned with
the chapter of Andrienko et al. [2], each stop starts immediately after a move, and
ends as soon as the vessel starts moving again. Starting from the data in table
segments, segments whose initial speed is above the speed threshold, and whose
final speed is below the speed threshold, represent the beginning of stops (i.e. the
vessel decreases its speed and goes steady). The end of a stop event is detected
conversely.

The following example creates the auxiliary tables st op_begin and stop_end,
which contain the potential starting and ending positions of vessel stops, selected as
just described. In this example, a speed threshold of 0.1 knot is used. To optimise
the future access to these tables, indexes are created.

Maritime Data Processing in Relational Databases 29

SQL Q5.2.2
CREATE TABLE data_analysis.stop_-begin AS first stop position

SELECT mmsi, t2 as t_begin — stop starts at first steady position

FROM data_analysis.segments

WHERE speedl >0.1 AND speed2 <=0.1; — speed threshold is 0.1 kn

CREATE INDEX idx_stop_-begin_mmsi_-t ON data_analysis.stop_begin
USING btree (mmsi,t_-begin);

CREATE TABLE data_analysis.stop_end AS — last stop position

SELECT mmsi, tl as t_end —— stop ends at last steady position
FROM data_analysis.segments
WHERE speedl <=0.1 AND speed2 >0.1; — speed threshold is 0.1 kn

CREATE INDEX idx_stop_end_mmsi_t ON data_analysis.stop_end
USING btree (mmsi,t_end);

Afterwards, the table st ops is created by coupling, for each ship, stop_begin
and stop-end, as illustrated in the following example (note that stops are ordered
by time, that is, ORDER BY t_end).

SQL Q5.2.3
CREATE TABLE data_analysis.stops AS
SELECT
mmsi, — ship identifier
t-begin, — start of the stop event
t-end , — end of the stop event
extract (epoch FROM (t_end—t_begin)) as duration_.s — stop in seconds

FROM data_analysis.stop_begin INNER JOIN LATERAL (

— keep only stops that have an end

SELECT t_end

FROM data_analysis.stop_end

WHERE stop_begin.mmsi=stop_end.mmsi AND

t_begin <=t_end stop follows the beginning

ORDER BY t.end LIMIT 1 — select only the first stop end

) AS q2 ON (true);

In the example above, LATERAL is a reserved PostgreSQL keyword that en-
ables cross-references between the main query and the subquery (at the right of
LATERAL. In this case, it is used to compare the time of stop begin.t _begin
with stop_end.t_end.

Not all the detected stops are meaningful. For instance, stops that last for a short
time, or are spatially too spread, could be filtered out. Similarly, stops with few
vessel positions can be discarded. In the example below, the centroid of each vessel’
stop cluster and the number of associated positions are computed.

SQL Q5.2.4

ALTER TABLE data_analysis.stops ADD COLUMN centr3035 geometry (Point ,3035);
ALTER TABLE data_analysis.stops ADD COLUMN nb_pos integer;

compute the centroid and number of positions
UPDATE data_analysis.stops SET (centr3035, nb_pos) = (
SELECT st_centroid (st_-collect(geom3035)), — centroid of a multipoint
count(*) as nb — number of points
FROM ais_data.dynamic_ships
WHERE mmsi=stops . mmsi AND
t>=stops.t_begin AND t<=stops.t.end); —— timestamp range

30 Laurent Etienne, Cyril Ray, Elena Camossi, Clément Iphar

In the following example, indicators on the dispersion of the vessel’s positions
around the centroid of the cluster they belong to are computed. Once aggregated, this
information offers some intuition about the nature of the stop. Additional columns
are created in the table st ops to store the computed indicators (average and maxi-
mum distances from the centroid).

SQL Q5.2.5

ALTER TABLE data_-analysis.stops ADD COLUMN avg_dist_centroid numeric;
ALTER TABLE data_analysis.stops ADD COLUMN max._dist_centroid numeric;

— compute the distance of the position cluster to the centroid
UPDATE data_analysis.stops

SET (avg-dist_centroid , max_dist_centroid) = (
SELECT avg(d), max(d)
FROM (
SELECT st_distance (centr3035 ,geom3035) as d — distance to centroid

FROM ais_data.dynamic_ships
WHERE mmsi=stops . mmsi AND

t>=stops.t_begin AND t<=stops.t_end —— timestamp range
) as ql);

In order to illustrate to use of the structures built above, the next query calculates
how many of the vessel’ stops lasted more than 5 minutes, involved more than 5
consecutive positions and occurred in average within 10 m of the centroid of the
vessel’ stop cluster.

SELECT count (*)
FROM data_analysis.stops
WHERE duration_s >=(5%60) — 5 minutes long
AND nb_pos>5 — minimum 5 consecutive positions
AND avg_dist_centroid <=10; — within 10m from centroid

[Answer: 22,987]

5.2.2 Clustering ship stops

The auxiliary structures created in the previous section calculated, for each vessel,
its stop clusters, i.e. the areas where the vessel was steady. In this section a density-
based algorithm will be used to detect stationary areas.

Density-based clustering algorithms [34, 56] can be used to extract from data
stationary areas, turning points in trajectories, activities areas, and so on. PostGIS
implements the well-known Density-Based Clustering of Applications with Noise
algorithm (DBSCAN) [12]. This algorithm clusters geometric objects together pro-
vided there are more than a minimum number (n) of neighbouring objects located
within a threshold distance (d). These parameters should be tailored to the area un-
der consideration.

In the following example, DBSCAN is used to cluster stop centroids in order to
detect frequent stop areas. In the example, n defines the minimum number of stops
to form a cluster; d defines the minimum distance between stops belonging to two
different clusters. The smaller the d and n parameters, the bigger the number of

Maritime Data Processing in Relational Databases 31

Fig. 9 DBSCAN clustering of vessel stops (random colours, one per cluster) in Brest.

resulting clusters. If d is large, then multiple mooring areas on a same dock will be
clustered together. A similar approach is also presented in the chapter of Andrienko
et al. [2] to detect stopping areas.

