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TIME DEPENDENT QUANTUM PERTURBATIONS UNIFORM

IN THE SEMICLASSICAL REGIME

FRANÇOIS GOLSE AND THIERRY PAUL

Abstract. We present a time dependent quantum perturbation result, uni-

form in the Planck constant, for perturbations of potentials whose gradients
are Lipschitz continuous by potentials whose gradients are only bounded a.e..

Though this low regularity of the full potential is not enough to provide the

existence of the classical underlying dynamics, at variance with the quantum
one, our result shows that the classical limit of the perturbed quantum dy-

namics remains in a tubular neighbourhood of the classical unperturbed one

of size of order of the square root of the size of the perturbation. We treat
both Schrödinger and von Neumann-Heisenberg equations.

in memory of Arthur Wightman
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1. Introduction

Perturbation theory has a very special status in Quantum Mechanics. On one
side, it is responsible to most of its more spectacular success, from atomic to nu-
clear physics. On the other side, it has a very peculiar epistemological status: it
was while he was working with Max Born [B25] on the Bohr-Sommerfeld quantiza-
tion of celestial perturbations series, as explicitly stated by Poincaré in his famous
“Mémoires” [P1892], that Heisenberg went to the idea of replacing the commuta-
tive algebra of convolution — corresponding to multiple multiplications of Fourier
series appearing in computations on action-angle variables — by the famous non-
commutative algebra of matrices [H25].

After quantum mechanics was truly settled, perturbation theory took a com-
pletely different form, in the paradigm of functional analysis “à la Kato” and ap-
peared then mostly in the framework of the so-called Rayleigh-Schrödinger series.
A kind of paradox is that it took a long time to link back the Rayleigh-Schrödinger
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2 F. GOLSE AND T. PAUL

series to the “original” formalism of quantization of, say, Birkhoff series [B28],
though, in the mean time, the latter continued to be extensively used for applied
purpose e.g. in heavy chemical computations.

It seems that Arthur Wightman proposed to several PhD students to work on
this problem. One of the difficulty is that, starting with the second term of the
Rayleigh-Schrödinger expansion,

E2
i =∑

k

⟨ψ0
i , V ψ

0
k⟩⟨ψ0

k, V ψ
0
i ⟩

E0
i −E0

k

,

there appears formally poles at zero in the Planck constant, for example when the
unperturbed Hamiltonian is the harmonic oscillator with unperturbed eigenvalues
E0
i = (i + 1

2
)h̵. Although this poles disappear at the classical limit h̵ → 0 because

the sum ∑
k

⟨ψ0
i ,V ψ

0
k⟩⟨ψ

0
k,V ψ

0
i ⟩

i−k vanishes in this limit for parity reasons, controlling all

the terms of the series remained for years a task considered as unachievable.
To our knowledge, the first proof on the convergence term by term of the

Rayleigh-Schrödinger expansion to the quantized Birkhoff one, for perturbations
of non-resonant harmonic oscillators, was given in [G87], by implementing the per-
turbation procedure in the so-called Bargman representation (see also [D91] for an
implementation in the framework of the Lie method). The reader interested in this
subject can also consult [P16, P162] for a proof (also for general non harmonic un-

perturbed Hamiltonians) in a generalization of Écalle’s mould theory and [NPST18]
for a link between Rayleigh-Schrödinger expansion and Hopf algebras.

When one considers time dependent perturbation theory, i.e. comparison be-
tween two quantum evolution associated to two “close” Hamiltonians H,H ′, the
situation is more difficult. The simple Duhamel formula

e−i
tH
h̵ − e−i

tH′
h̵ = 1

ih̵
∫

t

0
e−i

(t−s)H
h̵ (H ′ −H)e−i

sH′
h̵ ds

shows clearly that a pole at zero in the Planck constant is again involved. But to
our knowledge, no combinatorics or normal form can help to remove it in general
and one is usually reduced to the trivial estimate

∥e−i
tH
h̵ − e−i

tH′
h̵ ∥ ≤ t∥H

′ −H∥
h̵

valid for, e.g. any Schatten norm, the operator, Hilbert-Schmidt or trace norm for
example.

