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Abstract

Solving time-harmonic wave propagation problems in the frequency domain
and within heterogeneous media brings many mathematical and computa-
tional challenges, especially in the high frequency regime. We will focus here
on computational challenges and try to identify the best algorithm and nu-
merical strategy for a few well-known benchmark cases arising in applications.
The aim is to cover, through numerical experimentation and consideration
of the best implementation strategies, the main two-level domain decompo-
sition methods developed in recent years for the Helmholtz equation. The
theory for these methods is either out of reach with standard mathematical
tools or does not cover all cases of practical interest. More precisely, we will
focus on the comparison of three coarse spaces that yield two-level methods:
the grid coarse space, DtN coarse space, and GenEO coarse space. We will
show that they display different pros and cons, and properties depending on
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the problem and particular numerical setting.
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1. Introduction

This work is motivated by the computational challenges that arise in
frequency domain simulations of wave propagation and scattering problems in
heterogeneous media. Such problems appear in a broad range of engineering
applications, including acoustics, electromagnetics, and seismic inversion.

The discretisation of models describing frequency domain wave problems
using finite element methodology typically results in large, indefinite, and ill-
conditioned linear systems. These linear systems are difficult to solve using
standard methods, particularly for high frequencies and in the presence of
complex heterogeneities. In order to maintain accuracy, the number of grid
points must grow as a function of the frequency in such a way that, for
high frequency problems, the size of the linear systems to be solved becomes
prohibitive for direct methods. In such a regime, carefully designed iterative
methods are required. Here, we consider a two-level domain decomposition
approach for the robust parallel solution of the linear systems.

To model the wave problem, we utilise the Helmholtz equation on a do-
main Q C R?, d = 2,3, for the field u(x): Q — C given by

—Au—FEu=f in €, (1a)
Clu)=0 on 02, (1b)

where C incorporates some appropriate boundary conditions, k(x) > 0 is the
wave number, and f(x) is a suitable forcing function. A key parameter is the
wave number k, which relates the angular frequency w and the wave speed
c as k = w/c. The wave speed ¢(x) depends on the position @ in the media
for heterogeneous problems. Since k is proportional to the frequency, the
high frequency regime constitutes the case of large k and presents particular
challenges for designing effective solvers.

The difficulty in designing a good solver for the Helmholtz equation is
shown very clearly in the review papers [1, 2] where one can see that there are
no straightforward extensions to state-of-the-art methods for symmetric pos-
itive definite problems that tackle the indefinite or non-self adjoint problem



well. When the problems are large, however,—the case when one discretises
the Helmholtz equation accurately for high wave numbers—domain decom-
position methods are a natural choice [3]. Nevertheless, despite recent efforts
and in view of the latest results obtained both at the theoretical [4, 5, 6]
or numerical level [7, 8, 9], there is no established method outperforming all
others in the case of the Helmholtz problem.

Domain decomposition methods are well suited to solve large systems of
equations arising from discretisation of PDEs and are among the best-known
strategies for many types of problem. However, classical versions fail to be
effective and may diverge for wave propagation problems. Two key con-
stituent parts require a more careful treatment: the transmission conditions
used to transfer information between adjoining subdomains and the coarse
space that allows for capturing of global behaviour and passing information
between subdomains globally. In this work we consider overlapping Schwarz
methods.

The use of different transmission conditions at the interfaces (artificial
boundaries arising from the decomposition into subdomains) has been ex-
tensively studied over the past two decades and various works [10, 11, 12]
show that these conditions can improve the convergence of Schwarz methods
and preconditioners. However, good transmission conditions are not suffi-
cient to ensure a robust behaviour with respect to heterogeneities in the
problem to solve or when the number of subdomains increases. To tackle
these difficulties, we need coarse information that is cheap to compute and
immediately available to all subdomains.

