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OBSERVABILITY FOR THE SCHRÖDINGER EQUATION:

AN OPTIMAL TRANSPORTATION APPROACH

FRANÇOIS GOLSE AND THIERRY PAUL

Abstract. We establish an observation inequality for the Schrödinger equa-

tion on Rd, uniform in the Planck constant h̵ ∈ [0,1]. The proof is based on the
pseudometric introduced in [F. Golse, T. Paul, Arch. Rational Mech. Anal.

223 (2017), 57–94]. This inequality involves only effective constants which are

computed explicitly in their dependence in h̵ and all parameters involved.

1. Observation inequality for the Schrödinger equation

Consider the Schrödinger equation where the (real-valued) potential V belongs
to C1,1(Rd) is such that the quantum Hamiltonian

− 1
2
h̵2∆y + V (y)

has a self-adjoint extension on H ∶= L2(Rd):

(1) ih̵∂tψ(t, y) = (− 1
2
h̵2∆y + V (y))ψ(t, y) , ψ∣

t=0
= ψin .

In the equation above, h̵ > 0 the reduced Planck constant, and the particle mass is
set to 1.

An observation inequality for the Schrödinger equation (1) is an inequality of
the form

(2) ∥ψin∥2
H ≤ C ∫

T

0
∫

Ω
∣ψ(t, x)∣2dxdt ,

for some T > 0, where Ω is an open subset of Rd, and C ≡ C[T,Ω] is a positive
constant, which holds for some appropriate class of initial data ψin (see equation
(2) in [9]).
Note that the r.h.s. of (2) is smaller than CT , so that (2) can be satisfied only
when CT ≥ 1. Moreover, it is easy to check that the case CT = 1 is possible only
when Ω =Rd, and reduces that way to a tautology.

Therefore we will suppose in the sequel

CT > 1.

We will say that a compact subset K of Rd ×Rd, an open set Ω of Rd and T > 0
satisfy the “(à la) Bardos-Lebeau-Rauch geometric condition” [2] if:

(GC) for each (x, ξ) ∈K , there exists t ∈ (0, T ) s.t. X(t;x, ξ) ∈ Ω .

Let us recall the definition of the Schrödinger coherent state:

∣q, p⟩(x) ∶= (πh̵)−d/4e−∣x−q∣
2/2h̵eip⋅(x−q/2)/h̵

1



2 F. GOLSE AND T. PAUL

providing a decomposition of the identity on H (in a weak sense)

(3) ∫
R2d

∣q, p⟩⟨q, p∣ dpdq(2πh̵)d = IH.

Let us recall also, for any self-adjoint operator A on L2(Rd) and any ψ ∈ L2(Rd),
the definition of the standard deviation of A in the state ψ, ∆A(ψ) ∈ [0,+∞]:

∆A(ψ) =
√

(ψ,A2ψ)L2(Rd) − (ψ,Aψ))2
L2(Rd)

We define

(4) ∆(ψ) ∶=

¿
ÁÁÁÀ

d

∑
j=1

(∆2
xj(ψ) +∆2

−ih̵∂xj
(ψ)).

Let us remark that, by the Heisenberg inequalities, for any ψ ∈ H,

(5) ∆(ψ)2 ≥ dh̵.

and, for any (p, q) ∈R2d,

(6) ∆(∣p, q⟩) =
√
dh̵.

Theorem 1.1. Assume that V belongs to C1,1(Rd) and that V − ∈ Ld/2(Rd).
Let T > 0, Ω be an open subset of Rd. and K be a compact set in R2d satisfying

the Bardos-Lebeau-Rauch condition (GC).
Moreover, let δ > 0 and

Ωδ ∶= {x ∈Rd∣dist(x,Ω) < δ}.

Then the Schrödinger equation (1) satisfies an observability property on [0, T ]×
Ωδ of the form (2) with constant C for all vectors ψ ∈ H satisfying

C[T,K,Ω] (∫
K

∣⟨ψ∣p, q⟩∣2 dpdq
(2πh̵)d ) −D[T,Lip(∇V )]∆(ψ)

δ
≥ 1

C

where

C[T,K,Ω] = inf
(x,ξ)∈K

∫
T

0
1Ω(X(t;x, ξ))dt

D[T,Lip(∇V )] = e(1+Lip(∇V )2)T /2 − 1

1 + Lip(∇V )2 .

Moreover, the observation inequality will be satisfied for a non empty set of vectors
as soon as δ satisfies the following, non sharp, bound:

δ ≥ D[T,Lip(∇V )]

C[T,K,Ω](1 − e−
d2
K
4h̵ /(4π)d) +C−1

√
dh̵,

where dK is the diameter of K.

The first part of Theorem 1.1 is exactly the second part (pure state case) of
Corollary 4.2 of Theorem 4.1 in Section 4 below.



OBSERVABILITY FOR SCHRÖDINGER 3

Controlability of the quantum dynamics has a long history in mathematics and
mathematical physics. Giving an exhaustive bibliography on the subject is by
far beyond the scope of the present paper, paper, but the reader can consult the
survey article [9] and the literature cited there, together with the important earlier
references [3, 4], [10]

For the bound on δ, we first remark that the quantity

E[ψ, δ] ∶= C[T,K,Ωδ] (∫
K

∣⟨ψ∣p, q⟩∣2 dpdq
(2πh̵)d ) −D[T,Lip(∇V )]∆(ψ)

δ
,

needed to be strictly positive for the observability condition to hold true, is a
difference between (a quantity proportional to) ∫K ∣⟨ψ∣p, q⟩∣2 dpdq

(2πh̵)d (≤ 1 by (3))1,

which evaluates the microlocalization of ψ on K, and (a quantity proportional to)

∆(ψ) (≥
√
dh̵ (by (5)), which measures the spreading of ψ near its average position

in phase-space.