In the present paper, we will get rid of this pole in h̵ phenomenon by estimating
the difference between two quantum evolutions (in a weak topology consisting in
tracing against a set of test observables) in two forms:

- one linear in the norm of the difference of the Hamiltonians plus a term van-
ishing with h̵

- the other proportional to the norm of the difference of the Hamiltonians to the
power 1/3 and independent of h̵.



QUANTUM PERTURBATIONS 3

The proofs of our results, Sections 5, 6 and 7, will be using the framework of the
von Neumann-Heisenberg equation for density operators D,

∂tD = 1
ih̵

[D,H],

but our results, Theorem 2.1 and Corollary 2.2, will be first presented for pure
states, Section 2, that is when D = ∣ψ⟩⟨ψ∣, in which case it reduces to the usual
Schrödinger equation (modulo a global phase of the wave function)

ih̵∂tψ =Hψ.

The mixed states situation will be treated in Section 4, Theorem 4.1.
Our results will need very low regularity of the perturbed potential, namely the

boundness of its gradient, and of the unperturbed one, Lipschitz continuity of its
gradient. In this situation, the classical underlying dynamics is well posed for the
unperturbed Hamiltonian, but not for the perturbed one. To our knowledge, the
classical limit for pure state in this perturbed situation is unknown. We show, in
Section 3 Theorem 3.1, that the limit as h̵→ 0 of the Wigner function of the wave
function at time t is close to the one of the initial state pushed forward by the
unperturbed classical flow.

2. Main result

For λ,µ ∈ [0,1], let us consider the quantum Hamiltonian

Hλ,µ0 =H0 ∶= − 1
2
h̵2∆x + λ

2
∣x∣2 + µV

on H ∶= L2(Rd). Here V ≡ V (x) ∈ R such that V ∈ C1,1(Rd). For any other real
potential U ∈W 1,∞(Rd), we define, for ε ∈ [0,1]

Hλ,µε =Hε ∶= − 1
2
h̵2∆x + λ

2
∣x∣2 + µV + εU.

Henceforth we denote

H ∶= H1,0
0 = − 1

2
h̵2∆x + 1

2
∣x∣2 (harmonic oscillator)

D(H) ∶= {R ∈ L1(H) s.t. R = R∗ ≥ 0 and traceH(R) = 1} (density operators),

D2(H) ∶= {R ∈ D(H) s.t. traceH(R1/2HR1/2) <∞} (finite second moments).

For ψ ∈ H, we define

(1) ∆(ψ) ∶=
√

(ψ, (x − (ψ,xψ))ψ)2 + (−ih̵∇x − (ψ,−ih̵∇xψ))2ψ)

Note that the Heisenberg inequalities
√

(ψ, (xk − (ψ,xkψ))2, ψ)
√

(ψ, (−ih̵∇xk − (ψ,−ih̵∇xkψ))2ψ) ≥ h̵/2, k = 1, . . . , d,

imply that

∆(ψ) ≥
√

2dh̵.

On D(H) we define the following distance

(2) d(R,S) ∶= sup
max

∣α∣,∣β∣≤2[ d4 ]+3
∥Dα−ih̵∇D

β
xF ∥1≤1

∣ trace (F (R − S))∣ ,

where DA = 1
ih̵

[A, ⋅] for each (possibly unbounded) self-adjoint operator A on H
and ∥.∥1 is the trace norm on D(H). The fact that d is a distance has been proved
in [GJP20, Appendix A].
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Abusing the notation, for φ,ψ ∈ H, we set for ψ,ϕ ∈ H

d(ψ,ϕ) ∶= d(∣ψ⟩⟨ψ∣, ∣ϕ⟩⟨ϕ∣)

Consider the family of Schrödinger equations, for ε ∈ [0,1],

(3) ih̵∂tψε(t) =Hεψε(t), ψε(0) = ψinε ∈H2(Rd) .

Theorem 2.1. Let ψinε satisfy the following hypothesis:

(4) ∆(ψin) = O(
√
h̵).

Then, for every t,

d(ψ0(t), ψε(t))2 ≤ C(t)ε +D(t)h̵,
where C(t),D(t), given by (22),(23), satisfy

C(t) = e∣t∣(1−λ+µLip(∇V )) − 1

1 − λ + µLip(∇V )
C(ψinε ,Hψinε ),∥V ∥∞,∥U∥∞,∥∇U∥∞ <∞

D(t) = e∣t∣(1−λ+µLip(∇V ))Dd <∞

The following result gives an upper bound independent of h̵.