The focus in this work is on appropriate coarse spaces. A coarse space is
typically required to provide scalability with respect to the number of sub-
domains used. More recently, however, coarse spaces have been designed
to provide robustness to model parameters, especially for large contrasts in
complex heterogeneous problems. For example, the GenEO (Generalised
Eigenproblems in the Overlap) coarse space has been successfully employed
for the robust solution of highly heterogeneous elliptic problems [13, 14]. For
the Helmholtz equation, finding a suitable coarse space is not an easy task
and, being an indefinite problem, choosing a larger coarse space need not im-
prove performance [15]. In designing coarse spaces for Helmholtz problems,
we might also wish to reduce the dependence of the domain decomposition
method on the wave number k. A natural idea to capture global behaviour
is to use plane waves as a basis for the coarse space but it is not clear that
this is suitable for heterogeneous media. Plane waves were first used within



the multigrid approach [16] before later being used to build coarse spaces for
domain decomposition methods. We can cite the example of FETI(-DP)-H
methods [17, 18] but they have also been used in other domain decomposi-
tion methods [19]. Nonetheless, plane waves have mainly been employed for
homogeneous problems and do not have a straightforward extension to the
heterogeneous case.

Even if coarse space information needs to be global and available to all
domains, coarse spaces can be built locally and based on local functions.
Spectral coarse spaces use basis vectors deriving from the solution of local
eigenvalue problems associated with appropriate operators. Within the con-
text of the Helmholtz equation, this is exemplified in the DtN coarse space
[20]. Here, eigenproblems are formulated on subdomain interfaces based on
a Dirichlet-to-Neumann (DtN) map, extending an approach for elliptic prob-
lems [21, 22]. In this work we consider two spectral coarse spaces, the DtN
approach and a GenEO-type approach suited to the Helmholtz problem. We
will also consider a grid coarse space approach which utilises the addition of
absorption in the problem.

Our consideration of coarse spaces for Helmholtz problems in the high
frequency regime provide the following main contributions of the paper:

e We bring together and outline recent work on developing coarse spaces
that can be utilised to enhance domain decomposition methods for the
Helmholtz problem in heterogeneous media. These approaches are then
implemented in a common software, namely FreeFEM.

e We discuss implementation details and practical aspects of the methods
as well as contrasting the benefits and drawbacks.

e We provide extensive numerical results on several well-known bench-
mark problems in 2D and 3D and compare the different approaches
within a variety of settings.

e Based on the results of our numerical tests and our understanding of the
implementation aspects involved, we provide an outlook on scenarios
where certain methods may be more, or less, favourable.

The outline for the remainder of this work is as follows. In Section 2
we detail the boundary value problem considered, i.e., the heterogeneous
Helmholtz problem and its discretisation by finite elements. In Section 3 we



introduce the basic principles of domain decomposition methods and present
two versions of the one-level method, namely RAS and ORAS. A second
level, or coarse space, is usually added by deflation. The three different
coarse space strategies, namely the grid coarse space, DtN coarse space, and
GenEO coarse space, are introduced in Section 4. Parallel implementation
details of these methods are given in Section 5 and an extensive numerical
study is provided in Section 6. Conclusions are then given in Section 7.

2. The heterogeneous Helmholtz problem

Our model problem consists of solving the interior Helmholtz equation
(1). To be concrete, we let € is a bounded polygonal domain and consider
specific boundary conditions on I' = 9€2. We suppose I' is partitioned into a
disjoint union I' = I'p UT'y UT'g where Dirichlet conditions are imposed on
I'p, Neumann conditions on I'y and a Robin condition on I'r. Namely, we
wish to solve

—Au—Ku=f in €, (2a)
u = ur,, on I'p, (2b)
ou
I 0 on 'y, (2¢)
ou .
In +tku =0 on I'g, (2d)

where ur, is known. The Robin condition in (2d) is a standard first order
approximation to the far field Sommerfeld radiation condition and, in essence,
enables appropriate wave behaviour to be described in a bounded domain,
allowing for incoming or outgoing waves along (2z. We do not require that
a problem instance includes all types of boundaries but note that if I'p = ()
then the problem will be ill-posed for certain choices of k. Furthermore, when
I'r # 0 the resulting linear systems, while being complex symmetric, are
not Hermitian and this will be important in our choice of iterative method.
However, classical iterative methods on their own are not enough to be able
to solve Helmholtz problems effectively [1]. This is further amplified when
applied to highly heterogeneous problems.