However, this competition is balanced by the smallness of D[T,Lip(∇V )]∆(ψ)
δ

for

large values of δ, namely E[δ,ψ] ≥ 1
C

when

δ ≥ D[T,Lip(∇V )]∆(ψ)
C[T,K,Ω](1 − ∫K ∣⟨ψ∣p, q⟩∣2 dpdq

(2πh̵)d ) +C−1
.

Finally, we remark that, taking ψ = ∣p0, q0⟩ for some (p0, q0) ∈R2d we have, by (6),

∆(ψ) =
√
dh̵,

and, when (p0, q0) belongs to the interior of K,

∫
K

∣⟨p0, q0∣p, q⟩∣2 dpdq
(2πh̵)d = 1 − ∫

R2d/K
e−

∣p0−p∣
2
+∣q0−q∣

2

h̵
dpdq
(2πh̵)d ≥ 1 − e−

dist((p0,q0),R
2d
/K)

2

h̵

(4π)d .

We conclude by picking (p0, q0) such that, for example, dist((p0, q0),R2d/K) ≥ dK
2

.

In the present paper, we will be working with the slightly more general Heisen-
berg equation

(7) ih̵∂tR(t) = [− 1
2
h̵2∆y + V (y),R(t)] , R∣

t=0
= Rin ≥ 0, traceR = 1,

equivalent to the Schrödinger equation, modulo a global phase of the wave function,
through the passage

ψ ∈ H Ð→ ∣ψ⟩⟨ψ∣,
and whose underlying classical dynamics solves the Liouville equation

∂tf(t, x, ξ) + { 1
2
∣ξ∣2 + V (x), f(t, x, ξ)} = 0 , f ∣

t=0
= f in ,

where f in is a probability density on Rd ×Rd having finite second moments.
Corollary 4.2 contains also an equivalent statement for initial conditions which

are Töplitz operators. The general case of mixed states can be recovered by the
inequality (12) inside the proof of Theorem 4.1.

The core of the paper is Theorem 4.1 in Section 4, whose proof needs the intro-
duction in Section pseudomet of a class of pseudometrics adapted to the Heisenberg

1note that ∫K ∣⟨ψ∣p, q⟩∣2 dpdq

(2πh̵)d is the integral over K of the Husimi function of ψ.
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equation (7), introduced in [6] after [5], and whose evolution under (7) is presented
in Section 3.

2. A pseudometric for comparing classical and quantum densities

This section elaborates on [6], with some marginal improvements.
A density operator on H is an operator R ∈ L(H) such that

R = R∗ ≥ 0 , trace(R) = 1 .

The set of all density operators on H will be denoted by D(H). We denote by
D2(H) the set of density operators on H such that

(8) trace(R1/2(−h̵2∆y + ∣y∣2)R1/2) <∞ .

If R ∈ D2(H), one has

(9) trace((−h̵2∆y+∣y∣2)1/2R(−h̵2∆y+∣y∣2)1/2) = trace(R1/2(−h̵2∆y+∣y∣2)R1/2) <∞
as can be seen from the lemma below (applied to A = λ2∣y∣2 − h̵2∆y and T = R).

Lemma 2.1. Let T ∈ L(H) satisfy T = T ∗ ≥ 0, and let A be an unbounded operator
on H such that A = A∗ ≥ 0. Then

trace(T 1/2AT 1/2) = trace(A1/2RA1/2) ∈ [0,+∞] .

Proof. The definition of T 1/2 and A1/2 can be found in Theorem 3.35 in chapter V,
§3 of [8], together with the fact that A1/2 and T 1/2 are self-adjoint.

If trace(T 1/2AT 1/2) < ∞, then A1/2T 1/2 ∈ L2(H) and the equality holds by for-

mula (1.26) in chapter X, §1 of [8]. If trace(T 1/2AT 1/2) =∞, then trace(A1/2TA1/2) =
+∞, for otherwise T 1/2A1/2 and its adjoint A1/2T 1/2 would belong to L2(H), so

that T 1/2AT 1/2 ∈ L1(H), which would be in contradiction with the assumption that

trace(T 1/2AT 1/2) =∞. �

Let f ≡ f(x, ξ) be a probability density on Rd ×Rd such that

(10) ∬
Rd×Rd

(∣x∣2 + ∣ξ∣2)f(x, ξ)dxdξ <∞ .

A coupling of f and R is a measurable operator-valued function (x, ξ)↦ Q(x, ξ)
such that, for a.e. (x, ξ) ∈Rd ×Rd,

Q(x, ξ) = Q(x, ξ)∗ ≥ 0 , trace(Q(x, ξ)) = f(x, ξ) , ∬
Rd×Rd

Q(x, ξ)dxdξ = R .

The second condition above implies that Q(x, ξ) ∈ L1(H) for a.e. (x, ξ) ∈Rd ×Rd.
Since L1(H) is separable, the notion of strong and weak measurability are equivalent
for Q. The set of couplings of f and R is denoted by C(f,R). Notice that the
function (x, ξ)↦ f(x, ξ)R belongs to C(f,R).