In the example below, groups of stops lasting more than one minute and having
at least 5 different occurrences within 50 m distance range are clustered and stored
in table cluster_stops. DBSCAN generated 354 different clusters that can be
visualised using QGIS. These clusters are precise enough to detect different mooring
locations within big ports like the one of Brest as illustrated in Figure 9.

SQaL Q5.2.7

CREATE INDEX idx_stops_centroid ON data_analysis.stops
USING btree (centr3035);

CREATE TABLE data_analysis.cluster_stops AS
SELECT %, ST_ClusterDBSCAN(centr3035, eps := 50, minpoints := 5) OVER ()
AS cid
FROM data_analysis.stops
WHERE duration_s >=60; — | minute long

In order to to define the location of frequently used docking and mooring areas,
the spatial hull of these clusters can be computed.

The convex (respectively, concave) hull of a set of points represents the minimum
convex (respectively, concave) geometry that encloses all the points within the set.
The Minimum Bounding Circle represents the smallest circle that fully contains all
the points of the set. All these polygons can be computed using various PostGIS
functions.

The area of the spatial hull can also give hints about the clustering process quality.
Clusters with high spatial dispersion will have a bigger polygon surface. This can
be acceptable for mooring areas outside a port, but within a port smaller clusters are
likely more adequate to match docking areas.

32 Laurent Etienne, Cyril Ray, Elena Camossi, Clément Iphar

Fig. 10 Convex hulls of vessel stop clusters (random colours) in the area of the Brest port.

The following query shows how to compute different spatial hulls of vessel stops.
For each cluster, statistics are also included. In Figure 10, the convex hulls of vessel
stops in the port of Brest are visualised with QGIS.

SQL Q5.2.8
CREATE TABLE data_analysis.clusters_stops_hulls AS
SELECT cid, — cluster id

ST_ConvexHull(st_collect (centr3035)) as convex-hull,

ST_ConcaveHull(st_collect (centr3035) ,0.75) as concave_hull,

ST_MinimumBoundingCircle(st_collect (centr3035)) as
bounding_circle ,

ST_Centroid(st_collect(centr3035)) as centroid ,

count(*) as nb_stops, — number of stops in this cluster (area)
sum(nb_pos) as nb_pos, — sum of stops in the cluster
count (DISTINCT mmsi) as nb_ships, — num of unique ships

min(duration_s) as min_dur,
avg(duration_s) as avg_dur,
max(duration_s) as max_dur
FROM data_analysis.cluster_stops
WHERE cid IS NOT NULL — exclude outliers
GROUP BY cid; group all the stops centroids within the same cluster

5.3 Extracting trajectory tracks and the navigation graph

Maritime traffic can be modelled as a graph whose nodes correspond to the station-
ary areas (e.g. mooring or docking areas) and edges represent the vessel movements
between these areas. Relying on such a graph, vessel movement can be analysed
[21, 29, 10]. For example, it is possible to count and identify the incoming and out-
going destinations from each stationary area, to calculate the traffic density, and to
identify the most frequently used tracks.

Maritime Data Processing in Relational Databases 33

In the examples that follow, and similarly to the computation of stops, vessel
tracks will be created considering the successive positions of the same ship between
a track start and a track stop. By definition:

o the start of a vessel track is the end of the previous stop event; and
e the end of a track is the start of the next stop event.

In the following example, a new table tracks is created and populated with
stop events selected from the table cluster_stops, which already contains all
the filtered stops with associated cluster identifiers. These will be used as the nodes
of the vessel traffic graph. An index is added to optimise the selection of temporally
ordered points.

SQL Q5.3.1

CREATE INDEX idx_cluster_stops-mmsi-tbegin ON data_analysis.cluster_-stops
USING btree (mmsi,t_begin);

CREATE TABLE data_analysis.tracks AS

SELECT ql .mmsi, — ship id
ql.cid as start_cid, — start cluster node id of the track
q3.cid as end_cid, — end cluster node id of the track
ql.t_end as t_start , track start is end of the previous stop
q3.t_begin as t_end, track end is begin of the next stop
extract (epoch FROM (q3.t_-begin—ql.t_end))

as duration.s — track duration in seconds
FROM (

SELECT mmsi, cid, t_end

FROM data_analysis.cluster_stops

WHERE cid IS NOT NULL) as ql

INNER JOIN LATERAL (
track that are in between two clustered stops area
SELECT q2.cid, q2.t_begin
FROM data_analysis.cluster_stops as q2
WHERE q2.cid IS NOT NULL — stop must be in a clustered area
AND ql.mmsi=q2.mmsi — same ship
AND g2.t_begin>ql.t_end search for the next stop event
ORDER BY q2.t_begin LIMIT 1) as q3 ON (true);

As before, the reserved word LATERAL enables to cross reference the elements
of the first sub-query with alias g1 in the second sub-query g2 (g1 .mmsi=g2 .mmsi
AND g2.t_begin>gl.t_end).

In the next query, the geometry of each track move is represented as a seg-
ment connecting consecutive track stops. Ship positions between the t _start and
t_end timestamps of the trajectory are selected, ordered with respect to time and
connected to form a LINESTRING using the ST_makeline function of PostGIS.
Figure 11 shows the computed trajectory tracks.

34 Laurent Etienne, Cyril Ray, Elena Camossi, Clément Iphar

SQL Q5.3.2

ALTER TABLE data_analysis.tracks
ADD COLUMN track geometry(LineString ,3035);

UPDATE data_analysis.tracks SET track = (
SELECT st_makeline (geom3035)
FROM (
SELECT geom3035
FROM ais_data.dynamic_ships
WHERE mmsi=tracks .mmsi AND t>=tracks.t_start AND t<=tracks.t_end
ORDER BY t) as ql); — order points by time

Fig. 11 Vessel trajectory tracks in the Brest area (yellow stars are ports of Brittany).

The SQL example that follows creates a new table (graph_edges) to represent
the traffic graph of the Brest area. For each graph edge, statistics on the underlying
traffic, like the number of associated vessel tracks, the number of ships navigating it,
the average trajectory duration and length, are extracted. These indicators are stored
in the table and can be visualised for analysis. The traffic along the edges of the
graph is oriented.