Corollary 2.2. Under the same assumptions as in Theorem 2.1,

d(ψ0(t), ψε(t)) ≤ E(t)ε
1
3 ,

with

E(t) = min (
√
C(t) +D(t),2∣t∣∥U∥2

∞).

The function z ↦ ez−1
z

is extended by continuity at z = 0, so that, when λ =
1, Lip(∇V ) = 0 (perturbation of the harmonic oscillator), C(t) increases linearly
in time and D(t) is independent of time and C(t),E(t) increase linearly in time.

Remark 2.3. Other choices than the hypothesis (i) are possible, that we didn’t
mention for sake of clarity of the main statements. For example

(i)’ ∆(ψin) = O(
√
ε):

in this case the statement of both Theorem 2.1 and Corollary 2.2 remain the same
with a slight chance of the constants C(t),D(t).

(i)” ∆(ψin) = O(h̵α), 0 ≤ α < 1/2:
in this case the statement of both Theorem 2.1 and Corollary 2.2 become

d(ψ0(t), ψε(t))2 ≤ C(t)ε +D′(t)h̵α

d(ψ0(t), ψε(t)) ≤ E′(t)ε
α
α+2

for constants C(t),D(t),E(t) easily computable from the proofs of Section 5.

Let us finish this section by some topological remarks, inspired by [GP18, Section
4]. The distance d defines a weak topology, very different a priori of the usual strong
topologies associated to Hilbert spaces in quantum mechanics. Nevertheless, it
seems to us better adapted to the semiclassical approximation for the following
reason.
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Let us consider two coherent states pinned up at two points z1 = (p1, q1), z2 =

(p2, q2) of the phase-space T ∗Rd: ψzj(x) = (πh̵)−d/4e−i
pj .x

h̵ e−
(x−qj)2

2h̵ , j = 1,2.
An easy computation shows that

∥ψz1 − ψz2∥2
L2(Rd) = ∥∣ψz1⟩⟨ψz1 ∣ − ∣ψz2⟩⟨ψz2 ∣∣2Hilbert−Schmidt = 1 − e−

∣z1−z2 ∣
2

2h̵

so that, as h̵→ 0,

∥ψz1 − ψz2∥2
L2(Rd) = ∥∣ψz1⟩⟨ψz1 ∣ − ∣ψz2⟩⟨ψz2 ∣∣2Hilbert−Schmidt = 0 if z1 = z2

→ 1 ∀ z1 ≠ z2.

In other words, the Lebesgue or Schatten norms behave for small values of h̵ as the
discrete topology, the one which only discriminates points.

On the contrary, d is much more sensitive to the localization on phase space as
shows our next result, proven in Section 7 below.

Proposition 2.4. For any bounded convex domain Ω ⊂ R2d, there exists CΩ > 0
such that, for any z1, z2 ∈ Ω,

CΩ∣z1 − z2∣ − h̵ ≤ 2dd(ψz1 , ψz2) ≤ 2d
√

∣z1 − z2∣2 + 2dh̵ +Cdh̵,

where Cd is defined in Lemma 5.3 Section 5 below.

3. Applications to the classical limit

The estimates provided by the results of the two preceding sections do not require
∇U to be continuous — in other words, the classical dynamics underlying the
quantum dynamics generated by Hε, ε > 0, fails to satisfy the assumptions of the
Cauchy-Peano-Arzelà Theorem.

Let us recall that one way to look at the transition from quantum to classical
dynamics as h̵ → 0 is to associate to a quantum (pure or mixed) state, namely a
positive trace one operatorRh̵ on H (density operator) with integral kernel rh̵(x,x′),
e.g. a pure state Rh̵ = ∣ψh̵⟩⟨ψh̵∣, for any vector ψh̵ in H the so-called Wigner
transform defined on phase-space by (with a slight abuse of notation again)

Wh̵[Rh̵](x, ξ) ∶= 1

(2π)d ∫Rd
e−iξ⋅yrh̵(x + 1

2
h̵y, x − 1

2
h̵y)dy(5)

Wh̵[ψh̵](x, ξ) ∶= 1

(2π)d ∫Rd
e−iξ⋅yψh̵(x + 1

2
h̵y)ψε(x − 1

2
h̵y)dy .(6)