In [6], one considers the following “pseudometric”: for each probability density
f on Rd ×Rd and each R ∈ D2(H),

Eh̵,λ(f,R) ∶= inf
Q∈C(f,R)

(∬
Rd×Rd

traceH(Q(x, ξ)1/2cλ(x, ξ, y, h̵Dy)Q(x, ξ)1/2)dxdξ)
1/2

where the quantum transportation cost is the quadratic differential operator in y,
parametrized by (x, ξ) ∈Rd ×Rd:

cλ(x, ξ, y, h̵Dy) ∶= λ2∣x − y∣2 + ∣ξ − h̵Dy ∣2 , Dy ∶= −i∇y .
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Lemma 2.2. If R ∈ D2(H) while f is a probability density on Rd ×Rd with finite
second moment (10), one has

∬
Rd×Rd

traceH(Q(x, ξ)1/2c(x, ξ, y, h̵Dy)Q(x, ξ)1/2)dxdξ

=∬
Rd×Rd

traceH(c(x, ξ, y, h̵Dy)1/2Q(x, ξ)c(x, ξ, y, h̵Dy)1/2)dxdξ

≤ 2∬
Rd×Rd

(λ2∣x∣2 + ∣ξ∣2)f(x, ξ)dxdξ + 2 trace(R1/2(−h̵2∆y + λ2∣y∣2)R1/2) <∞

for each Q ∈ C(f,R).

Proof. Notice that

cλ(x, ξ, y, h̵Dy) ≤ 2λ2(∣x∣2 + ∣y∣2)+ 2(∣ξ∣2 − h̵2∆y) = 2(λ2∣x∣2 + ∣ξ∣2)+ 2(λ2∣y∣2 − h̵2∆y)
so that

∬
Rd×Rd

traceH(Q(x, ξ)1/2c(x, ξ, y, h̵Dy)Q(x, ξ)1/2)dxdξ

≤ 2∬
Rd×Rd

traceH(Q(x, ξ)1/2(λ2∣x∣2 + ∣ξ∣2)Q(x, ξ)1/2)dxdξ

+2∬
Rd×Rd

traceH(Q(x, ξ)1/2(λ2∣y∣2 − h̵2∆y)Q(x, ξ)1/2)dxdξ .

First

∬
Rd×Rd

traceH(Q(x, ξ)1/2(λ2∣x∣2 + ∣ξ∣2)Q(x, ξ)1/2)dxdξ

=∬
Rd×Rd

(λ2∣x∣2 + ∣ξ∣2) traceH(Q(x, ξ))dxdξ

=∬
Rd×Rd

(λ2∣x∣2 + ∣ξ∣2)f(x, ξ)dxdξ .

Since R ∈ D2(H), one has

traceH(R1/2(λ2∣y∣2 − h̵2∆y)R1/2)

= traceH((λ2∣y∣2 − h̵2∆y)1/2R(λ2∣y∣2 − h̵2∆y)1/2)

=∬
Rd×Rd

traceH((λ2∣y∣2 − h̵2∆y)1/2Q(x, ξ)dxdξ(λ2∣y∣2 − h̵2∆y)1/2) <∞ ,

where the first equality is (9), while the second follows from the monotone conver-
gence theorem (Theorem 1.27 in [11]) applied to a spectral decomposition of the
harmonic oscillator λ2∣y∣2 − h̵2∆y.

In particular

traceH(λ2∣y∣2 − h̵2∆y)1/2Q(x, ξ)(λ2∣y∣2 − h̵2∆y)1/2) <∞

for a.e. (x, ξ) ∈Rd×Rd. Applying Lemma 2.1 to A = λ2∣y∣2− h̵2∆y and T = Q(x, ξ)
for a.e. (x, ξ) ∈Rd ×Rd, one has

traceH((λ2∣y∣2 − h̵2∆y)1/2Q(x, ξ)(λ2∣y∣2 − h̵2∆y)1/2)

= traceH(Q(x, ξ)1/2(λ2∣y∣2 − h̵2∆y)Q(x, ξ)1/2)

for a.e. (x, ξ) ∈Rd ×Rd. Integrating both sides of this equality over Rd ×Rd, one
finds that

∬
Rd×Rd

traceH(Q(x, ξ)1/2(λ2∣y∣2 − h̵2∆y)Q(x, ξ)1/2)dxdξ

= traceH((λ2∣y∣2 − h̵2∆y)1/2R(λ2∣y∣2 − h̵2∆y)1/2) <∞ .
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In particular

traceH(Q(x, ξ)1/2c(x, ξ, y, h̵Dy)Q(x, ξ)1/2) <∞

for a.e. (x, ξ) ∈ Rd ×Rd. Applying again Lemma 2.1 with A = c(x, ξ, y, h̵Dy) and
T = Q(x, ξ) for all such (x, ξ) shows that

traceH(Q(x, ξ)1/2c(x, ξ, y, h̵Dy)Q(x, ξ)1/2)

= traceH(c(x, ξ, y, h̵Dy)1/2Q(x, ξ)c(x, ξ, y, h̵Dy)1/2)

for a.e. (x, ξ) ∈ Rd, and the equality in the lemma follows from integrating both
sides of this last identity over Rd ×Rd. �

The main properties of this pseudo-metric are recalled in the following theorem.
Before stating it, we recall some fundamental notions and introduce some notations.