Maritime Data Processing in Relational Databases 35

SQL Q5.3.3
CREATE TABLE data_analysis.graph_edges AS
SELECT

start_cid , — from node

end_cid, — to node

nb_tracks , — number of tracks

ql.nb_ships , number of different ships

ql.avg_duration , average transit time

ql.avg_-length, — average transit length

ql.min_length , — minimum transit length

st_.makeline(cl.centroid ,c2.centroid) as straight_edge edge

FROM (

SELECT
start_cid , — from node
end_cid, — to node
count (%) as nb_traj, number of vessel trajectories
count(distinct mmsi) as nb_ships, number of unique ships
avg(duration_.s) as avg_duration, —— average trajectory duration
avg(st-length (track)) as avg-length, — average length
min(st_length (track)) as min_length — shortest length

FROM data_analysis.tracks

GROUP BY start_cid , end_cid) as ql

LEFT JOIN data_analysis.clusters_stops_-hulls as cl
ON (cl.cid=ql.start_cid)

LEFT JOIN data_analysis.clusters_stops_hulls as c2
ON (c2.cid=ql.end_cid);

In order to improve the visualisation of the traffic statistics on a map, the lines
of the graph edges can be bent using a custom PL/pgSQL function. Figure 12 illus-
trates the maritime traffic graph obtained using this function. The edges thickness is
proportional to the number of trajectories associated to the track (i.e. thickest edges
represent the most frequent routes between stationary areas). The navigation graph
shown in Figure 12 is a simplified, summarised version of the density map shown
in Figure 11.

5.4 Managing data quality using constraints

The previous sections highlight typical PostgreSQL and PostGIS features to process
moving object data. The readers should be aware that the results of these queries
may be affected by the quality of data. Apart from errors and irrelevant messages,
AIS data in the given maritime dataset have been provided as received, including
duplicates and other veracity issues. The coverage of the data is also not uniform,
with 70.5% of vessel positions located in a range of 10 km from the AIS receiver
[42]. Erroneous or missing AIS positions influence the quality of results but raise
interesting algorithmic and processing challenges, therefore these veracity issues
have been maintained in the dataset, which realistically represents the situation in
the area and the period it refers to.

The accuracy of maritime clustering and trajectory tracks depend on data quality.
For instance, the readers may compare the movement of passenger ships within the
Brest roadstead versus the movement of passenger ships travelling to the Ushant and
Molene islands where the data quality is lower. Pre-filtering, error-checking algo-

36 Laurent Etienne, Cyril Ray, Elena Camossi, Clément Iphar

g F s ~og

+ A ,&»’wfz"’é R .

Al

o 50km

Fig. 12 Traffic graph. Graph nodes (green hexagons) represent stationary areas (e.g. ports, moor-
ing areas), while edges (curved lines, one random colour per line) approximate tracks of vessels
moving between stops.

rithms can affect the results as much as the variation of the analysis parameters (e.g.
the speed threshold). Reasoning on intermediate structures can provide meaning-
ful data quality information. For instance, the table segments can help detecting
abnormal situations that can be ignored, like movements with extremely long dura-
tion, excessive distances between positions, or unfeasible speeds. Trajectories with
unknown or erroneous MMSI identifiers could also be flagged as abnormal and dis-
carded by the analysis.

In the database, integrity constraints may be used to manage data quality is-
sues. Figure 13 presents two of the database schemas we built along the chapter,
i.e. ais_data and context_data. The structure of the tables in these schemas
is reported, with column names and types. Adding relations and constraints which
are another essential part of database model design allows to manage data properties
and to encompass the aforementioned quality issues in accordance with the database
application. For example, integrity constraints may prevent that a ship appears trav-
elling in two locations at the same time; may ensure that the vessel speed is always a
positive value; and may guarantee that the vessel heading has either a default value
(i.e. correctly setting it to 511), or is between 0 and 360 degrees.

Column constraints express integrity rules on the data in the specified columns.
For instance, a NOT NULL constraint prevents the data in a column to assume the
NULL value. Table-level constraints define additional rules that apply to all the data
in a table. For instance, a PRIMARY KEY constraint combines a NOT NULL and a
UNIQUE constraints, ensuring that all the data in a column (or in multiple columns,
in combination) have unique values over the table. Figure 13 includes PRIMARY
KEY constraints in both ais_data and context_data schema.

Maritime Data Processing in Relational Databases 37

static_ships dynamic_ships

© sourcemmsi integer it bigint
© sourcemmsi i Qimo integer i integer
O imo 7 © calkign integer
© callsign © shipname double precision
Oshipname fext § L [oA double precision
O shiptype double precision
O to_bow i . — i integer
Oto_stem i double precision
O to_starboard double precision
O to_port bigint
Oeta timestamp
© draught double precision public geometry
© destination text O geom3035 public geometry
© mothershipmmsi infeger Q dynamic_ships_pkey constraint « pk »
Ots bigint Q idx_dynamic_shps_t index
Q static_ships pkey constraint « pk » Q idx_dynamic_ships_geom3035 index
o A Q idi_dynamic_shps_speed index
< idx_dynamic_ships_mmsi_t index
o A
context_data
ports
G gid integer « pk » = gid nteger « pk »
© name dharacter varying(254) © gmlid cdharacter varying(80)
© maxlat double precision O por_id character varying(80)
O maxlong double precision O libelle_po dharacter varying(80)
© minlat double precision O insee_comm dharacter varying(80)
© minlong double precision O por x numeric
O cat bigint O por_y numeric
O value bigint © geom public geometry
© geom public geometry O geom3035 public geometry
© geom3035 _public geomelry Q ports_pkey constraint <« pk »
Q v_recode_fh_area clean_pkey constraint <« pk » Q ports_geom_idx index
Q v_recode_fish_area_clean_geom_idx index Q ports_geom3035_idx index
Q idx_fishing_areas_geom3035 index & A
© A
fishing_interdiction ta gid integer « pk »
G gid integer « pk » © shape_leng numeric
O fid double precision O shape_area numeric
O geom public.geometry O geom3035 public geometry
< fishing_interdiction_pkey wnstraint « pk » Q coastlines_pkey constraint « pk »
Q fishing_interdiction_geom idx index Q coastlnes geom fdx index
© A ¢ A
h e

Fig. 13 Entities’ structure (tables and views) of the database schemas ais_data and
context_data. The data model is extracted from the PostgreSQL maritime database using pg-
Modeler2®

Remark ! Modelling database constraints

Incorporating constraints in the database requires altering the tables’ structure. Preferably, this
modelling step should be accomplished altogether with the generation of the database, preced-
ing the data insertion. Constraints can also be integrated along an iterative process, throughout
the creation and the subsequent modification of the database.