An easy computation shows that Wh̵[ψh̵] is linked to ψh̵ by the two following
marginal properties

∫
Rd
Wh̵[ψh̵](x, ξ)dξ = ∣ψh̵(x)∣2(7)

∫
Rd
Wh̵[ψh̵](x, ξ)dx = ∣ψ̂h̵(p)∣2, ψ̂h̵(p) ∶= ∫

Rd
e−ip⋅x/h̵ψh̵(x) dx

(2πh̵)d/2(8)

It has been proved, see e.g. [LP93], that, under the tightness conditions

lim
R→+∞

sup
h̵∈(0,1)

∫
Rd∖B(d)

R

rh̵(x,x) dx = 0,(9)

lim
R→+∞

sup
h̵∈(0,1)

1

(2πh̵)d ∫Rd∖B(d)
R

Frh̵( p
h̵
,
p

h̵
) dp = 0,(10)
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where B
(d)
R is the ball of radius R in Rd and F is the Fourier transform on R2d,

the family of Wigner functions Wh̵[Rh̵] converges weakly, in particular in S ′(R2d),
after extraction of a subsequence of values of h̵, to W0 ∈ P(R2d), the space of
probability measures on R2d. The measure W0 is called the Wigner measure of the
family Rh̵.

As it is quite standard, we will omit to mention the extraction of subsequences,
together with the explicit dependence of states in the Planck constant, and we will
just write, when it does not create any confusion,

lim
h̵→0

Wh̵[R] =W0.

Note that when R = ∣ψ⟩⟨ψ∣ is a pure state, (9)-(10) reads

lim
R→+∞

sup
h̵∈(0,1)

∫
Rd∖B(d)

R

∣ψ(x)∣2 dx = 0,(11)

lim
R→+∞

sup
h̵∈(0,1)

∫
Rd∖B(d)

R

∣ψ̂(p)∣2 dp = 0(12)

Considering the quantum Hamiltonian Hε, the expected underlying classical dy-
namics is the one driven by the Liouville equation

(13) ∂tρ = { 1
2
(p2 + λq2) + µV (q) + εU, ρ}, ρt∣t=0 = ρin

where {., .} is the Poisson bracket on the symplectic manifold T ∗Rd ∼ R2d.

When ε = 0, the Hamiltonian vector field of Hamiltonian p2+λq2
2

+µV (q) is Lips-
chitz continuous. Moreover, it was proven, [LP93], that Rh̵(t) is tight for any t ∈ R
and W t

0 ∶= lim
h̵→0

Wh̵[Rh̵(t)] = ρt solving (13) with ρin =W0.

When ε > 0, the Liouville equation (13) exits the Cauchy-Peano-Arzelà category:
the associated Hamiltonian vector field might fail to have a characteristic through
every point of the phase-space. Nevertheless, as shown in [AFFGP10, Theorem
6.1], (13) is still well posed in L∞+ ([0, T ];L1(R2d) ∩ L∞(R2d)), and it was proven
in [FLP13] (after [AFFGP10]), that the Wigner function Wh̵[Rh̵(t)] of the solution
of the von Neumann equation

(14) ih̵∂tRε(t) = [Hε,Rε(t)] , Rε(0) = Rinε
tends weakly to the solution of (13), under certain conditions on Rinε .

Unfortunately, these conditions exclude definitively pure states, as, for example,
one of them impose that ∥Rinε ∥ = O(h̵d) and, to our knowledge, nothing is known
concerning the dynamics of the (possible) limit of Wh̵[ψε(t)] as h̵→ 0 where ψε(t)
solves the Schrödinger equation (14).

Our next result will show that such a limit remains
√
ε-close to the push-forward

of the Wigner measure of the initial condition by the flow of the unperturbed
classical Hamiltonian.

Theorem 3.1. Let Rε(t) be the solution of the von Neumann equation (14) with
Rinε satisfying

∆(Rinε ) = O(
√
h̵).