The Wigner transform of R ∈ D(H) is

Wh̵[R](x, ξ) = 1
(2π)d ∫

Rd
r(x + 1

2
h̵y, x − 1

2
h̵y)e−iξ⋅ydy

where r is the integral kernel of R. Obviously Wh̵[R] is real-valued, but in general
Wh̵[R] is not a.e. nonnegtive in general.

Instead of the Wigner transform, one can consider a mollified variant thereof,
the Husimi transform of R, that is

W̃h̵[R](x, ξ) = (eh̵∆x,ξ/4Wh̵[R])(x, ξ) ≥ 0 for a.e. (x, ξ) ∈Rd ×Rd .

The Schrödinger coherent state is

∣q, p⟩(x) ∶= (πh̵)−d/4e−∣x−q∣
2/2h̵eip⋅(x−q/2)/h̵ .

For each Borel probability measure µ on Rd ×Rd, one defines the Töplitz operator
with symbol (2πh̵)dµ:

OPTh̵ [(2πh̵)dµ] ∶=∬
Rd×Rd

∣q, p⟩⟨q, p∣µ(dqdp) ∈ D(H) .

Proposition 2.3. For each probability density f and each Borel probability measure
µ on Rd ×Rd with finite second order moment (10). Then

OPTh̵ [(2πh̵)dµ] ∈ D2(H) ,

and one has

Eh̵,λ(f,OPTh̵ [(2πh̵)dµ])2 ≤ max(1, λ2)distMK,2(f, µ)2 + 1
2
(λ2 + 1)dh̵ .

Proof. Let P (x, ξ, dqdp) be an optimal coupling of f(x, ξ) and µ(dqdp) for distMK,2.

Set Q(x, ξ) ∶= OPTh̵ [(2πh̵)dP (x, ξ, ⋅)]. Then Q ∈ C(f,OPTh̵ [(2πh̵)dµ]) according to
Lemma 3.1 in [6]), so that

Eh̵,λ(f,OPTh̵ [(2πh̵)dµ])2

≤∬
Rd×Rd

traceH(Q(x, ξ)1/2cλ(x, ξ, y, h̵Dy)Q(x, ξ)1/2)dxdξ .

For each p, q ∈Rd, one has

traceH(cλ(x, ξ, y, h̵Dy)1/2∣q, p⟩⟨q, p∣cλ(x, ξ, y, h̵Dy)1/2)
= ⟨q, p∣cλ(x, ξ, y, h̵Dy)∣q, p⟩ = λ2∣x − q∣2 + ∣ξ − p∣2 + 1

2
(λ2 + 1)h̵
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according to fla. (55) in [5]. For each finite positive Borel measure m on Rd ×Rd,
one has

traceH(cλ(x, ξ, y, h̵Dy)1/2OPTh̵ [(2πh̵)dm]cλ(x, ξ, y, h̵Dy)1/2)

=∬
Rd×Rd

(λ2∣x − q∣2 + ∣ξ − p∣2 + 1
2
(λ2 + 1)h̵)m(dpdq) .

by the monotone convergence theorem (Theorem 1.27 in [11]) applied to a spectral
decomposition of the transportation cost operator cλ(x, ξ, y, h̵Dy), which is a shifted
harmonic oscillator.

Specializing this formula to the case x = ξ = 0 and m = µ shows that the operator
OPTh̵ [(2πh̵)dµ] ∈ D2(H).

Specializing this formula to the case m = P (x, ξ, dqdp) and integrating in (x, ξ)
shows that

∬
Rd×Rd

traceH(cλ(x, ξ, y, h̵Dy)1/2OPTh̵ [(2πh̵)dP (x, ξ, ⋅)]cλ(x, ξ, y, h̵Dy)1/2)dxdξ

=∬
Rd×Rd

∬
Rd×Rd

(λ2∣x − q∣2 + ∣ξ − p∣2)P (x, ξ, dqdp) + 1
2
(λ2 + 1)

= distMK,2(f, µ)2 + 1
2
(λ2 + 1)h̵

and since Q ∶ (x, ξ)↦ OPTh̵ [(2πh̵)dP (x, ξ, ⋅)] belongs to C(f,OPTh̵ [(2πh̵)dµ]),

∬
Rd×Rd

traceH(Q(x, ξ)1/2cλ(x, ξ, y, h̵Dy)Q(x, ξ)1/2)dxdξ

=∬
Rd×Rd

traceH(cλ(x, ξ, y, h̵Dy)1/2Q(x, ξ)cλ(x, ξ, y, h̵Dy)1/2)dxdξ .

With the previous equality and the inequality above, the proof is complete. �

3. Evolution of the pseudo-metric under the Schrödinger dynamics

Denote by t↦ (X(t;x, ξ),Ξ(t;x, ξ)) the solution of the Cauchy problem for the
Hamiltonian system

Ẋ = Ξ , Ξ̇ = −∇V (X) , (X(0;x, ξ),Ξ(0;x, ξ)) = (x, ξ) .

Since V ∈ C1,1(Rd), this solution is defined for all t ∈ R, for all x, ξ ∈ Rd. Hence-
forth, we denote by Φt the map (x, ξ) ↦ Φt(x, ξ) ∶= (X(t;x, ξ),Ξ(t;x, ξ)), and by
H ≡H(x, ξ) ∶= 1

2
∣ξ∣2 + V (x) the Hamiltonian.

