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ABSTRACT
In the context of the introduction of renewable energies in France,
Nuclear Power Plant Operations (NPPO) are a key component for
the compensation of the intermittent production of solar and wind
power. In this work, we focus on the optimization of the operation
cost and stability of power of a real-life power transient, while
maintaining safety standards. From an optimization point of view,
the NPPO problem is a typical example of a discrete constrained
bi-objective problem based on time expensive computation simula-
tion. We propose a massive asynchronous parallel master/workers
MOEA/D assisted by a surrogate models. The algorithm design
components are discussed and argued in this work. We show that
our proposed surrogate assistance is able to improve algorithm
performance and reliability, allowing us to extend our approach to
a large range of strategic future real-life operations.

CCS CONCEPTS
• Applied computing → Engineering; • Computing method-
ologies → Massively parallel algorithms; Machine learning; Search
methodologies;

KEYWORDS
Local search, Surrogate model/fitness approximation, Combinato-
rial optimization, Empirical study.

1 INTRODUCTION
Because of the increase of intermittent renewable energies com-
bined with the shutting down of highly carbonated power plants,
French agency RTE describes a future electricity market with very
reducedmargins, and strongly dependant on nuclear power plants [22].
French nuclear power plants (NPP) will therefore need to compen-
sate for an important part of the intermittence, and the necessity
of load-follow power transients will be increased.

New reactor designs such as the EPR [19] take into account
this information and are designed to perform well in load follow
operations. But most current French NPP are older designs, and
even though they can and do perform load follow operations, they
were not optimized for such transients. In this work, we show that
it is possible to slightly alter the operating parameters of the NPP,
in a way that both reduces the cost of the operation and increases
power stability, while maintaining safety standards.

Optimizing reactor operations is not a new idea, be it on the
French EPR [14] or on other reactors [3, 16, 24]. However, the com-
mon points of these works is the use of advanced control methods,
designed with the help of analytical models of the reactor. In this
work, the control method of the reactor is not altered, only the
operating parameters changes, so that the change is completely
transparent for the NPP operators.

This Nuclear Power Plant Operations (NPPO) problem is a typi-
cal example of a constrained bi-objective problem based on time
expensive computer simulation. The search space is discrete, with
around 1012 possible solutions and a computation time of around
40 minutes per candidate solution. A large scale asynchronous mas-
ter/workers MOEA/D (AMW-MOEA/D) was proposed in [9] as a
first approach of the problem. Though this algorithm produced
interesting solutions, its high variance and computation cost are a
concern.

Beside parallel algorithms, surrogate models can also be used to
face the issue of an expensive computation time of objectives eval-
uation [12]. In this approach, a cheaper surrogate model is learned
during the optimization process, and replaces the expensive objec-
tive evaluation to guide more efficiently the search toward promis-
ing solutions. Such approach is a standard technique for continuous
optimization problems such as the well-known Efficient Global Op-
timization (EGO) based on Gaussian Process [13]. A large number
of surrogate models have been proposed for single or multiobjec-
tive continuous optimization (support vector regression, random
forest, neural networks, radial basis functions, etc.) [2], but only few
recent works deal with discrete optimization problems [1, 15, 25].
In multiobjective continuous optimization, all class of algorithms
can be assisted by surrogate models (See. [6] for a review): Pareto
based, indicator based, and more recently decomposition based
approaches [4]. However, it is still an open issue to design efficient
assisted surrogate model for discrete and multiobjective problems
[23]. To our best knowledge, this work is the first attempt to design
a surrogate assisted multiobjective algorithm for discrete problems
which is parallel, asynchronous and able to scale up to thousands
of computing units.

The first section of this paper describes the physics of the NPPO
problem. The second section describes the proposed parallel asyn-
chronous surrogate-assisted AMW-MOEA/D algorithm. The per-
formance of this algorithm is discussed in the third section.



2 NUCLEAR POWER PLANT OPERATIONS
2.1 Description of the French 1300MW

Pressurized Water Reactor
The reactor considered in this work is the French 1300 MW pres-
surized water reactor (PWR). Among the French nuclear fleet, it
is both one of the most common, after the 900MW PWR, and the
one that presents the best potential of improvement for load follow
operations, due to its operating mode: the G mode. The results of
this work could easily be extended to the 900MW PWR that are
operated in the G mode.

Figure 1: Simplified schematic view of the 1300MW pressur-
ized water reactor. The red lines represent the primary loop,
the green lines the secondary loop, and the blue lines the
control of the reactor.