Let Rinε be tight, in the sense that it satisfies (9)-(10), so that Wh̵[Rinε ]→W in
0 , its

Wigner measure, as h̵→ 0.
Then, for any t ∈ R, the family Rε(t) is tight, so that

Wh̵[Rε(t)]→W0(t) ∈ P(R2d) as h̵→ 0.
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Moreover,

(1) W0(t) is
√
ε-close to Φt#W in

0 , where Φt is the flow of Hamiltonian

p2+(1−λ)q2
2

+ µV (q),

in the sense that

sup
∫Rd sup

q∈Rd
∣Fpf(q,z)∣dz≤1

max
∣α∣+∣β∣

≤2[d/4]+3

∥∂αq ∂
β
p f∥L∞(R2d)≤1

∣∫
R2d

f(q, p) (W0(t) −Φt#W in
0 ) (q, p)dqdp∣ ≤ 2−d

√
C(t)

√
ε,

where Fpf(q, z) ∶= ∫Rd e
−ip.zf(q, p)dp and C(t) is as in Theorem 2.1 after

replacing (ψinε ,Hψinε ) by ∫R2d(p
2+q2
2

)W0(dpdq).

(2) In particular, W0(t) is weakly
√
ε-close to Φt#W in

0 in the sense of distri-
bution as, for all test functions ϕ ∈ S(R2d),

∣∫
R2d

ϕ(q, p) (W0(t) −Φt#W in
0 ) (dp, dq)∣ ≤ Cϕ(t)

√
ε

with

Cϕ(t) = max(∫
Rd

sup
q∈Rd

∣Fpϕ(q, z)∣dz, max
∣α∣+∣β∣≤2[d/4]+3

∥∂αq ∂βpϕ∥L∞(R2d))2−d
√
C(t).

(3) Finally,

distMK,2(W0(t),Φt#W in
0 ) ≤

√
2−2d−1C(t)

√
ε,

where distMK,2 is the Monge-Kantorovitch-Wasserstein distance of order
two, whose definition is recalled, for example, in [GP20b, Section 1].

To our knowledge, no existence result is known for the Liouville equation asso-
ciated to a vector field whose components are in L∞(R2d) and not a priori contin-
uous and for general measure initial data - the only known to us result being the
existence and uniqueness in L1(R2d) ∩ L∞(R2d) result recalled before, excluding
concentration to trajectories of the ODE associated to the vector field (note that
well posedness for this ODE has been proved in [CJ10] under the extra hypothesis

for the vector field to be in H
3
4 ).

Our result includes the case of concentrating initial data, by taking for example
a coherent state for ψin which provides a Dirac mass as Wigner measure:

if ψ(x) = (πh̵)−d/4e−i
p.x
h̵ e−

(x−q)2
2h̵ , (p, q) ∈ T ∗Rd, one shows easily that.

Wh̵[∣ψ⟩⟨ψ∣](x, ξ) = (πh̵)−de−
(x−q)2+(ξ−p)2

h̵ Ð→ δ(q,p) as h̵→ 0.

The meaning of the Theorem 3.1 can be summarized by the following diagram:
one can “regularizes” the Liouville equation associated to an L∞ perturbation of
a Cauchy-Lipschitz vector field with a Wigner measure for initial data by the as-
sociated Heisenberg-von Neumann equation, one remains close to the unperturbed
solution.
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“Schrödinger”

Rinh̵
0→tÐ→ Rh̵(t)

h̵→ 0 ↓ ↓ h̵→ 0

W in
0 ∶= lim

h̵→0
Wh̵[Rinh̵ ] 0→tÐ→

W0(t) ∶= lim
h̵→0

Wh̵[Rh̵(t)]
= Φtε=0#W in

0 +O(
√
ε)

“Liouville”

Semiclassical regularization of rough Liouville equation ε-close to Cauchy-Lipschitz

Proof. The propagation of tightness is proved as follows.
Let χ ∈ C∞(Rd), 0 ≤ χ ≤ 1 such that χ(x) = 0 if ∣x∣ < 1/2 and χ(x) = 1 if ∣x∣ > 1,

and define χR(x) ∶= χ(x/R). Obviously

∫
Rd∖B(d)

R

∣ψε(t)(x)∣2 dx ≤ ∫
Rd
χR(x)∣ψε(t)(x)∣2 dx

Moreover, for some C > 0, ∥∇χR∥∞, ∥∆χR∥∞ ≤ C/R2, and

− i
h̵
[χR,Hε] = −

i

h̵
[χR,− h̵

2

2
∆] = −ih̵( 1

2
∆χR − i∇χR ⋅ ∇).