On the other hand, assume that V − ∈ Ld/2(Rd), so that H ∶= − 1
2
h̵2∆ + V is

self-adjoint on H by Lemma 4.8b in chapter VI, §4 of [8]. Then U(t) ∶= exp(itH/h̵)
is a unitary group on H.

Theorem 3.1. Let f in be a probability density on Rd ×Rd which satisfies (10),
and let Rin ∈ D2(H). For each t ≥ 0, set

R(t) ∶= U(t)∗RinU(t) , f(t,X,Ξ) ∶= f in(Φ−t(X,Ξ)) for a.e. (X,Ξ) ∈Rd ×Rd .

Then, for each λ > 0 and each t ≥ 0, one has

Eh̵,λ(f(t, ⋅, ⋅),R(t)) ≤ Eh̵,λ(f in,Rin) exp( 1
2
t(λ + Lip(∇V )2

λ
) t) .

This theorem is a slight improvement of Theorem 2.7 in [6] in the special case
N = 1. For the sake of being complete, we recall the argument in [6], with the
appropriate modifications.
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Proof. Let Qin ∈ C(f in,Rin). Set

Q(t,X,Ξ) ∶= U(t)∗Qin ○Φ−t(X,Ξ)U(t)

for all t ∈R and a.e. (x, ξ) ∈Rd ×Rd, and

E(t) ∶=∬
R2d

traceH(Q(t,X,Ξ)1/2cλ(X,Ξ, y, h̵Dy)Q(t,X,Ξ)1/2)dXdΞ .

Since Φt leaves the phase space volume element dxdξ invariant

E(t)=∬
R2d

traceH(
√
Qin(x, ξ)U(t)cλ(Φt(x, ξ), y, h̵Dy)U(t)∗

√
Qin(x, ξ))dxξ .

By construction, Q(t, ⋅, ⋅) ∈ C(f(t, ⋅, ⋅),R(t)). Indeed, for a.e. (X,Ξ) ∈Rd,

0 ≤ Qin(Φ−t(X,Ξ)) = Qin(Φ−t(X,Ξ))∗ ∈ L(H)
so that Q(t,X,Ξ) ∈ L(H) satisfies

Q(t,X,Ξ) =U(t)Qin(Φ−t(X,Ξ))U(t)∗

=U(t)Qin(Φ−t(X,Ξ))U(t)∗ = Q(t,X,Ξ)∗ ≥ 0 .

Besides

traceH(Q(t,X,Ξ)) = traceH(Qin(Φ−t(X,Ξ))) = f in(Φ−t(X,Ξ)) = f(t,X,Ξ)
while

∬
Rd×Rd

Q(t,X,Ξ)dXdΞ = U(t) (∬
Rd×Rd

Qin(Φ−t(X,Ξ))dXdΞ)U(t)∗

= U(t) (∬
Rd×Rd

Qin(x, ξ)dxdξ)U(t)∗ = U(t)RinU(t)∗ = R(t) .

In particular

E(t) ≥ Eh̵,λ(f(t),R(t)) , for each t ≥ 0 .

Let ej(x, ξ, ⋅) for j ∈ N be a H-complete orthonormal system of eigenvectors of

Qin(x, ξ) for a.e. x, ξ ∈Rd. Hence

traceH(
√
Qin(x, ξ)U(t)cλ(Φt(x, ξ), y, h̵Dy)U(t)∗

√
Qin(x, ξ))

= ∑
j∈N

ρj(x, ξ)⟨U(t)ej(x, ξ)∣cλ(Φt(x, ξ), y, h̵Dy)∣U(t)ej(x, ξ)⟩

where ρj(x, ξ) is the eigenvalue of Qin(x, ξ) defined by

Qin(x, ξ)ej(x, ξ) = ρj(x, ξ)ej(x, ξ) , for a.e. (x, ξ) ∈Rd ×Rd .

If φ ≡ φ(y) ∈ C∞
c (Rd), the map

t↦ ⟨U(t)φ∣cλ(Φt(x, ξ), y, h̵Dy)∣U(t)φ⟩

is of class C1 on R, and one has

d

dt
⟨U(t)φ∣cλ(Φt(x, ξ), y, h̵Dy)∣U(t)φ⟩

= ⟨ i
h̵
HU(t)φ∣cλ(Φt(x, ξ), y, h̵Dy)∣U(t)φ⟩

+⟨U(t)φ∣cλ(Φt(x, ξ), y, h̵Dy)∣
i

h̵
HU(t)φ⟩

+⟨U(t)φ∣{H(Φt(x, ξ)), cλ(Φt(x, ξ), y, h̵Dy)}∣U(t)φ⟩ .
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In other words

d

dt
⟨U(t)φ∣cλ(Φt(x, ξ), y, h̵Dy)∣U(t)φ⟩

= ⟨U(t)φ∣ i
h̵
[H, cλ(Φt(x, ξ), y, h̵Dy)]∣U(t)φ⟩

+⟨U(t)φ∣{H(Φt(x, ξ)), cλ(Φt(x, ξ), y, h̵Dy)}∣U(t)φ⟩ .