Figure 14 presents the entities created to analyse the data along the chapter, and
stored in the schema data_analysis. In the following, we are going to extend
this part of the maritime database data model with constraints that preserve the data
integrity when new operations (e.g. INSERT, UPDATE, DELETE) on tables and
columns are executed.

38 Laurent Etienne, Cyril Ray, Elena Camossi, Clément Iphar

data_analysis
[comens
Oid bigint O mmsi integer
ports_voronoi © mmsi integer od timestamp
O port_id character varying(80) Ot timestamp or timestamp
© port_name character varying (80) O geom3035 public.geometry © speedl double precision
© geom3035 public.geometry © port_id character varying(80) © speed2 double precision
© voronoi_zone3035 public.geometry O port_name character varying(80) Opt public.geometry
Q idy_ports_ voronoi zone index O port_dist double precision ©p2 public.geometry
® 4 < idx_non_moving_posttions_geom3035 index O segment p ubic.yeamt::{ry
@ idx_non_moving positions_port id ~ index Odismnce double precision
Q) idx_non_moving_positions_t index O duration_s double precision
¢ 2 O speed_m s double precision
Q idx_segments_speed index
AT e S
O mmsi integer © mmsi integer A
Ot_begin timestamp O't_begin timestamp
O t_end timestamp Ot_end timestamp
O duration_s double precision © duration_s double precision © mmsi e
O centr3035 public.geometry O centr3035 publc.geometry R Weger
O nb_pos integer © nb_pos integer — =

Oend_cd integer
O t_start timestamp

O avg_dist_centroid numeric
O max_dist_centroid numeric

© avg_dist_centroid numeric
© max_dist_centroid numeric

. Ot end timestamp
< idx_stops_centroid index ©dd iteger © duration_s double precision
© a Q idx_dluster_stops_rnsi_tbegin index | Otack public.geometry
& A { o A
ad nteger
© convex_hull public.geometry Omms integer O start_dd integer
O concave_hull public.geometry Ot _begin timestamp O end_dd integer
© bounding_circle public.geometry Q fdx_stop_begin_mmsi_t index O nb_traj bigint
© centroid public.geometry S O nb_ships bigint
© nb_stops bigint) © avg_duration double precision
O nb_pos bigint Oavg length double precision
© nb_ships bigint Ormmsi integer O min_length double precision
© min_dur double precision Otend timestamp O straight_edge public.geometry
© avg_dur double precision = = O curved_edge public.geometry
© max_dur double precision Qidy_stop_end_mmsi_t index [e o |
¢ A R

Fig. 14 Entities’ structure (tables and views) of the database schema data_analysis. The data
model is extracted from the PostgreSQL maritime database using pgModeler.

Cardinality constraints define how many entities may participate in a relation-
ship. A many-to-many relationship is realised by a table that connects the entities
in two other tables. One-fo-many relationships are achieved with foreign key con-
straints, which maintain the referential integrity of data between two related tables.
A FOREIGN KEY specifies that the values of the data in one or more columns must
exist in a related table.

In the following example, a foreign key constraint is defined to ensure that all
the ports for which a Voroni cell has been calculated, i.e. the ports in the table
data_analysis.ports_voronoi,existintable context_data.ports.In
the example, after defining the tables’ primary keys, a FOREIGN KEY constraint is
specified altering the table data_analysis.ports_voronoi. This constraint
realises a one-to-many relation between the two tables, as illustrated in Figure 15.
The condition ON DELETE CASCADE in the SQL example avoids the creation of
inconsistent, orphan Voronoi cells, which may be created when ports are removed
from table context_data.ports but the corresponding Voronoi cell still exists.
The constraint avoids this situation triggering the automatic deletion of the Voronoi
cell that is associated to the deleted port.

Maritime Data Processing in Relational Databases 39

SQL Q5.4.1

Table ports
ALTER TABLE context_data.ports
DROP CONSTRAINT ports_pkey; — Drop the old primary key which was
automatically generated when importing the ports shapefile

ALTER TABLE context_data.ports
ADD CONSTRAINT ports_pkey PRIMARY KEY (por.id); — Column por.id is now
the primary key of the table

— Table ports_voronoi

ALTER TABLE data_analysis.ports_voronoi
ADD CONSTRAINT ports_voronoi-pkey PRIMARY KEY (port.id); — Column
port_id is now the primary key of the table

ALTER TABLE data_analysis.ports_voronoi
ADD CONSTRAINT ports_voronoi-fkey FOREIGN KEY (port.id)
REFERENCES context_-data.ports (por-id) ON DELETE CASCADE; — Column
port_id references the ports table using a foreign key.

: T

G port_id character varying(80) « pk fk »| O gd integer <« »

© port_name character varying(80) —m O gml_id character varying(80)

© geom3035 public.geometry = por_id character varying(80) <« pkug»

© voronoi_zone3035 public.geometry LA (TG o !ibelle _po character varyl::ﬁg{ 80)

& ports_voronoi_fkey constraint «) O insee_comm character varying(80)

Q ports_voronol_pkey constraint « pk »| O por_x numeric

Q fdx_ports_voronoi_zone index O por_y numeric

Q fid_port id foreign_key index © geom public.geomelry

O A Q pid_uk constraint «ug»
Q ports_pkey constraint «pk»
Q ports_geom_idx index
o A

Fig. 15 Use of foreign keys to implement a one-to-many relation between ports and Voronoi tes-
sellation (extracted from the PostgreSQL maritime database using pgModeler).

As a result of the activation of the foreign key constraint in the example, when
creating a Voronoi cell for a port, this port must exist, i.e. all the ports in the table
data-analysis.ports_voronoi must match some port in the referenced ta-
ble context_data.ports (cf. keyword REFERENCES). However, the contrary
may not hold, i.e. adding a new port without recomputing the Voronoi tessellation
is allowed. In order to implement the dual constraint, a one-to-one relation must
be defined. In this case, adding a new port would require generating the associated
Voronoi cell.