Fig. 1 shows a simplified view of the reactor. The nuclear power
is produced by a chain reaction of neutron induced fissions in the
reactor core. A first liquid water loop (in red on Fig. 1), pressurized
at 155 bar, evacuates the power produced in the core to the steam
generator, where it heats a secondary loop (in green on Fig. 1). The
steam produced in the secondary loop is then used to actuate the
turbine and alternator to produce power. The remaining steam is
then cooled by the condenser, and fed back to the steam generator.
The input of this reactor is the load, which means the electric power
produced at the output of the alternator.

For small power variations, the physics of the neutrons in the
PWR makes the system self regulated, and no operation is needed.
But for more important variations, action is required to ensure
that the reactor core will remain in its desired temperature state.
Moreover, the operators have to control the power distribution in
the core. The core is a heterogeneous 4 meter high and 3 meter
wide cylinder, in which the power production is not homogeneous,
both because of the presence of control rods, and neutron poisons
that are produced by fission reactions. The operator has to make
sure the power distribution stays close to the initial distribution.
The control value for the distribution of power is called the axial
offset and is defined as follows:

𝐴𝑂 =
𝑃𝑢𝑝𝑝𝑒𝑟 − 𝑃𝑙𝑜𝑤𝑒𝑟

𝑃𝑢𝑝𝑝𝑒𝑟 + 𝑃𝑙𝑜𝑤𝑒𝑟

(1)

where 𝑃𝑢𝑝𝑝𝑒𝑟 is the power produced in the upper part of the core,
and 𝑃𝑙𝑜𝑤𝑒𝑟 is the power produced in the lower part of the core.

The plant operators have two ways of controlling the reactor:
• Control rods, made of neutron absorbant materials, are in-
serted in the core to slow down the chain reaction. There
are two types of rods, depending on the importance of their
effect of neutrons: grey rods, that are less absorbant, and
black rods, that are more absorbant;
• Soluble boron is inserted in the water of the primary loop,
to absorb neutrons and slow down the chain reaction.

The effect of the boron is homogeneous in the core, whereas the
rods are inserted from the top of the core, and therefore disturb the
power distribution in the core.

In the G mode, the rods are separated in two sets:
• The Power Shimming Rods (PSR), made of 4 groups (G1, G2,
N1 and N2). The first two groups are made of grey rods, and
the last ones of black rods. They have to compensate the
reactivity effects of a change in power. They are used in an
open loop indexed on the electric power generated by the
plant.
• The Temperature Regulation Rods (TRR), made of black rods,
are used to further regulate temperature. They compensate
for defaults in the calibration of the PSR, and the apparition
of neutron poisons such as xenon. They move in a limited
maneuvering band𝑚𝑇𝑅𝑅 in the upper part of the core.

The different groups of the PSR move with constant overlaps. At
first, G1 moves alone. Then after a certain amount of steps called the
overlap between G1 and G2, G2 will start to move and the two rods
will move together until G1 is completely inserted. The movement
of the PSR are thus defined by three overlaps: 𝑜𝐺1/𝐺2, 𝑜𝐺2/𝑁 1 and
𝑜𝑁 1/𝑁 2. The rods each have a maximum speed 𝑠 . The movement of
the rods are measured in steps which are roughly equal to 1.6 cm.

The rods are moved automatically depending on the power gen-
erated by the plant and the gap between the temperature of the
core and its set value. However, these rods cannot compensate for
neutron poisons during a power transient. Therefore the operator
has to inject soluble boron in the primary loop to help control the
core temperature. Furthermore, the operators use the boron to com-
pensate power distribution imbalances due to the movement of the
rods, in order to maintain the axial offset close to its set value.

2.2 Power transient
The considered power transient is a day/night load follow operation
(Fig 2). The power is reduced to 30% of the nominal power for 6
hours, then goes back to the nominal power. The maximum autho-
rized slope of 5% of nominal power per minute is used, making it a
very difficult transient for the operators.