A straightforward computation shows that

{H(Φt(x, ξ)), cλ(Φt(x, ξ), y, h̵Dy)} +
i

h̵
[H, cλ(Φt(x, ξ), y, h̵Dy)]

= λ2
d

∑
k=1

((Xk − yk)(Ξk − h̵Dyk) + (Ξk − h̵Dyk)(Xk − yk))

−
d

∑
k=1

((∂kV (X) − ∂kV (y))(Ξk − h̵Dyk) + (Ξk − h̵Dyk)(∂kV (X) − ∂kV (y)))

≤ λ
d

∑
k=1

(λ2∣Xk−yk ∣2+∣Ξk−h̵Dyk ∣
2)+ 1

λ

d

∑
k=1

(λ2∣∂kV (X)−∂kV (y)∣2+∣Ξk−h̵Dyk ∣
2)

≤ λ
d

∑
k=1

(λ2∣Xk − yk ∣2 + ∣Ξk − h̵Dyk ∣
2) + Lip(∇V )2

λ

d

∑
k=1

(λ2∣Xk − y∣2 + ∣Ξk − h̵Dyk ∣
2)

≤ (λ + Lip(∇V )2

λ
) cλ(X,Ξ, y, h̵Dy) .

Hence
⟨U(t)φ∣cλ(Φt(x, ξ), y, h̵Dy)∣U(t)φ⟩ ≤ ⟨φ∣cλ(x, ξ, y, h̵Dy)∣φ⟩

+(λ + Lip(∇V )2

λ
)∫

t

0
⟨U(s)φ∣cλ(Φs(x, ξ), y, h̵Dy)∣U(s)φ⟩ds

so that

⟨U(t)φ∣cλ(Φt(x, ξ), y, h̵Dy)∣U(t)φ⟩ ≤ ⟨φ∣cλ(x, ξ, y, h̵Dy)∣φ⟩ exp((λ + Lip(∇V )2

λ
) t)

for each φ ∈ C∞
c (Rd). By density of C∞

c (Rd) in the form domain of cλ(x, ξ, y, h̵Dy)

0 ≤ ⟨U(t)ej(x, ξ)∣cλ(Φt(x, ξ), y, h̵Dy)∣U(t)ej(x, ξ)⟩

≤ ⟨ej(x, ξ)∣cλ(x, ξ, y, h̵Dy)∣ej(x, ξ)⟩ exp((λ + Lip(∇V )2

λ
) t)

for a.e. (x, ξ) ∈Rd ×Rd, so that

traceH(
√
Qin(x, ξ)U(t)cλ(Φt(x, ξ), y, h̵Dy)U(t)∗

√
Qin(x, ξ))

= ∑
j∈N

ρj(x, ξ)⟨U(t)ej(x, ξ)∣cλ(Φt(x, ξ), y, h̵Dy)∣U(t)ej(x, ξ)⟩

≤ exp((λ + Lip(∇V )2

λ
) t) ∑

j∈N
ρj(x, ξ)⟨ej(x, ξ)∣cλ(x, ξ, y, h̵Dy)∣ej(x, ξ)⟩

= exp((λ + Lip(∇V )2

λ
) t) traceH(

√
Qin(x, ξ)cλ(x, ξ, y, h̵Dy)

√
Qin(x, ξ)) .
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Integrating both side of this inequality over Rd ×Rd shows that

E(t) ≤ E(0) exp((λ + Lip(∇V )2

λ
) t) .

Hence, for each t ≥ 0 and each Qin ∈ C(f,R), one has

Eh̵,λ(f(t),R(t))2 ≤ E(0) exp((λ + Lip(∇V )2

λ
) t) .

Minimizing the right hand side of this inequality as Qin runs through C(f in,Rin),
one arrives at the inequality

Eh̵,λ(f(t),R(t)) ≤ Eh̵,λ(f in,Rin) exp( 1
2
(λ + Lip(∇V )2

λ
) t) .

�

4. The observation inequality

In this section, we state and prove an observation inequality for the Schrödinger
equation.

Let K be a compact subset of Rd×Rd, let Ω be an open set of Rd and let T > 0.
We recall the “geometric condition” à la Bardos-Lebeau-Rauch [2] for this problem:

(GC) for each (x, ξ) ∈K , there exists t ∈ (0, T ) s.t. X(t;x, ξ) ∈ Ω .

Theorem 4.1. Assume that V belongs to C1,1(Rd) and that V − ∈ Ld/2(Rd). Let
T > 0, let K ⊂ Rd ×Rd be compact and let Ω ⊂ Rd be an open set of Rd satisfying
(GC). Let χ ∈ Lip(Rd) be such that χ(x) > 0 for each x ∈ Ω.

For each t ≥ 0, set

R(t) ∶= U(t)∗RinU(t) , f(t,X,Ξ) ∶= f in(Φ−t(X,Ξ)) for a.e. (X,Ξ) ∈Rd ×Rd .

Then, when Rin is a pure state ∣ψin⟩⟨ψin∣,

∫
T

0
∫
Rd
χ(x)∣ψ(t, x)∣2dx)dt ≥ inf

(x,ξ)∈K
∫

T

0
χ(X(t;x, ξ))dt∬

(x,ξ)∈K
W̃h̵[ψin](x, ξ)dxdξ

− 4Lip(χ)
exp ( 1

2
(1 + Lip(∇V )2)T ) − 1

1
2
(1 + Lip(∇V )2)

∆(ψin).

When Rin ∶= OPT [(2πh̵)df in] is a Töplitz operator of symbol a probability density
f in on Rd ×Rd with support in K,

∫
T

0
trace(χR(t))dt ≥ inf

(x,ξ)∈K
∫

T

0
χ(X(t;x, ξ))dt

− Lip(χ)C(T,Lip(∇V ))
√

2dh̵

where

C(T,L) = inf
λ>0

exp ( 1
2
(λ + L2

λ
)T) − 1

(λ + L2

λ
)

√
1 + 1

λ2
.