The heterogeneity in our model is present in the wave number k(x) > 0,
being given by ratio of the angular frequency w and the wave speed c(x) as
k = w/c. We allow k to have jumps across different media and otherwise
vary within the domain  such that k € L>(Q).
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To discretise (2), we use the finite element method. In order to prescribe
the weak formulation, we let V = {u € H*(Q): u =wur, on I'p} and, in a
similar fashion, Vp = {u € H'(Q): u=0o0nTp}. The weak form of the
problem is then to find v € V' such that

a(u,v) = F(v) Vel (3)

where

a(u,v) = / (Vu- Vo — kK*up) do + / ikuv ds, (4a)
Q r

R

and
F(v):/QfTJd:I;, (4b)

are the bilinear and linear parts, respectively. To discretise, we consider
piecewise polynomial finite element approximation on a simplicial mesh 7"
of €2 which has a characteristic element diameter h. Denoting the associated
trial space V" C V and test space V' C V;, the discrete problem is to find
up, € VP such that

a(up,vn) = F(vp) Voo, € VI (5)

Let {¢;};_, be the nodal basis for V; and {qﬁj}?:gH be the nodal basis for

the Dirichlet boundary I'p, for which 7" is assumed to conform. Then we
can rewrite (5) as a (complex) linear system

Au=f, (6)

where the coefficient matrix A € C"*" and right-hand side vector f € C" are
given by A;; = a(¢;, ¢;) and f; = F(¢;) — 107 a(¢n, ¢i) W, respectively,
for 7,7 €1,2,...,n. Here u;, for j = 1,2,...,d, are the known Dirichlet
values along I'p corresponding to ur,. We then seek the solution u € C" of
the (in general) complex symmetric indefinite system (6) to give

up () = Zujd)j(w) + ) Wi (7)



The wave nature of solutions to the Helmholtz equation requires a suffi-
ciently fine mesh in order to obtain a good approximation to the true solution
and this should be kept in mind when considering the choice of discretisation
of the problem. In terms of increasing the wave number k, if one is to main-
tain the same level of accuracy of discrete solutions then the number of grid
points must increase faster than k increases, due to the pollution effect [23].
This growth depends on the discretisation chosen. For instance, in the case
of using a piecewise linear (P1) finite element approximation on simplicial
elements of diameter h, then k*h? must be bounded, requiring A to shrink as
O(k=3/2). For piecewise quadratic (P2) finite elements on simplicial meshes
the criteria relaxes to require that h decreases as O(k~°/%). For higher order
finite elements, the requirement becomes less stringent but the interpola-
tion properties when using such approximation spaces ultimately begin to
degrade.

Due to these restrictions and the desire for faster simulation times, it
is common that practitioners simply consider a fixed number of points per
wavelength instead, resulting in h decreasing as O(k™!). Given a fixed num-
ber, nypw, of points per wavelength we ensure that n,,wmh ~ A, where the
wavelength is given by A = 27k~!. A prevalent engineering practice is to
use 10 points per wavelength and in some large real-world problems of inter-
est, such as in imaging science, it may be adequate or necessary to insist on
less resolution. In light of this, we consider both 5 and 10 points per wave-
length scenarios and make use of standard P2 finite element approximation
throughout this work.

3. Domain decomposition

We now give details of the overlapping domain decomposition approach
that we will utilise. This will be applied as a preconditioner rather than a
stand-alone iterative method. Our approach is based on a two-level version
of the optimised restricted additive Schwarz (ORAS) method. To provide a
domain decomposition, we first partition €2 into non-overlapping subdomains
{Q;}f:l which are resolved by the mesh 7". A layer of adjoining mesh
elements is then added to provide overlapping subdomains {Qs}i\rz1 through
the extension

O =t | | supp(ey) ] (®)

supp(¢;)NQL A0



where Int(-) denotes the interior of a domain and supp(-) the support of
a function. Note that more than one layer of elements can be added in a
recursive manner if subdomains with larger overlap are required.

Now that we have a domain decomposition, we can define the restriction
to a given subdomain €, as an operator from V" into V"(€2,) = {v|q,: v € V"},
namely R,: V" — V() where R,v = v|q,. Let R, € R™*™ be the matrix
form of R, where ng is the number of degrees of freedom in €2,. Since our
subdomains overlap, we also make use of a partition of unity having matrix
form D, € R™*" which is diagonal and satisfies Zivzl RID,R, = I; this
removes “double counting” in the additive Schwarz method. Note that RT
acts as an extension by zero outside of (2.