2.3 Model of the reactor
The simulator used for this project is a multi-physics PWR model
encompassing both the primary and secondary loops [8][18]. The
computations are performed thanks to APOLLO3®[10], the multi
purpose deterministic transport code developped at CEA institute.
The neutronics model is based on a static 3D flux calculations based
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on the diffusion approximation for the power distribution calcu-
lation, and a point kinetics model for the core power calculation.
This model takes into account Doppler and moderator feedback
effects through the use of a simplified thermal-hydraulics model
computed in APOLLO3®. The evolution of actinides and several
poisons, including xenon, iodine and samarium is computed at
each time step. This neutronics model is coupled to a 0D model of
the steam generator, so that the simulator can take into account
the imbalance between the extracted steam flow and the produced
steam flow during load-follow operations. A simplified model of
the G mode is used in order to reproduce rod movements and boron
concentration evolutions[8]. The mean computing time for the tran-
sient is arround 9.5 minutes, with a standard deviation of about one
minute.

2.4 Values of interest and input parameters
Industrial concerns related to load-follow operations are cost, sta-
bility and safety. Evaluating all costs related to power transients
is a difficult tasks. It includes direct costs of operations, such as
the volume of effluents. This volume is the volume of water efflu-
ents from the primary loop that were generated in order to change
the boron concentration in the core. These effluents are costly to
process because they contain activated nucleides. The costs also
include indirect costs, such as the wear of the rods, or accelerated
aging of the materials. Finally, some others costs are induced by
the reduced load factor of the plant. In this study, and because of
the time scale considered, we focus on direct costs.

Stability of power in the reactor is a concern during power tran-
sients because of neutron poisons. Xenon and Iodine appear in the
reactor during a power transient, and can cause spatial oscillations
of the flux. These variations are a safety concern, and can prevent
the reactor from undergoing a second transient for a few hours
or even days after the first one. Several values of interests can be
computed during a transient to measure instability, in this study the
gap between the set axial offset and effective axial offset, integrated
over time, is considered.

Finally, there are safety concerns associated to power transients.
When a lot of rods are inserted in the core, the worry is that the
safety margin for an emergency stop, during which all rods are
dropped in the core, is not enough. Another concern, because of

Figure 2: Power transient.

the disruptions of the flux, is that locally, the power will be too
high and go over the authorized limit, causing an alarm, and reactor
shutdown. A random sampling of the search space showed these
two constraints were rare, with less than 1 % occurrence. Therefore,
no repair or penalty strategies are implemented to deal with con-
straints, the solutions are simply rejected when they don’t respect
one or the other.

We therefore consider 4 values of interests, two objectives and
two constraints. The volume of effluents 𝑣 , the axial offset integral
𝑖 , the safety margin, and maximum local power.

The physical behaviour of the reactor changes during its exploita-
tion cycle. French 1300MW PWR are operated with the GEMMES
management, which means their fuel is reloaded every 18 months.
During these 18 months, the depletion of fuel causes changes in
the flux, and therefore in the objectives. The depletion of the flux is
measured by the burnup (𝑏𝑢), which is the total energy received by
a ton of fuel. A random sampling of the search space showed that
there were no strong correlations between the different moments
of the cycle for the considered objectives. It is therefore necessary
to consider multiple burnup points during the optimization process.
Four burnup points were considered: beginning of the cycle (BOC),
one quarter of the cycle (QOC), middle of the cycle (MOC) and three
quarters of the cycle (TQOC). The end of the cycle is not considered,
since the fuel is too depleted to allow load follow operations.

For each calculation, the volume of effluents and axial offset
integral are computed for the four burnup points. If for any burnup,
one constraints is not respected, the candidate solution is rejected.
The values computed are then used to compute the two values of
interest for the complete cycle:

𝐼 = max
𝑏𝑢
{𝑖 (𝑏𝑢)} (2)

𝑉 =
1∑

𝑏𝑢 1/𝑣𝑟𝑒 𝑓 (𝑏𝑢)
∑
𝑏𝑢

𝑣 (𝑏𝑢)/𝑣𝑟𝑒 𝑓 (𝑏𝑢) (3)

𝐼 is computed with the values of the axial offset integrals. The max-
imum imbalance is considered, since imbalance is a safety concern.
𝑉 is computed as the mean value of the volumes of effluent at each
burnup. The weights used are the reference volume computed with
the current rod management. This is motivated by the fact that the
volume of effluents increases with the burnup, because the base
concentration of boron decreases. It is therefore more costly to
do a power transient near the end of the cycle, meaning that the
operator will favor the beginning of the cycle. Without the weights,
the TQOC volume of effluents would have too strong an impact
on 𝑉 . The multiple-burnup problem is therefore a two objective
problem, with two constraints. Since 4 calculations are needed to
compute one candidate solution, the average computing time is 40
minutes. The objectives are normalized using standard normaliza-
tion, using the mean and standard deviation computed during the
fitness landscape analysis [8].