In particular, setting λ = L

C(T,L) ≤ e
LT − 1

2L

√
1 + 1

L2
.
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In fact, one can eliminate all mention of the cutoff function χ in the final state-
ment, as follows.

Corollary 4.2. Under the same assumptions as in Theorem 4.1, one has

C[T,K,Ω] ∶= inf
(x,ξ)∈K

∫
T

0
1Ω(X(t;x, ξ))dt > 0 ,

and for each δ > 0, denoting Ωδ ∶= {x ∈Rd ∣dist(x,Ω) < δ} .,

∫
T

0
trace(1ΩδR(t))dt ≥ C[T,K,Ω] −C(T,Lip(∇V ))

√
2dh̵

δ

in the Töplitz case, and

∫
T

0
∫

Ωδ
∣ψ(t, x)∣2dx)dt ≥ inf

(x,ξ)∈K
∫

T

0
1Ω(X(t;x, ξ))dt∬

(x,ξ)∈K
W̃h̵[ψin](x, ξ)dxdξ

− 4
exp ( 1

2
(1 + Lip(∇V )2)T ) − 1

1
2
(1 + Lip(∇V )2)

∆(ψin)
δ

in the pure state case.

The corollary can be used to obtain an observation inequality for Töplitz op-
erators as “test observables” as follows: let T > 0 be an observation time, let
K ⊂ Rd ×Rd be a compact subset of the phase-space supporting the initial data,
and let Ω ⊂Rd be the open set where one observes the solution of the Schrödinger
equation on the time interval [0, T ]. Assume that T,K,Ω satisfies the geomet-
ric condition (GC). With these data, one computes C[T,K,Ω] > 0. Choose then
h̵, δ > 0 so that

h̵

δ2
< C[T,K,Ω]2

2dC(T,Lip(∇V ))2
.

Then the Heisenberg equation (7) satisfies the observability property on [0, T ]×Ωδ
for all Töplitz initial density operators whose symbol is supported in K.

Proof of the corollary. Since Ω is open, the function 1Ω is lower semicontinuous.
According to condition (GC), for each (x, ξ) ∈K, there exists tx,ξ ∈ (0, T ) such that
1Ω(X(tx,ξ;x, ξ)) = 1. Since the set

{t ∈ (0, T ) ∣1Ω(X(t;x, ξ)) > 1/2}
is open, there exists ηx,ξ > 0 such that

[tx,ξ − ηx,ξ, [tx,ξ + ηx,ξ] ⊂ (0, T )
and then

∫
T

0
1Ω(X(t;x, ξ))dt ≥ 2ηx,ξ > 0 , for each (x, ξ) ∈K .

By Fatou’s lemma, the function

(x, ξ)↦ ∫
T

0
1Ω(X(t;x, ξ))dt

is lower semicontinuous, and positive on K. Hence

C[T,K,Ω] ∶= inf
(x,ξ)∈K

∫
T

0
1Ω(X(t;x, ξ))dt > 0 .
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Apply Theorem 4.1 with χ defined as follows:

χδ(x) = (1 − dist(x,Ω)
δ

)
+
, in which case Lip(χ) = 1

δ
.

One concludes by observing that

∫
T

0
trace(χδR(t))dt∫

T

0
trace(1ΩδR(t))dt ,

whereas

∫
T

0
1Ω(X(t;x, ξ))dt ≤ ∫

T

0
χδ(X(t;x, ξ))dt .

�

Proof. Notice that

trace(χ(R(t)) −∬
Rd×Rd

χ(x)f(t, x, ξ)dxdξ

=∬
Rd×Rd

traceH((χ(y) − χ(x))Q(t, x, ξ))dxdξ

for each Q ≡ Q(t, x, ξ) ∈ C(f(t),R(t)). Hence

∣trace(χR(t)) −∬
Rd×Rd

χ(x)f(t, x, ξ)dxdξ∣

= ∣∬
Rd×Rd

traceH((χ(y) − χ(x))Q(t, x, ξ))dxdξ∣

≤∬
Rd×Rd

∣ traceH((χ(y) − χ(x))Q(t, x, ξ))∣dxdξ

=∬
Rd×Rd

∣ traceH(Q(t, x, ξ)1/2(χ(y) − χ(x))Q(t, x, ξ)1/2)∣dxdξ

≤∬
Rd×Rd

traceH(Q(t, x, ξ)1/2∣χ(y) − χ(x)∣Q(t, x, ξ)1/2)dxdξ

≤ Lip(χ)∬
Rd×Rd

traceH(Q(t, x, ξ)1/2∣x − y∣Q(t, x, ξ)1/2)dxdξ

≤ Lip(χ)∬
Rd×Rd

traceH (Q(t, x, ξ)1/2 1
2
(ε∣x − y∣2 + 1

ε
)Q(t, x, ξ)1/2) ∣dxdξ .

Minimizing in ε > 0 shows that

∣traceH(χR(t)) −∬
Rd×Rd

χ(x)f(t, x, ξ)dxdξ∣

≤ Lip(χ) (∬
Rd×Rd

traceH (Q(t, x, ξ)1/2∣x − y∣2Q(t, x, ξ)1/2) ∣dxdξ)
1/2

≤ Lip(χ)
λ

(∬
Rd×Rd

traceH (Q(t, x, ξ)1/2cλ(x, ξ, y, h̵Dy)Q(t, x, ξ)1/2) ∣dxdξ)
1/2

.