We can now define the restricted additive Schwarz (RAS) preconditioner

N
MgArs =Y RIDA'R,, 9)

s=1

where A, = R,ART is the local Dirichlet matrix on Q, that is, Dirichlet
conditions are implicitly assumed on 02 \ 0f2. This corresponds to using
Dirichlet transmission conditions in the additive Schwarz method. Note that
each contribution from the sum in (9) can be computed locally in parallel.

The RAS approach, using the classical choice of Dirichlet transmission
conditions, applied as a stand-alone stationary iterative method need not
converge since frequencies in the error smaller than the wave number k are
not diminished [3]. When used as a preconditioner, the iterative solver used
will typically suffer from slow convergence and may stagnate. Further, the
local Dirichlet problems involving A, are not necessarily well-posed as k% may
be an eigenvalue of the corresponding Laplace problem, in which case Ay is
singular. While methods to handle such singular systems can be applied,
a different approach, which provides a convergent stand-alone method, is
to change the Dirichlet transmission conditions to Robin conditions. This
results in the so-called optimised restricted additive Schwarz (ORAS) method
given by

N
Mopas =Y RIDA'R,, (10)

s=1



where now A\S is the discretisation of the local Robin problem

—Aw, — k*w, = f in Q, (11a)
Clws) =0 on 09, N 0N, (11b)
gzz +ikwy = 0 on 99, \ 90, (11¢)

with C representing the underlying problem boundary conditions on 0€2. The
local problem (11) will always have a unique solution ws. We note that the
use of Robin conditions is not the only remedial choice. Optimal transmission
conditions can also be studied and are given using a Dirichlet-to-Neumann
(DtN) map [3]. However, this results in requiring pseudodifferential operators
and is somewhat less practical without further approximation. We do not
follow the pursuit of more advanced transmission conditions in this work.
The above approaches, RAS and ORAS, are one-level methods: they rely
only on local subdomain solves and the local transmission of data. Such
domain decomposition methods do not scale as we increase the number of
subdomains used; that is, their convergence behaviour depends on N. To
achieve robustness with respect to N, a coarse space is typically included,
giving a two-level method. The coarse space is represented by a collection
of column vectors Z, having full column rank. A coarse space operator £ =
ZVAZ is constructed as well as the coarse correction operator Q = ZE~'ZT;
note the similarity to terms in (9). The inclusion of the coarse space can be
done in a number of ways, the simplest being additively as
My =M .o+ Q, (12)

2-level 1-level

where M, llevel is the underlying one-level preconditioner used, such as (9) or

(10). Hybrid approaches are often more effective and we shall consider the
adapted deflation technique

MQ_-llevel = M_l P + Q = Ml_-llevel(] - AQ) + Q’ (13>

1-level

where P = [ — AQ is a projection. The most crucial choice is that of Z,
which provides the coarse space. This is what we shall now consider.

4. Coarse spaces

The construction of a suitable coarse space can be achieved in different
ways. One natural approach is to utilise a coarse grid in order to approximate

9



the global behaviour. Often, the slow convergence in the one-level method
can be characterised by “slow modes” which should be incorporated into the
coarse space. For instance, in the Poisson problem slow modes correspond to
constant functions in the kernel of the Laplace operator in each subdomain
and these are used to give the Nicolaides coarse space. On the other hand,
for homogeneous elasticity problems the slow modes are rigid body motions.

The notion that certain modes are responsible for slow convergence and
must be incorporated into the coarse space can be made more general, in
particular in the framework of spectral coarse spaces. Such coarse spaces use
spectral information from an appropriate eigenproblem to identify relevant
modes that should feature in the coarse space. Before considering spectral
coarse spaces we first outline the grid coarse space.

Remark 1 (Notation). Following on from Section 3, for a variational prob-
lem giving rise to a system matrix B we denote by B, the corresponding local
Dirichlet matrix on §2,. Where Robin conditions are used on internal subdo-
main interfaces (the artificial boundaries) the local problem matrix is denoted
by §S. Meanwhile, when Neumann conditions are used on such interfaces,
the local matrix is denoted by Bs.