Remark ! A note on one-to-one relations

One-to-one relations are not well represented in standard SQL, because they lead to a logical
union of two tables. As a solution, reciprocal foreign keys may be used, i.e. each table in the
relation has a foreign key reference to the primary key of the other table.This solution creates a
circular dependency that may block the insertion of new data in the tables. Luckily, constraints
may be deferred, i.e. lazily validated, allowing to temporarily violation of the integrity of the
relation to enable the data insertion. The option DEFERRABLE can be used with this aim when
defining the constraint.

40 Laurent Etienne, Cyril Ray, Elena Camossi, Clément Iphar

As an alternative to the definition of reciprocal foreign keys, a one-fo-one re-
lation may be obtained by defining a database trigger to enforce it. This solu-
tion is illustrated in the following example. The trigger uses the database func-
tion context_data.rebuild_table_ports_voronoi (), which automat-
ically generates a voronoi tessellation on the basis of the ports existing in table
context_data.ports. The trigger trigger_ports _voronoi is defined
for table context_data.ports to execute the function, rebuilding the Voronoi
tessellation, whenever the table context_data.ports is modified (AFTER
INSERT OR UPDATE OR DELETE OR TRUNCATE on context_data.-
ports).

Remark ! A note on triggers

Database triggers are SQL procedures that are executed upon the occurrence of a monitored
database event, such as the insertion of a row in a table or view. In PostgreSQL, triggers are
functions, which are automatically invoked by the DBMS whenever an insert, update, delete or
truncate event occurs on a specified table.

SQL Q5.4.2

—— Create a function to rebuild the Voronoi tessellation
CREATE OR REPLACE FUNCTION context_data.rebuild_table_ports_voronoi ()
RETURNS TRIGGER AS $$ —— this function return a trigger
BEGIN
— Same as Q5.1.1
DROP TABLE IF EXISTS data_analysis.ports_voronoi;
CREATE TABLE data_analysis.ports_voronoi AS
SELECT por.-id as port_id, libelle_po as port_name, geom3035,
voronoi-zone3035
FROM context-data.ports
LEFT JOIN (
SELECT (ST_-Dump(ST_VoronoiPolygons(ST_Collect(geom3035)))).geom as
voronoi_zone3035 FROM context_data.ports) as vp
ON (ST_-Within(ports.geom3035, vp.voronoi-zone3035));

— Add primary and foreign key constraints
ALTER TABLE data_analysis.ports_voronoi ADD CONSTRAINT ports_voronoi_pkey
PRIMARY KEY (port_id); primary key

ALTER TABLE data_analysis.ports_voronoi ADD CONSTRAINT ports_voronoi-fkey
FOREIGN KEY (port_id) REFERENCES context_data.ports (por_id)

— Column port_id references ports.por_id using a foreign key
ON DELETE CASCADE; Deletes on ports are propagated

CREATE INDEX idx-ports_-voronoi-zone ON data_analysis.ports_voronoi
USING gist (voronoi-zone3035);

RETURN NEW; —— return the updated rows
END;
$$ LANGUAGE plpgsql; — programming language used
— Create a trigger to execute the function whenever ports is updated

DROP TRIGGER IF EXISTS trigger_ports_voronoi ON context_-data.ports;
CREATE TRIGGER trigger_ports_voronoi
AFTER — the trigger is executed after a table update
INSERT OR UPDATE OR DELETE OR TRUNCATE — any type of update
ON context_data.ports — the monitored table
FOR EACH STATEMENT after each statement
EXECUTE PROCEDURE context_-data.rebuild_table_ports_voronoi(); — execute

the function

Maritime Data Processing in Relational Databases 41

The trigger can be tested by deleting a port from the database, as in the following
example. As a result of the following SQL, the Voronoi table should be automati-
cally updated.

SQaL Q5.4.3

DELETE FROM context_data.ports WHERE libelle_po="Sein’; — delete the port
of the Sein Island

Action required

Study the database tables for identifying potential relations among them. Study the table
columns, their types and expected values (cf. the files README in the maritime dataset) in or-
der to define additional constraints using the aforementioned NOT NULL, UNIQUE, PRIMARY
KEY, FOREIGN KEY keywords. Consider also the CHECK constraint, which allows to evaluate
and check a condition when inserting new data or updating existing ones, and DEFAULT, which
permits to assign a default value when a new row is inserted in a table.

6 Summary and Conclusion

More than two decades ago, in an essay entitled Marine Informatics: a new disci-
pline emerges, Roger Bradbury postulated that the scientific community was on the
way to creating a new holistic discipline addressing the challenges of marine data
integration and analysis [9]. One of the major issues he identified at that time was
the lack of regularity and sparsity in the data collected, which were also temporally
scattered. Nowadays, the large variety of maritime sensors together with scientific
background and techniques for the monitoring, analysis, and visualisation of sea
data has revolutionized the domain (c¢f. the chapter of Bereta et al. [7]). Position-
ing data correlated with contextual heterogeneous data as provided by the maritime
dataset used in this chapter makes Bradbury’s vision concrete, at least with respect
to ships’ movements.

This chapter, in line with Bradbury’s vision, takes advantage of the navigation
data brought by the maritime dataset to illustrate the benefits of relational database
for maritime informatics. Specifically, the chapter addresses the design, storage and
querying of maritime data through a spatio-temporal DBMS. In particular, the func-
tionalities of a relational DBMS have been illustrated, due to the ability thereof to
find, define, sort, modify, link and transform data in complex databases, while guar-
anteeing the user a robust layer for spatial analysis.

The open-source relational DBMS PostgreSQL, enhanced with the extension
PostGIS for manipulating spatial features, was used to exemplify the concepts pre-
sented in the chapter. It is worth noticing that the proposed technical environment is
open source, freely available and standard based, and is used in many academic and
professional applications. As such, the reader may easily find additional material to
extend the examples proposed herein. Furthermore, this technical choice is not to
be considered as a limitation, because the examples of commands proposed in the
chapter can find an easy correspondence in other DBMS that offer a spatial support.