The goal of this study is to slightly modify the plant to improve
performance without disrupting it so much that the safety demon-
stration would be completely different. Therefore, the G mode will
not be modified in itself. Only the rod movement parameters will
be modified: the overlaps between the PSR groups, their maximum
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speed, and the maneuvering band of the TRR1. Their range of pos-
sible variation is determined by technological constraints. They
can only take discrete values in steps because of technological con-
straints. The parameters and their ranges of variations are summed
up in table 1.

Table 1: List of all inputs

Input Min Max Current Unit
𝑜𝐺1/𝐺2 0 255 185 steps
𝑜𝐺2/𝑁 1 0 255 175 steps
𝑜𝑁 1/𝑁 2 0 255 160 steps
𝑠𝐺1 20 110 60 steps per minute
𝑠𝐺2 20 110 60 steps per minute
𝑚𝑇𝑅𝑅 8 117 27 steps

Therefore, the search space is a discrete 6 dimension space with
a size of around 1012. In summary, the real-world NPPO problem
is an expensive discrete biobjective optimization problem with
constraints.

3 SURROGATE-ASSISTED AMW-MOEA/D
3.1 Definition
Amultiobjective problem (MOP) aims at optimizing jointly multiple
values of interest. These objectives often being antagonist, the
answer is a set of trade-offs solutions between values of interests.
Let Ω be the search space of dimension 𝑑 and 𝑓 : Ω → R𝑚 the
function to optimize, with𝑚 scalar objectives. A solution 𝑥 ∈ Ω is
said to dominate a solution 𝑥 ′ if for all 𝑖 ∈ {1, . . . ,𝑚}, 𝑓𝑖 (𝑥) ≤ 𝑓𝑖 (𝑥 ′)
and there exists 𝑗 ∈ {1, . . . ,𝑚} such that 𝑓𝑗 (𝑥) < 𝑓𝑗 (𝑥 ′). A solution
𝑥 ∈ Ω is non dominated if there does not exist a solution in Ω that
dominates 𝑥 . The goal of a multiobjective optimization process is
to find all non dominated solutions. This set is called the Pareto set,
and its image by 𝑓 in the objective space is the Pareto front.

MOP strategies based on decomposition consist in splitting the
𝑚-objective problem in a number of mono-objective sub-problems,
that will be solved separately or cooperatively. In the case ofMOEA/D
[26], the objective space is split in 𝜆 directions using weight vectors
𝑤 ∈ R𝑚 . A scalarizing function 𝑔(.|𝑤, 𝑧★) is then used to transform
the objectives 𝑓 into a scalar value. Common scalarizations [7]
include the Chebyshev function:

𝑔(𝑧 |𝑤, 𝑧★) = max(𝑤1 .|𝑧1 − 𝑧★1 |,𝑤2 .|𝑧2 − 𝑧★2 |) (4)

or the weighted sum:

𝑔(𝑧 |𝑤, 𝑧★) = 𝑤1 .|𝑧1 − 𝑧★1 | +𝑤2 .|𝑧2 − 𝑧★2 | (5)

where 𝑧∗ is a reference point towards which the algorithm is guided
to progress.

Each direction solves its mono-objective problem using an (1+1)-
Evolution Strategy without cross-over. For each direction, the algo-
rithm keeps in memory the best solution. This solution is mutated
as described in the next section, in order to explore the search space
and find a better solution.
1The maximum speeds of the N1 and N2 rods are not considered, since they are almost
never reached.

However, directions does not work alone. We define a neighbour-
hood N(𝐷) for each direction 𝐷 . When a solution is proposed for
the direction𝐷 , it is also sent to all directions of the neighbourhood,
the idea being that if a solution is good for one direction, it is likely
to be interesting too on neighbourhood directions, if the weight
vectors are distributed regularly. Notice that there is no cross-over
in this version of MOEA/D following previous analysis [18]. For the
2-objective case, we split the objective space with constant angles:

𝑤𝑖 =

(
cos

(
𝑖𝜋

2𝜆

)
, sin

(
𝑖𝜋

2𝜆

))
for 𝑖 = 0, . . . , 𝜆 − 1 (6)

The neighbourhood is defined by the parameter𝑇 . For a direction
𝐷𝑖 , the neighbourhood is then:

N(𝐷𝑖 ) = {𝐷𝑖−𝑇 , . . . , 𝐷𝑖+𝑇 } ∩ {𝐷0, . . . , 𝐷𝜆−1} (7)

3.2 Mutation operator
The mutation operator is based on two parameters:

• the mutation rate vector 𝑝 ∈ [0, 1]𝑑 which defines, for each
input, the probability that it will be mutated ;
• the mutation range vector 𝑟 ∈ [0, 1]𝑑 which defines the
range in which the inputs will be mutated.