4.1. The grid coarse space method

The grid coarse space was first introduced in [24] for the absorptive
Helmholtz problem and extended to incorporate impedance (or Robin) con-
ditions in [5]. In this case the one-level method is based on the following
formula

N
M2 =Y RID,A!R,. (14)

s=1

where matrices E&E stem from the discretisation of the following local Robin
problems with absorption (given by the parameter ¢ # 0)

—Aug — (* +ie)us = f in Q,,
C(us) =0 on 09, N 0N,
ou, .
825 + ikus =0 on 0% \ 09).

10



In order to achieve weak dependence on the wave number k£ and number of
subdomains N, the two-level preconditioner can be written in a generic way

as follows
Myl =M'P+ZE'ZT, (15)

where M ! is the one-level preconditioner (14), Z is a rectangular matrix

with full column rank, £ = 7 TA;Z is the so-called coarse grid matrix, ) =
ZE~'Z" is the so-called coarse grid correction matrix, and P = I — A.Q.

Perhaps the most natural coarse space is the one based on a coarser
mesh, which we call the “grid coarse space”. Let us consider 7 Heoarse g
simplicial mesh of Q with mesh diameter Hgoae, and VHease — V the
corresponding finite element space. Let Zy: VHease 5 V7 he the nodal
interpolation operator and define Z as the corresponding matrix. Then, in
this case, £ = Z'A.Z is really the stiffness matrix of the problem (with
absorption) discretised on the coarse mesh. Related preconditioners without
absorption are used in [19].

4.2. The DtN coarse space

The Dirichlet-to-Neumann (DtN) coarse space [21, 20] is based on solving
local eigenvalue problems on subdomain boundaries related to the DtN map.
To define this map for the Helmholtz problem we first require the Helmholtz
extension operator from the boundary of a subdomain €.

Let I'y = 09 \ 092 and suppose we have Dirichlet data vp, on Ty, then
the Helmholtz extension v in €2, is defined as the solution of

~Av— kv =0 in Q, (16a)
v = ur, on Iy, (16b)
Clv)=0 on 0, N 0N, (16¢)

where C(v) = 0 represents the original problem boundary conditions, as in
(1b). The DtN map takes in the Dirichlet data vr, on I'y; and gives as output
the corresponding Neumann data, that is

ov
ong r,

DtNQS(UFS) == (17>

where v is the Helmholtz extension defined by (16).

11



We now seek eigenfunctions of the DtN map locally on each subdomain
Q, given by solving

DtNQS (UFS> = )\UFS (18)

for eigenfunctions ur, and eigenvalues A € C. To provide functions to go
into the coarse space, we take the Helmholtz extension of ur, in {25 and then
extend by zero into the whole domain {2 using the partition of unity. B
To formulate the discrete problem, we require the coefficient matrices A,
corresponding to local Neumann problems on €2, with boundary conditions
C =0 on 092, N 012, defined analogously to that of the local Robin problems
in (11). Further, we need to distinguish between degrees of freedom on the
boundary I'y and the interior of the subdomain €2, as such we let I'y and I
be the set of indices on the boundary and interior respectively. We also let

My, = ( /F m) (19)
s i,J€0

denote the mass matrix on the subdomain interface. Using standard block
notation to denote submatrices of A; and A, the discrete DtN eigenproblem
1s

(ZFS,FS — Ar, 1, AI_S%ISAIS7F5> ur, = AMr,ur,. (20)

The Helmholtz extension of ur, to degrees of freedom in I is then given
by u;, = _AI_S%ISAIS,FSUFS- Letting u, denote the Helmholtz extension, the
corresponding vector which enters the coarse space Z is RT D,u,. For further
details and motivation behind the DtN eigenproblems see [20].