42 Laurent Etienne, Cyril Ray, Elena Camossi, Clément Iphar

The spatial representation, analysis and visualisation techniques presented in this
chapter are a useful basis to understand the analytics approaches that are presented
in the rest of the book, in particular in the chapters of Tampakis et al. [54] and of
Andrienko et al. [2], which discuss data analytics and visual analytics, respectively.

7 Bibliographical Notes

The interested reader can refer to some additional material to get practical illustra-
tions on the functionalities offered by spatio-temporal DBMS. The authors in [43]
provide an introduction on the theoretical aspects of spatial databases, useful to
better understand the different spatial object models and the available formats. An
overview of the most important aspects of spatio-temporal databases is given in [27],
which presents the main research results of the CHROROCRONOS project.?” For
the last research updates, the reader may refer to the series of the International Sym-
posium on Spatial & Temporal Databases (SSTD).

For additional material on OODBMS, the works extending the SECONDO
DBMS offer many examples on how to extend an OODBM model to support com-
plex spatio-temporal queries like group spatio-temporal patterns [47] and range-
queries [58]. [16] shows also an extension of the SECONDO model to support sym-
bolic trajectories. The reader interested in distributed computation can have a look
to Parallel SECONDO ,?® developed to improve the performance of mobility data
analysis that supports a specialised version of the R-Tree index called TM-RTree.

Practical examples of the combined used of PostgreSQL/PostGIS and QGIS for
movement data analysis are available in Anita Graser’s blog.?’ We also refer to the
official PostgreSQLPostGIS documentation for a detailed description of spatial and
temporal database functionalities. Note that, although PostgreSQL and PostGIS are
mainly used for two dimensions geometries (X and Y coordinates), PostGIS also
supports the handling of three-dimensional (3-D) geometries. This extra dimension,
namely Z, is added to each vertex in the geometry, and the geometry type itself
is enhanced accordingly, to enable the correct interpretation of the additional di-
mension. For instance, the 2-D geometries Point, Linestring and Polygon
become 3-D PointZz, LinestringZ and PolygonZ, respectively. Also, the use
of the 3-D only Polyhedralsurface makes possible the generation of volu-
metric objects in the database. Special PostGIS functions for spatial relationships
have been adapted to 3-D geometries. The reader can refer to the official PostGIS
documentation.3”

27 CHROROCRONOS project http: //chorochronos.datastories.org

28 Parallel SECONDO http://dna.fernuni-hagen.de/secondo/
ParallelSecondo/

29 Anita Graser’s blog https://anitagraser.com/
30 PostGIS 3-D https://postgis.net/workshops/postgis-intro/3d.html

Maritime Data Processing in Relational Databases 43

The NoSQL Database management website>! provides a useful overview of the
capabilities of existing NoSQL systems, including spatial extensions. Recently, [6]
described a proposal to extend column-based Cassandra stores to the spatial dimen-
sion. Another solution to spatio-temporal objects persistence for large-scale data
and geo-spatial analytics is GeoMesa,>> an open-source suite of tools that inter-
faces with NoSQL databases like Google Bigtable and Cassandra, among others.
GeoMesa supports near-real time analytics for streaming data and distributed data
processing, and relies on GeoServer,*3 a well known data server for geographic data,
and OGC application programming interfaces for map server integration.

Port and stationary areas detection, which is discussed in the chapter, is a hot
topic in maritime related research. Most of the proposed approaches use unsuper-
vised learning. For instance, Millefiori ef al. use a data-driven approach (i.e. kernel
density estimation (KDE) on AIS data) to define the extended areas of operation of
seaports [34]. Similarly, Vespe ef al. [56] also use density estimates on AIS data to
map fishing activities at European scale. This topic is also addressed in the chapter
of Andrienko et al. [2] in this book. Taking advantage of the identified stationary
areas, vessel trajectory analysis and prediction [13, 59], identification of human ac-
tivities at sea [49], anomaly detection [45, 31, 30, 51] are also widely developed in
the literature.

The reader interested in uncertainty representation and reasoning in maritime
data and information fusion can also refer to [15, 46, 5] and the chapter of Jousselme
and Pallotta [23].

References

1. James F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM,
26(11):832-843, November 1983.

2. Natalia Andrienko and Gennady Andrienko. Visual analytics for maritime studies. In A. Ar-
tikis and D. Zissis, editors, Maritime Informatics, chapter 5. Springer, 2020.

3. Natalia V. Andrienko and Gennady L. Andrienko. Spatial generalization and aggregation
of massive movement data. [EEE Transactions on Visualization and Computer Graphics,
17:205-219, 2011.

4. Franz Aurenhammer. Voronoi diagrams: a survey of a fundamental geometric data structure.
ACM Comput. Surv., 23(3):345-405, September 1991.

5. Giulia Battistello and Wolfgang Koch. Knowledge-aided multi-sensor data processing for
maritime surveillance. In GI Jahrestagung (2), pages 796-799, 2010.

6. Mohamed Ben Brahim, Wassim Drira, Fethi Filali, and Noureddine Hamdi. Spatial data ex-
tension for cassandra nosql database. Journal of Big Data, 3(1):11, Jun 2016.

7. Kostantina Bereta, Konstantinos Chatzikokolakis, and Dimitris Zissis. Maritime reporting
systems. In A. Artikis and D. Zissis, editors, Maritime Informatics, chapter 1. Springer, 2020.

8. Piotr Borkowski. The ship movement trajectory prediction algorithm using navigational data
fusion. Sensors, 17(6):1432, 2017.

31 NoSQL Database management website http://nosgl-database.org/
32 GeoMesa https: //www.geomesa.org/
33 Geoserver http://geoserver.org/

44

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Laurent Etienne, Cyril Ray, Elena Camossi, Clément Iphar

. Roger Bradbury. Marine informatics: a new discipline emerges. Maritime Studies,

1995(80):15-22, 1995.

Emanuele Carlini, Vincius Monteiro, Amilcar Soares, Mohammad Etemad, Bruno Machado,
and Stan Matwin. Uncovering vessel movement patterns from ais data with graph evolution
analysis. In Proceedings of the MASTER workshop, 23rd International Conference on Ex-
tending Database Technology (EDBT), pages 1-7, 2020.