First, following standard mutation of EA, the operator selects the
inputs that will be mutated, according to each input’s rate mutation
𝑝𝑖 : each input 𝑖 is mutated following Bernouilli law of parameter 𝑝𝑖 .
The vector 𝑝 is chosen such that the expected value of the number
of mutated inputs will be 1. If 𝑝 is uniform, then the number of
mutated inputs follows a Binomial distribution, with an expected
value 𝑝0𝑑 , therefore 𝑝𝑖 is set to 1/𝑑 .

For each selected input, the new value is selected according to a
uniform probability law in the set:

{𝑥𝑖 − ⌊𝑟𝑖 (𝑀𝑖 −𝑚𝑖 )⌋ , . . . , 𝑥𝑖 + ⌊𝑟𝑖 (𝑀𝑖 −𝑚𝑖 )⌋} ∩ {𝑚𝑖 , . . . , 𝑀𝑖 } \ {𝑥𝑖 }
(8)

where 𝑖 is the selected input, 𝑥𝑖 its current value,𝑚𝑖 and𝑀𝑖 respec-
tively its lower and upper bound.

A hashing table is used so that no solution is computed twice. The
mutation operator is therefore applied until it produces a solution
that is not present in the table.

3.3 Surrogate strategy
In order to improve the search, the proposed algorithm is assisted
with a surrogate model (See Alg. 1). Two surrogate functions are
considered, for the objectives𝑉 and 𝐼 . Let𝑀 be the surrogate model
that generates the estimated objective vector. For one direction 𝐷 ,
the fitness of solution 𝑥 on direction 𝐷 can then be estimated as
𝑔(𝑀 (𝑥) |𝑤𝐷 , 𝑧

★). The surrogate model is trained at each iteration
of the AMW-MOEA/D algorithm, using all previously computed
solutions.

The selection of a new solution uses a (1+𝜆𝑀 )-Evolution Strategy
(ES) with a population of 𝜆𝑀 solutions, that is run for𝐺 generations
(See Alg. 2). Starting with the current best solution for the direction
considered, 𝜆𝑀 mutants are iteratively generated, evaluated with
the surrogate and selected.

In order to acquire enough points so that the prediction of the
surrogate model is accurate, the surrogate assisted selection is only
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used after a certain amount of points, 𝑁𝑠𝑡𝑎𝑟𝑡 , have been evaluated.
Before that, the next point is simply a mutant of the current best.

If 𝐺 = 1, this is a filter [4], that does a first screening of the
mutants using the surrogate before choosing the next point. As the
number of evaluated solutions 𝐺𝜆𝑀 increases towards the size of
the search space, this is a full internal optimization process based
on the surrogate. In [4], it was suggested that this type of setup
performs better than a simple filter.

A detailed analysis of several surrogate models for the NPPO
problem is performed in Sec. 4.2.

3.4 Parallel design
The algorithm is designed for massively parallel use (several thou-
sands of computing units), with a master/workers architecture. It
allows for a centralization data, and input/output operations, with-
out overloading the master node, because of the long computing
time. With a thousand computing units and an average comput-
ing time of 40 minutes, the master node has an average time of 2
seconds to treat an incoming message, which seems large enough
for the simple operations of adding a solution to the results file,
updating the best solutions of the neighbourhood directions, and
selecting a new solution for evaluation.

Because of the important variance of the computing time and
the large number of computing units, the algorithm works in a
completely asynchronous manner [11]. This means that when a
calculation ends on one processor, its results is directly treated by
the master node, that sends a new solution for evaluation without
waiting for the full generation to be computed.

The pseudo-code of the AMW-MOEA/D is given in Alg. 1, Alg.
2, and Alg. 3. The initial population is generated using Sobol se-
quences. At each iteration, the reference point 𝑧∗ is updated so
that its coordinates correspond to the minimum known value for
each objective. The stopping condition is a determined computa-
tion time. From previous works [18], the Pareto front seems to be
globally balance between objectives, so the directions are equally
distributed among computing units at initialization, and are not
changed during the execution.