This holds for each Q(t) ∈ C(f(t),R(t)); minimizing in Q(t) ∈ C(f(t),R(t)) leads
to the bound

∣traceH(χR(t)) −∬
Rd×Rd

χ(x)f(t, x, ξ)dxdξ∣ ≤ Lip(χ)
λ

Eh̵,λ(f(t),R(t)) .
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By Theorem 3.1

∣traceH(χR(t)) −∬
Rd×Rd

χ(x)f(t, x, ξ)dxdξ∣

≤ Lip(χ)
λ

Eh̵,λ(f in,Rin) exp( 1
2
(λ + Lip(∇V )2

λ
) t) .

On the other hand

∬
Rd×Rd

χ(x)f(t, x, ξ)dxdξ =∬
Rd×Rd

χ(x)f in(X(t;x, ξ),Ξ(t;x, ξ))dxdξ

=∬
Rd×Rd

χ(X(t;x, ξ))f in(x, ξ)dxdξ .

Hence

∫
T

0
trace(χR(t))dt ≥ ∬

Rd×Rd
(∫

T

0
χ(Xt(x, ξ))dt) f in(x, ξ)dxdξ

−Lip(χ)
λ

Eh̵,λ(f in,Rin)∫
T

0
exp( 1

2
(λ + Lip(∇V )2

λ
) t)dt

≥ ∬
Rd×Rd

(∫
T

0
χ(Xt(x, ξ))dt) f in(x, ξ)dxdξ

−Lip(χ)
λ

exp ( 1
2
(λ + Lip(∇V )2

λ
)T) − 1

1
2
(λ + Lip(∇V )2

λ
)

Eh̵,λ(f in,Rin) .

≥ inf
(x,ξ)∈K

∫
T

0
χ(X(t;x, ξ))dt∬

(x,ξ)∈K
f in(x, ξ)dxdξ(11)

−Lip(χ)
λ

exp ( 1
2
(λ + Lip(∇V )2

λ
)T) − 1

1
2
(λ + Lip(∇V )2

λ
)

Eh̵,λ(f in,Rin) .

In particular, putting f in = W̃h̵[Rin] and λ = 1, one obtains

∫
T

0
trace(χR(t))dt ≥ inf

(x,ξ)∈K
∫

T

0
χ(X(t;x, ξ))dt∬

(x,ξ)∈K
(W̃h̵[Rin](x, ξ)dxdξ

−Lip(χ)
λ

exp ( 1
2
(λ + Lip(∇V )2

λ
)T) − 1

1
2
(λ + Lip(∇V )2

λ
)

Eh̵,λ((W̃h̵[Rin],Rin) .(12)

ForRin = ∣ψin⟩⟨ψin∣, we know by Proposition 9.1. in [7] that Eh̵,1(W̃h̵[Rin],Rin) ≤
2∆(Rin) and we get the conclusion of Theorem 4.1 in the pure state case.

If f in is any compactly supported probability density, the inequality (11) that

∫
T

0
trace(χR(t))dt ≥ inf

(x,ξ)∈supp(fin)
∫

T

0
χ(X(t;x, ξ))dt

− Lip(χ)
λ

exp ( 1
2
(λ + Lip(∇V )2

λ
)T) − 1

1
2
(λ + Lip(∇V )2

λ
)

Eh̵,λ(f in,Rin) .



14 F. GOLSE AND T. PAUL

Now, if Rin is the Töplitz operator with symbol (2πh̵)dµin, where µin is a Borel
probability measure on Rd ×Rd,

∫
T

0
trace(χR(t))dt ≥ inf

(x,ξ)∈supp(fin)
∫

T

0
χ(X(t;x, ξ))dt

−Lip(χ)
λ

exp ( 1
2
(λ+ Lip(∇V )2

λ
)T)−1

1
2
(λ+ Lip(∇V )2

λ
)

√
max(1, λ2)distMK,2(f in, µin)2+ 1

2
(λ2+1)dh̵ .

In particular, if Rin = OPTh̵ [(2πh̵)df in], one has

∫
T

0
trace(χR(t))dt ≥ inf

(x,ξ)∈supp(fin)
∫

T

0
χ(X(t;x, ξ))dt

− Lip(χ)
λ

exp ( 1
2
(λ+ Lip(∇V )2

λ
)T)−1

1
2
(λ+ Lip(∇V )2

λ
)

√
1
2
(λ2+1)dh̵ .

Maximizing the right hand side as λ runs through (0,+∞), one finds that

∫
T

0
trace(χR(t))dt ≥ inf

(x,ξ)∈supp(fin)
∫

T

0
χ(X(t;x, ξ))dt

− Lip(χ)C(T,Lip(∇V ))
√

2dh̵ ,

where

C(T,L) ∶= inf
λ>0

exp ( 1
2
(λ+ L

2

λ
)T)−1

λ2 +L2

√
λ2+1 .

If L > 0, one can take λ = L so that

C(T,L) ≤ e
LT − 1

2L2

√
1 +L2 .

�

Notice that, in the case where L = 0, one can choose λ = 2r/T with

rer = 2(er − 1) , r > 0 , λ = 2r/T ,

and find that

C(T,0) ≤ e
r − 1

4r2
T 2

√
1 + 4r2

T 2
.
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