Therefore

∂t ∫
Rd
χR(x)∣ψε(t)(x)∣2 dx = −ih̵∫

Rd
ψ̄ε(t)(x)(( 1

2
∆χR − i∇χR.∇)ψε(t))(x)dx

= ∫
Rd

(−ih̵ 1
2
∆χR(x)∣ψε(t)∣2

+ψ̄ε(t)(x)∇χR(x) ⋅ (−ih̵∇ψε(t)(x))dx,
so that

∂t ∫
Rd
χR(x)∣ψε(t)(x)∣2 dx ≤ h̵

C

2R2
+ C
R

∥ − ih̵∇ψε(t)∥L2(Rd)

= h̵
C

2R2
+ 2

C

R
(ψε(t),H0,0

0 ψε(t))L2(Rd)

≤ h̵
C

2R2
+ 2

C

R
((ψε(t),Hλ,µε ψε(t))L2(Rd) + µ∥V ∥∞ + ε∥U∥∞)

= h̵
C

2R2
+ 2

C

R
((ψinε ,Hλ,µε ψinε )L2(Rd) + µ∥V ∥∞ + ε∥U∥∞)

and finally, for t ∈ [0, T ]

∫
Rd
χR(x)∣ψε(t)(x)∣2 dx ≤ ∫

Rd
χR(x)∣ψinε (x)∣2 dx

+(h̵ C

2R2
+ 2

C

R
((ψinε ,Hλ,µε ψinε )L2(Rd) + µ∥V ∥∞ + ε∥U∥∞))T.

Therefore ψε(t) satisfies (12) as soon as ψinε does.
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Finally, let us remark that

∫
Rd∖B(d)

R

∣ψ̂(p)∣2 dp ≤ 1

R2 ∫Rd
p2∣ψ̂(p)∣2 dp

= 2

R2
(ψε(t),H0,0

0 ψε(t))L2(Rd)(15)

and one concludes the same way.

The rest of the Theorem is proved as follows.

(1) One knows from [LP93] that the convergence of Wigner functions to Wigner
measure as h̵ → 0 takes place in the dual of the set of test functions f on
R2d satisfying

(16) ∫
Rd

sup
q∈Rd

∣Fpf(q, z)∣dz <∞.

Since V ∈ C1,1 one knows that, for such a test function,

lim
h̵→0
∫
R2d

f(x, ξ)Wh̵[ψ0(t)](x, ξ)dxdξ = ∫
R2d

f(x, ξ)Φt#W0(x, ξ)dxdξ.

On the other hand, we have the slight variant of Theorem 2.1, proven also
in Section 5.

Proposition 3.2. Let δ be defined by (19) below. Then

δ(Wh̵[ψ0(t)],Wh̵[ψε(t)]) ≤ 2−d
√
C(t)ε +D(t)h̵,

where C(t),D(t) are the constants defined in Theorem 2.1.

Proposition 3.2 tells us that, for any f satisfying

max
∣α∣+∣β∣≤2[d/4]+3

∥∂αq ∂βp f∥L∞(R2d) ≤ 1,

∣∫
R2d

f(q, p)(Wh̵[ψε(t)] −Wh̵[ψ0(t)])(dpdq)∣ ≤ 2−d
√
C(t)ε +D(t)h̵

Hence for any f satisfying

∫
Rd

sup
q∈Rd

∣Fpf(q, z)∣dz ≤ 1, max
∣α∣+∣β∣≤2[d/4]+3

∥∂αq ∂βp f∥L∞(R2d) ≤ 1,

we have

∣∫
R2d

f(q, p)(Wh̵[ψε(t)] −Φt#W0(x, ξ)])(dpdq)∣

≤ 2−d
√
C(t)ε +D(t)h̵ + ∣∫

R2d
f(q, p)(Wh̵[ψ0(t)] −Φt#W0(x, ξ))(dpdq)∣

and we conclude by taking first the supremum on the functions f and then
the limit h̵→ 0 on both sides.