Max Egenhofer. A mathematical framework for the definition of topological relations. In
Proc. the fourth international symposium on spatial data handing, pages 803—-813, 1990.
Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In Proceedings of Second Inter-
national Conference on Knowledge Discovery and Data Mining, pages 226231, 1996.
Shaojun Gan, Shan Liang, Kang Li, Jing Deng, and Tingli Cheng. Ship trajectory prediction
for intelligent traffic management using clustering and ann. In Control (CONTROL), 2016
UKACC 11th International Conference on, pages 1-6. IEEE, 2016.

Raffaele Grasso. Ship classification from multi-spectral satellite imaging by convolutional
neural networks. In Proc. of the 27th European Signal Processing Conference, A Curuna,
Spain, September 2-6, 2019.

Marco Guerriero, Peter Willett, Stefano Coraluppi, and Craig Carthel. Radar/ais data fusion
and sar tasking for maritime surveillance. In Information Fusion, 2008 11th International
Conference on, pages 1-5. IEEE, 2008.

Ralf Hartmut Giiting, Fabio Valdés, and Maria Luisa Damiani. Symbolic trajectories. ACM
Trans. Spatial Algorithms Syst., 1(2):7:1-7:51, July 2015.

Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In Proceedings
of the 1984 ACM SIGMOD International Conference on Management of Data, SIGMOD ’84,
pages 47-57, New York, NY, USA, 1984. ACM.

Joseph M. Hellerstein, Jeffrey F. Naughton, and Avi Pfeffer. Generalized search trees for
database systems. In Proceedings of the 21th International Conference on Very Large Data
Bases, VLDB ’95, pages 562-573, San Francisco, CA, USA, 1995. Morgan Kaufmann Pub-
lishers Inc.

Bo Huang and Christophe Claramunt. STOQL: An ODMGe-based spatio-temporal object
model and query language. In Dianne E. Richardson and Peter van Oosterom, editors, Ad-
vances in Spatial Data Handling, pages 225-237, Berlin, Heidelberg, 2002. Springer Berlin
Heidelberg.

ISO Central Secretary. Geographic information. simple feature access. sql option. Standard
ISO 19125-2:2006, International Organization for Standardization, Geneva, CH, 2006.

Alya Itani, Cyril Ray, Ammar El Falou, and John Issa. Mining Ship Motions and Patterns
of Life for the EU Common Information Sharing Environment (CISE). In OCEANS 2019,
Marseille, France, pages 1-6, 2019.

Tor A Johansen, Andrea Cristofaro, and Tristan Perez. Ship collision avoidance using
scenario-based model predictive control. IFAC-PapersOnLine, 49(23):14-21, 2016.
Anne-Laure Jousselme and Giuliana Pallotta. Dissecting uncertainty handling techniques for
maritime anomaly detection. In A. Artikis and D. Zissis, editors, Maritime Informatics, chap-
ter 8. Springer, 2020.

Alen Jugovié, Svjetlana Hess, and Tanja Poletan Jugovi¢. Traffic demand forecasting for port
services. Promet-Traffic&Transportation, 23(1):59-69, 2011.

Sungho Kim and Joohyoung Lee. Small infrared target detection by region-adaptive clutter
rejection for sea-based infrared search and track. Sensors (Basel), 14:13210-13242, 2014.
Ravi Kothuri and Siva Ravada. Oracle Spatial, Geometries, pages 821-826. Springer US,
Boston, MA, 2008.

M. Koubarakis, T. Sellis, A.U. Frank, S. Grumbach, R.H. Gting, C.S. Jensen, N. Lorentzos,
Y. Manolopoulos, E. Nardelli, B. Pernici, H.-J. Schek, M. Scholl, B. Theodoulidis, and N. Try-
fona, editors. Spatio-Temporal Databases - The CHOROCHRONOS Approach, volume 2520
of Lecture Notes in Computer Science. Springer-Verlag, Berlin Heidelberg, 2003.

Maritime Data Processing in Relational Databases 45

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

Ahmet Kucuk, Shah Muhammad Hamdi, Berkay Aydin, Michael A. Schuh, and Rafal A. An-
gryk. Pg-trajectory: A postgresql/postgis based data model for spatiotemporal trajectories. In
Proceedings of the 2016 IEEE International Conferences on Big Data and Cloud Comput-
ing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing and
Communications (SustainCom), 8-10 October 2016, Atlanta, GA, USA, pages 81-88, 2016.
Wissame Laddada and Cyril Ray. Graph-based analysis of maritime patterns of life. In Pro-
ceedings of the GAST Workshop, 20th Journées Francophones Extraction et Gestion des Con-
naissances (EGC), pages 1-14, 2020.

Richard O Lane, David A Nevell, Steven D Hayward, and Thomas W Beaney. Maritime
anomaly detection and threat assessment. In Information Fusion (FUSION), 2010 13th Con-
ference on, pages 1-8. IEEE, 2010.

Bo Liu, Erico N de Souza, Cassey Hilliard, and Stan Matwin. Ship movement anomaly detec-
tion using specialized distance measures. In Information Fusion (Fusion), 2015 18th Interna-
tional Conference on, pages 1113-1120. IEEE, 2015.

Antonios Makris, Konstantinos Tserpes, Giannis Spiliopoulos, and Dimosthenis Anagnos-
topoulos. Performance Evaluation of MongoDB and PostgreSQL for Spatio-temporal Data.
In 2nd International Workshop on Big Mobility Data Analytics (BMDA2019), Lisbon, Portu-
gal, March 2019.

Fabio Mazzarella, Alfredo Alessandrini, Harm Greidanus, Marlene Alvarez, Pietro Argentieri,
Domenico Nappo, and Lukasz Ziemba. Data fusion for wide-area maritime surveillance. In
Proceedings of the COST MOVE Workshop on Moving Objects at Sea, Brest, France, pages
27-28, 2013.