The main parameters of the algorithm, excluding the surrogate
parameters, are therefore:

• the number of directions 𝜆;
• the number of computing units 𝑁𝑝𝑟𝑜𝑐 ;
• the scalarization function;
• the normalization function for the objectives;
• the neighbourhood size 𝑇 .

Previous work by Muniglia [18] found that 𝜆 = 200 directions
are enough to capture this problem, and that the Chevishev scalar-
ization is better suited to ensure a variety of solutions.

4 EXPERIMENTAL ANALYSIS
4.1 Experimental design
Both the surrogate assisted AMW-MOEA/D and the non assisted
algorithm were tested on 10 runs of 10 hours each, on 1008 CPU
on the TGCC (SKL Irene on Intel Xeon 8168 2.7GHz CPU units)
Two sets of parameters were considered for the surrogate assisted
algorithm: one in which a simple filter is used (𝐺 = 1, 𝜆𝑀 = 150) and

Algorithm 1: AMW-MOEA/D: master process
1 for 𝑖 ← 1 to 𝑁𝑝𝑟𝑜𝑐 do
2 𝐷𝑖 ← Attribute direction;
3 𝑥𝑖 ← Initialize using Sobol numbers;
4 Send 𝑥𝑖 to process 𝑖; // Non blocking

communication

5 end
6 𝑧★← Initialize reference point;
7 𝑓 ★

𝐷
← Initialize best fit for each direction 𝐷 ;

8 𝑥★
𝐷
← Initialize best solution for each direction 𝐷 ;

9 𝑆 ← ∅ ; // Set of evaluated solutions

10 while time left do
11 ReceiveMsg from process 𝑖 w.r.t. direction 𝐷𝑖 ;
12 (𝑓 , 𝑥) ←Msg; // Receive obj. vector and

solution

13 Normalize 𝑓 ; // See 2.4

14 𝑆 ← 𝑆 ∪ {(𝑥, 𝑓 )};
15 for 𝑘 ← 1 to 𝑑 do
16 if 𝑓𝑘 < 𝑧★

𝑘
then

17 𝑧★
𝑘
← 𝑓𝑘 ; // Update reference point

18 end
19 end
20 for 𝐷 ∈ N (𝐷𝑖 ) do
21 if 𝑔(𝑓 |𝑤𝐷 , 𝑧★) < 𝑔(𝑓 ★

𝐷
|𝑤𝐷 , 𝑧★) then

22 𝑥★
𝐷
← 𝑥 ; // Update best known solution

23 𝑓 ★
𝐷
← 𝑓 ;

24 end
25 end
26 Train surrogate models𝑀 with 𝑆 ;
27 if ♯𝑆 < 𝑁𝑠𝑡𝑎𝑟𝑡 then
28 𝑥 ′ ←Mutate 𝑥★

𝐷𝑖
;

29 else
30 Select 𝑥 ′ using surrogate models𝑀 ; // See Alg.

2

31 end
32 Send 𝑥 ′ to process 𝑖; // Non blocking

communication

33 end

one with a complete evolutionary strategy (𝐺 = 10, 𝜆𝑀 = 15). In
both cases, 150 solutions are evaluated with the surrogate model at
each step, which is roughly the total amount of solutions evaluated
per direction by the non assisted algorithm.

4.2 Surrogate models
Different surrogate models can be used for discrete optimization
problems. In Gaussian Process [25], the fitness of solutions is sup-
posed to follow a normal distribution characterized by a co-variance
matrix between solutions. Although this model is able to estimate
an error of the model, for a massive master/workers parallel system,
the computation time on the master process is too long to scale up
to thousand units. Another alternative is Polynomial Chaos (PC)
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Algorithm 2: ES: (1 + 𝜆𝑀 )-Evolution Strategy to select a
candidate solution for direction 𝐷 using surrogate model
𝑀 model
1 𝑥★← 𝑥★

𝐷
;

2 𝑔★← +∞;
3 𝑗 ← 1;
4 while 𝑗 ≤ 𝐺 do
5 {𝑦𝑘 } ← Generate 𝜆𝑀 mutants of 𝑥★;
6 Evaluate all solutions 𝑦𝑘 with 𝑔(𝑀 (.) |𝑤𝐷 , 𝑧★);
7 𝑦★← argmin{𝑦𝑖 } 𝑔(𝑀 (.) |𝑤𝐷 , 𝑧★);
8 if 𝑔(𝑀 (𝑦★) |𝑤𝐷 , 𝑧★) < 𝑔★ then
9 𝑥★← 𝑦★ ;