It remains to determine which eigenfunctions of (20) should go on to
be included in the coarse space. Several selection criteria were investigated
in [20] and it was clear that the best choice was to select eigenvectors cor-
responding to eigenvalues with the smallest real part. That is, we use a
threshold on the abscissa 7 = Re(A) given by

1 < Tmaxs (21)

where Npax depends on ks = maxyeq, k(x). In particular, the choice nyax = ks
is advocated in [20]. Note that for larger 7,.x more eigenfunctions are in-
cluded in the coarse space, increasing its size and the associated computa-
tional cost. Nonetheless, it was recently showed that taking a slightly larger

12



threshold Np.x = k;;l/  can be beneficial in certain cases in order to gain
robustness to the wave number [25]. However, this only occurs for the ho-
mogeneous problem with sufficiently uniform subdomains. Since it is not
necessarily known in advance how many eigenvalues are below the thresh-
old and in order to make a fair comparison in our numerical tests, we will
consider using a fixed number of eigenvectors per subdomain.

4.8. The GenEQO coarse space

The GenEO (Generalised Eigenproblems in the Overlap) coarse space was
derived in [13] to provide a rigorously robust approach for symmetric positive
definite problems even in the presence of heterogeneities. The fundamental
generalised eigenproblems on (), at the variational level are given by

ag, (u,v) = Aage (Zs(u), Z4(v)) Vv e V(Q,), (22)

where =; represents the action of the partition of unity on €25 and €2} is
the overlapping zone, that is the part of €2, which overlaps with any other
subdomain. Here ap(-,-) stems from the underlying variational problem on
the domain D, in particular with problem boundary conditions on 02 and
natural (Neumann) conditions on parts of D internal to . The particular
form of eigenproblem in (22) arises naturally in the analysis of [13]. We also
note that (22) possesses infinite eigenvalues when there exists u # 0 such that
ags (E5(u),Z5(v)) = 0V v € V(€,) but ag, (u,v) # 0 for some v € V(€), for
example when u is supported only outside (2.
The discrete form of the eigenproblem (22) is

Agu=AD,A°D,u (23)

where Zz is the (Neumann) matrix built from assembling only over elements
in the overlapping zone 2. The eigenfunctions selected to enter the coarse
space are the low frequency modes, that is those corresponding to the smallest
eigenvalues. Typically, either a fixed number of eigenfunctions are taken per
subdomain or a threshold A < Aj.x on the corresponding eigenvalues is used,
where Apax can be chosen based on problem parameters to achieve a specified
condition number of the preconditioned system; see [13].

The precise formulation of the eigenproblem and use of the overlapping
zone is somewhat flexible. In particular, the overlapping zone can be replaced

13



with the whole subdomain, as in [14] which utilises an eigenproblem of the
form

A,u = AD,A,D,u. (24)

It is this form of GenEO that we shall build upon shortly. We note that two
separate GenEQ eigenproblems can also be formulated to provide bounds on
both ends of the preconditioned spectrum, as is found when using a symmet-
ric ORAS approach in [14]. This flexibility and robustness of GenEO-type
methods has yet to be fully explored, especially for problems which are not
symmetric positive definite where current theory breaks down. We now con-
sider the utility of using GenEO as basis for constructing a coarse space for
the heterogeneous Helmholtz problem.

4.4. A GenEO-type coarse space for the Helmholtz equation

In pursuing a GenEO approach for the Helmholtz equation we must first
note the matrices Ay and A,, now stemming from the bilinear form (4a),
are no longer symmetric positive definite. As such, eigenvalues A\ of the
eigenproblem (24) are no longer real and positive (or infinite). As a threshold
criterion, as with the DtN approach, we can consider the abscissa n = Re(\)
instead and seek eigenfunctions corresponding to 1 < 7Mpuax. Further, since
the theory breaks down without the symmetric positive definite assumption,
it is no longer clear that (24) provides appropriate eigenvectors for the coarse
space. Indeed, applying out of the box the GenEO method using (24) fails
to provide a satisfactory method.

Since GenEO is designed for positive definite problems, a natural proposal
is to use a nearby positive definite problem in the formulation of the eigen-
problem, namely a Laplace problem, that is setting £ = 0 for the purpose of
constructing the coarse space. Let L, be local Dirichlet matrix corresponding
to the discrete Laplacian and L, the equivalent Neumann matrix on €2, then

Lsu = AD,L,Du. (25)

has positive real eigenvalues. While this approach can perform reasonably
well when the wave number k is small, the behaviour as k grows becomes
increasingly poor, as might be expected given the coarse space is independent
of k.