Leonardo M Millefiori, Dimitrios Zissis, Luca Cazzanti, and Gianfranco Arcieri. Scalable and
distributed sea port operational areas estimation from ais data. In Data Mining Workshops
(ICDMW), 2016 IEEE 16th International Conference on, pages 374-381. IEEE, 2016.
International Standard Organisation. Iso/iec 9075:2016 information technology database lan-
guages sql.

Christine Parent, Stefano Spaccapietra, Chiara Renso, Gennady Andrienko, Natalia An-
drienko, Vania Bogorny, Maria Luisa Damiani, Aris Gkoulalas-Divanis, Jose Macedo, Nikos
Pelekis, et al. Semantic trajectories modeling and analysis. ACM Computing Surveys (CSUR),
45(4):42, 2013.

Kostas Patroumpas. Online mobility tracking against evolving maritime trajectories. In A. Ar-
tikis and D. Zissis, editors, Maritime Informatics, chapter 6. Springer, 2020.

Nikos Pelekis, Yannis Theodoridis, Spyros Vosinakis, and Themis Panayiotopoulos. Hermes
- A framework for location-based data management. In Advances in Database Technology
- EDBT 2006, 10th International Conference on Extending Database Technology, Munich,
Germany, March 26-31, 2006, Proceedings, pages 1130-1134, 2006.

Gohar A Petrossian. Preventing illegal, unreported and unregulated (iuu) fishing: A situational
approach. Biological Conservation, 189:39-48, 2015.

David A Randell, Zhan Cui, and Anthony G Cohn. A spatial logic based on regions and
connection. In Proceedings of the Third International Conference on Principles of Knowledge
Representation and Reasoning, pages 165-176. Morgan Kaufmann Publishers Inc., 1992.
Cyril Ray, Richard Dréo, Elena Camossi, Anne-Laure Jousselme, and Clément Iphar. Hetero-
geneous integrated dataset for maritime intelligence, surveillance, and reconnaissance. Data
in Brief, Vol. 25:104141, 2019.

Cyril Ray, Richard Dréo, Elena Camossi, Anne-Laure Jousselme, and Clément Iphar. Hetero-
geneous integrated dataset for maritime intelligence, surveillance, and reconnaissance. Data
In Brief, 25, 2019.

Philippe Rigaux, Michel Scholl, and Agnes Voisard. Spatial Databases with Application to
GIS. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

Maria Riveiro, Giulian Pallotta, and Michele Vespe. Maritime anomaly detection: A review.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 0(0):e1266, 2018.
Stephen Roberts. Anomaly detection in vessel track data. PhD thesis, Oxford University, UK,
2014.

46

46.

47.

48.

49.

50.

51.

52.

53.
54.

55.

56.

57.

58.

59.

60.

Laurent Etienne, Cyril Ray, Elena Camossi, Clément Iphar

Jean Roy and Eloi Bosse. Sensor integration, management and data fusion concepts in a
naval command and control perspective. Technical report, Defence Research Establishment
Valcartier (Québec), 1998.

Mahmoud Attia Sakr and Ralf Hartmut Giiting. Group spatiotemporal pattern queries. Geoin-

formatica, 18(4):699-746, October 2014.

W. Siabato, MA. Manso-Callejo, and E. Camossi. An annotated bibliography on spatiotempo-
ral modelling trends. International Journal of Earth and Environmental Sciences, 2(135):26
pp-, 2017.

PAM Silveira, AP Teixeira, and C Guedes Soares. Use of ais data to characterise marine
traffic patterns and ship collision risk off the coast of portugal. The Journal of Navigation,
66(6):879-898, 2013.

Rolf Simoes, Gilberto Queiroz, Karine Ferreira, Lubia Vinhas, and Gilberto Cmara. Postgis-
t: towards a spatiotemporal postgresql database extension. In XVII Brazilian Symposium on
Geoinformatics (Geolnfo 2016), 2016.

Behrouz Haji Soleimani, Erico N De Souza, Casey Hilliard, and Stan Matwin. Anomaly
detection in maritime data based on geometrical analysis of trajectories. In Information Fusion
(Fusion), 2015 18th International Conference on, pages 1100-1105. IEEE, 2015.

Stefano Spaccapietra, Christine Parent, Maria Luisa Damiani, Jose Antonio de Macedo, Fabio
Porto, and Christelle Vangenot. A conceptual view on trajectories. Data & Knowledge Engi-
neering, 65(1):126 — 146, 2008. Including Special Section: Privacy Aspects of Data Mining
Workshop (2006) - Five invited and extended papers.

Christian Strobl. PostGIS, pages 891-898. Springer US, Boston, MA, 2008.

Panagiotis Tampakis, Stylianos Sideridis, Panagiotis Nikitopoulos, Nikos Pelekis, and Yannis
Theodoridis. Maritime data analytics. In A. Artikis and D. Zissis, editors, Maritime Informat-
ics, chapter 4. Springer, 2020.

Alejandro Vaisman and Esteban Zimdnyi. Mobility data warehouses. ISPRS International
Journal of Geo-Information, 8(4), 2019.

Michele Vespe, Maurizio Gibin, Alfredo Alessandrini, Fabrizio Natale, Fabio Mazzarella, and
Giacomo C Osio. Mapping eu fishing activities using ship tracking data. Journal of Maps,
12(sup1):520-525, 2016.

Jianqiu Xu and Ralf Hartmut Giiting. A generic data model for moving objects. Geoinformat-
ica, 17(1):125-172, January 2013.

Jianqiu Xu, Hua Lu, and Ralf Hartmut Guting. Range queries on multi-attribute trajectories.
IEEE Trans. on Knowl. and Data Eng., 30(6):1206—1211, June 2018.

Tingting Xu, Xiaoming Liu, and Xin Yang. Ship trajectory online prediction based on bp neu-
ral network algorithm. In Information Technology, Computer Engineering and Management
Sciences (ICM), 2011 International Conference on, volume 1, pages 103-106. IEEE, 2011.
Hongchu Yu, Zhixiang Fang, Feng Lu, Alan T. Murray, Zhiyuan Zhao, Yang Xu, and Xiping
Yang. Massive automatic identification system sensor trajectory data-based multi-layer link-
age network dynamics of maritime transport along 21st-century maritime silk road. Sensors,
19(19), 2019.