10 𝑔★← 𝑔(𝑀 (𝑦★) |𝑤𝐷 , 𝑧★);
11 end
12 𝑗 ← 𝑗 + 1;
13 end
14 return 𝑥 ;

Algorithm 3: AMW-MOEA/D: worker process
1 while time left do
2 ReceiveMsg from master process; // Blocking

communication

3 𝑥 ←Msg;
4 𝑓 ← Evaluate 𝑥 ;
5 Send 𝑓 to master process; // Blocking

communication

6 end

approach. The model is an orthogonal basis of polynomial functions
as such Legendre basis of polynomials [27]. The coefficients are
estimated with sparse linear regression methods (LASSO in this
work). Random Forest (RF) can also be used as surrogate model
for discrete or mixed optimization problems (discrete and contin-
uous variables) [21]. RF is an efficient ensemble surrogate based
on decision tree weak learners. Each tree is learned at the same
time with bagging technique of sample and random sub-sampling
of predictors. Gradient Boosting (GB) [5] is also another ensem-
ble technique based on weak learners (also decision trees in our
case). On the contrary of RF, in gradient boosting the weak learners
are trained sequentially based the error of previous weak learners.
We also analyze the Support Vector Regression (SVR) model [17]
which is generalization of linear model using the kernel trick to
face non-linearity.

To select a surrogate model for the NPPO problem, an offline
analysis is performed, based on the data from the non assisted
runs. All methods are implemented using the Python library Scikit-
learn [20]. For each of these runs, at several points of the run, the
surrogate models are built using the already computed points. The
coefficient of determination of the regression is computed on the
remaining points as a test set in order to reflect the problem: will
the surrogate be accurate on the further evaluated points? Fig. 3
shows the results of this analysis for both objectives. Apart from

Table 2: Mean hypervolume improvement between 5000
evaluations and the end of the run. The p-value is the result
of the comparison with the non assisted configuration with
a Welsch t-test.

Configuration Hypervolume Improvement 𝑝-value
Non assisted 1.32 -

(𝐺 = 1, 𝜆𝑀 = 150) 2.07 0.19
(𝐺 = 10, 𝜆𝑀 = 15) 3.08 0.01

the linear regression, all methods converge towards a good value
of the coefficient of determination 𝑅2. However, it appears that
random forest and in a smaller way gradient boosting perform
better for a smaller amount of computed solutions. These are both
methods based on decision trees, which might be more adapted
to this problem because some of the inputs are thresholds, that
generate slope discontinuities in the objectives. For all methods,
the coefficient of determination remain lower for the volume of
effluents than the axial imbalance, suggesting it is harder to model.

The random forest training time is under 0.4 seconds, even for
large training sets, making it fast enough for the massively paral-
lel configuration. It is therefore selected for the surrogate assisted
AMW-MOEA/D. The 𝑁𝑠𝑡𝑎𝑟𝑡 parameter is set to 5000 evaluated solu-
tions so that both 𝑅2 coefficients are above 0.8 when the assistance
starts.

4.3 Performance analysis
Fig. 4 and 5 show the comparison of the assisted and non assisted
algorithm, with the two sets of parameters (𝐺 = 1, 𝜆𝑀 = 150) and
(𝐺 = 10, 𝜆𝑀 = 15). The 𝑁𝑠𝑡𝑎𝑟𝑡 parameter is set to 5000 for all surro-
gate assisted runs, therefore the average behaviour of the algorithm
should be completely similar before 5000 evaluations, except from
the variance due to the random process of the initialization phase
and the non assisted phase. The difference of final hypervolume is
not statistically significant, however the slope seems to be higher
after 𝑛 = 7000 for the assisted runs.

In order to eliminate the bias of the variance of the algorithm
during the initialization and non assisted phases (under 5000 evalu-
ations), we consider the hypervolume improvement between 𝑛 =

5000 and the end of the run. The results of this analysis are pre-
sented in Tab. 2. For each configuration, a statistical comparison to
the non assisted configuration is performed using a Welsch t-test.