To incorporate k, we instead link the underlying Helmholtz problem to the
positive definite Laplace problem to formulate a GenEO-type eigenproblem

Agu=\D,L,D,u. (26)

14



Eigenvalues of (26) are now, in general, complex (though we note they pri-
marily appear to cluster close to the real line) and so we suggest to threshold
based on the abscissa 1 < Mpax. We call this GenEO-type approach for the
Helmholtz problem “H-GenEQO”. Some initial exploration of this method can
be found in [26], where the approach is seen to perform well for a 2D wave-
guide problem and provide robustness to heterogeneity as well as to the wave
number k, albeit requiring a comparatively large coarse space. Again, in our
numerical experiments we take a fixed number of eigenvectors and vary this
quantity, aiming to give a relatively fair comparison of the spectral coarse
space methods.

5. Implementation details

Numerical results within this paper have been obtained using FreeFEM [27].
More precisely, ffddm—a light-weight layer in FreeFEM domain specific lan-
guage that generates all domain decomposition data structures—was used
on top of HPDDM [28], which handles the underlying computations such as
matrix—vector products or preconditioner applications. When it comes to
spectral two-level methods, as depicted in the previous Sections 4.2 to 4.4,
the bulk of the work comes from the local eigensolves, see, e.g., egs. (20), (23)
and (26). These are performed concurrently in each subdomain, using solvers
such as ARPACK [29] or SLEPc [30]. Then, the construction of the alge-
braic Galerkin operator () introduced in Section 3 is performed in HPDDM.
In order to deal efficiently with both large numbers of subdomains and large
numbers of local eigenvectors, the assembly and exact LU factorization of
@ is performed on a subset of processes from the global communicator. We
use MUMPS [31] both as a subdomain solver and a coarse operator solver in
our experiments. Again, we refer interested readers to [28] for more details
about this subject.

For the grid coarse space method from Section 4.1, two meshes of the
same domain must be considered simultaneously. First a coarse one, see
an example fig. 1a, and then a fine one, see examples figs. 1b and 1lc. We
generate fine meshes using a uniform refinement in which edges of all triangles
or tetrahedra are divided uniformly in s. In the aforementioned example,
s = 2. Note that if one wants nypwih =~ A on the fine grid, on which the
original algebraic system of equations eq. (6) stems from, then the coarse
mesh has to satisfy Hcouse = % When it comes to the underlying domain
decomposition preconditioners, two options will be considered next. One
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where both levels of overlap on fine and coarse grids are minimal, i.e. 1,
see fig. 1b, and another where the level of overlap on the coarse grid is
minimal, i.e. 1, and where the level of overlap on the fine grid is s, see fig. lc.
In the latter case, note that subdomains on the fine grid are merely uniformly
refined subdomains of the coarse grid. While the setup cost of such a two-level
preconditioner is much lower than for a spectral method as described in the
previous paragraph, applying it to a vector, for example in a Krylov method,
is usually costlier. Indeed, the coarse problem is in this case often solved
iteratively, instead of using an exact factorization of the coarse operator.
This outer—inner strategy, which also makes the use of flexible methods such
as FGMRES [32] mandatory, may not perform very well prior to some tuning
of the inner (coarse) solver.

In the numerical experiments presented in this paper, the inner coarse
problem in the grid coarse space method is defined with a splitting level
s = 2 and is solved approximately with GMRES preconditioned by a one-
level method, with a tolerance of 0.1. Additionally, in the spirit of “shifted
Laplacian preconditioning” (see [33, 34]), the coarse problem is defined with
added absorption in the equation. This improves the convergence of the one-
level method, which then requires fewer iterations to reach the prescribed
inner tolerance. Two-level domain decomposition preconditioners with added
absorption have been proposed in the literature for the Helmholtz [35] and
Maxwell [36] equations. The amount of added absorption needs to be chosen
carefully: if the amount of added absorption is too small, there is no gain
in the convergence of the inner coarse problem. On the other hand, if the
amount is too large, the coarse problem becomes a bad approximation of the
original problem (without absorption), and the number of outer iterations
increases. We choose the additional imaginary term to be proportional to
the wave number £ as a compromise.

We conclude this section by mentioning that all the spectral preconditio