The mean hypervolume improvement is higher for the assisted
runs. For the (𝐺 = 10, 𝜆𝑀 = 15), the hypervolume improvement
is twice that of the non assisted algorithm, and the difference is
statistically significant. The difference, however, is not statistically
significant for the filter configuration ((𝐺 = 1, 𝜆𝑀 = 150)), confirm-
ing the intuition in [4] that for the same number of evaluations,
using several generations on a smaller population will yield better
results.

The analysis of the Pareto fronts shows that both configurations
of the algorithm are able to find solutions in the same regions of
the objective space as the non assisted algorithm, showing that the
surrogate assistance does not reduce the diversity of the solutions,
therefore giving the NPP operator a variety of possible trade-offs
between axial imbalance and cost.
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Figure 3: Coefficient of determination (𝑅2) of different surrogate models evaluated on non assisted runs according to the
number of evaluated solutions 𝑛.
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Figure 4: Hypervolume evolution of the surrogate assisted
and non assisted algorithm. Full line is the average over the
runs, dotted line are the confidence interval.

Figure 5: Final Pareto Fronts for the different runs. The dot-
ted black line shows the current rod parameters.

4.4 Discussion
Table 3 shows the confusion matrix of the surrogate assistance
for the (𝐺 = 10, 𝜆𝑀 = 15) runs (the matrix of the (𝐺 = 1, 𝜆𝑀 =

150) runs is similar). "Improving solution" means that the solution
improves the current best fit for at least one direction. "Predicted
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Table 3: Confusion Matrix (percentage) for the (𝐺 = 10, 𝜆𝑀 =

15) Surrogate assisted AMW-MOEA/D runs

Improving Not improving
Pred. improving 2.19 25.29

Pred. not improving 3.51 69.0

improving"means the solutionwas predicted to improve the current
best for at least one direction, not only the one it was selected
for. These two tests do not occur at the same time: between the
selection of a solution and the end of its evaluation, because the
algorithm is asynchronous, many solutions have been received,
therefore the current bests may have changed. This can explain the
high rate of false positive: solutions that were predicted improving
but were not because the current best changed while they were
being computed. The surrogate assistance is too slow in a massively
parallel asynchronous framework. However, the rate of improving
solutions is 2.28 % for the non assisted algorithm, where it is 5.70 %
for the (𝐺 = 10, 𝜆𝑀 = 15) runs, showing that the assistance is still
able to find more improving solutions.

Only 27% of the selected solutions were predicted to be im-
proving, which might seem small: why not increase the number
of solutions evaluated by the surrogate to improve that rate? In-
tuitively, with the asynchronicity and therefore the high rate of
false positive, it is not likely that pushing the algorithm so that
it always finds a solution that is predicted to be improving will
improve performance. On the contrary it could reduce the diversity
of the result. Such analysis on the surrogate model leads us to push
toward further developments.

However, the increased rate of convergence of the assisted algo-
rithm allows us to have an increased trust in its results, therefore
reducing the necessary number of runs required to ensure a good
final Pareto front. The solutions found by the assisted algorithm
improve both the volume of effluents and imbalance of the plant
during the power transients, by at least the same magnitude than
the non assisted one (See Fig 5). Lastly, notice that the Pareto set
approximation found by our algorithm improves by several orders
the actual rod parameters (at the intersection of dotted lines in
Fig. 5) which shows the relevance of the approach.

5 CONCLUSIONS AND FUTUREWORKS
Reactor operations optimization is a major challenge for the French
nuclear industry. The methodology we propose, thanks to the surro-
gate assistance, is a robust way of reducing the cost of the transient,
and reducing the axial unstability of the power in order to introduce
more renewable energies in energy mix. It provides a variety of
trade-offs between these two objectives, with a reasonable com-
putational cost. Moreover, it can easily be adapted to a different
model of reactor, or a different power transient. The NPPO problem
studied here focuses on one power transient (Fig 2). Though it is a
very important transient today, new types of transient will emerge
in the coming years. With the increased trust of the multiobjective
optimization algorithm, thanks to the surrogate assistance, it is
now possible to search for interesting rod managements for a wide
variety of future transient with a reduced computational cost.

In addition, this work opens new research directions for surrogate-
assisted parallel algorithm dedicated to discrete multiobjective prob-
lems. Indeed, for black-box discrete optimization problem, the prob-
ability to find an improving solution could be small. Therefore,
the trade-off between exploration and exploitation (for instance
parameters 𝜆𝑀 , and 𝐺 in our algorithm) to select a new candidate
solution with respect to surrogate model uncertainty is one of our
next research step to enhance the robustness and the efficiency of
our methodology.
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