(2) The proof is obvious by homogeneity.
(3) Since functions in the Schwartz class satisfy (16), one knows that, as h̵→ 0,

Wh̵[ψε(t)] → W0(t) and Wh̵[ψ0(t)] → Φt#W in
0 both in S ′(R2d). There-

fore, by [GMP16, Theorem 2.3. (2)], one knows that

distMK,2(W0(t),Φt#W in
0 ) ≤ lim

h̵→0

MKh̵(∣ψε(t)⟩⟨ψε(t)∣, ∣ψ0(t)⟩⟨ψ0(t)∣) .

By Theorem 5.2 with Rin0 = Rinε = ∣ψin0 ⟩⟨ψin0 ∣ = ∣ψinε ⟩⟨ψinε ∣, we have that

MKh̵(∣ψε(t)⟩⟨ψε(t)∣, ∣ψ0(t)⟩⟨ψ0(t)∣) ≤
√
γ(t)ε,
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where γ(t) is defined in (20).
We conclude by noticing that, as h̵ → 0, 22d+1γ(t) → C(t) defined in

item (1).
�

4. The case of mixed states

Consider the family of von Neumann equations, for ε ∈ [0,1],
(17) ih̵∂tRε(t) = [Hε,Rε(t)] , Rε(0) = Rinε ∈ D(H).

Let Rinε = Rin0 = R ∈ D2(H) satisfy one of the five following hypothesis:

(i) ∆(Rin) = O(
√
h̵) where the standard deviation ∆(R) is defined in Lemma

5.4 below;

(ii)
√
Rin satisfies, for some C > 0,

sup
∣β1∣,...,∣βd∣≤7

∣
d

∏
m=1

Dβm
(x,ξ)Wh̵[

√
Rin](x, ξ)∣ ≤ C(2πh̵)− d2

((ξ2 + x2)2 + d) 10
4 +3ε

∀(x, ξ) ∈ R2d,

where Wh̵[
√
Rin] is the Wigner transform of Rin;

(iii)
√
Rin satisfies, for C > 0 and all j ∈ Nd,

(a) ∣(Hi,
√
RinHj)∣ ≤ C(2πh̵) d2 ∏

1≤l≤d
∣h̵jl + 1

2
∣− 3

4−ε(∣il − jl∣ + 1)−2−ε,

(b) sup
O∈Ω1

∣(Hi,
1
ih̵

[O,
√
Rin]Hj)∣ ≤ C(2πh̵) d2 ∏

1≤l≤d
∣h̵jl + 1

2
∣− 1

2−ε(∣il − jl∣ + 1)−1−ε,

where Ω1 = {yj ,±h̵∂yj on L2(Rd, dy), j = 1, . . . , d} and the Hjs are
the semiclassical Hermite functions;

(iv) Rin is a Töplitz operator;

(v) there exist a Töplitz operator TF such that T
− 1

2

F

√
Rin ,

√
RinT

− 1
2

F and

T
− 1

2

F

√
Rin 1

ih̵
[O,

√
RinT

− 1
2

F ], O ∈ Ω1 are bounded on L2(Rd).

Theorem 4.1. For every t ≥ 0,

d(R0(t),Rε(t))2 ≤ C(t)ε +D(t)h̵,
where C(t),D(t) are given by (22)-(23), and are of the form

C(t) = e∣t∣(1−λ+µLip(∇V )) − 1

1 − λ + µLip(∇V )
C∥HRin∥1,∥V ∥∞,∥U∥∞,∥∇U∥∞ <∞,

D(t) = e∣t∣(1−λ+µLip(∇V ))Dd <∞.

Corollary 4.2. For every t ≥ 0,

d(R0(t),Rε(t)) ≤ E(t)ε
1
3 .

In Theorem 4.1 and Corollary 4.2, the constants C(t),D(t),E(t) are the same as
in Theorem 2.1 and Corollary 2.2 after replacing (ψin,Hψin) by ∥HRin∥1 in C(t).

5. Proof of Theorems 2.1 and 4.1, and Proposition 3.2

For all R,S ∈ D(H), we denote by C(R,S) the set of couplings of R and S, i.e.

C(R,S) ∶= {Q ∈ D(H⊗H) s.t. traceH⊗H((A⊗ I + I ⊗B)Q) = traceH(AR +BS)} .
We recall the definition of the pseudo-distanceMKh̵ (see Definition 2.2 in [GMP16]).
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Definition 5.1. For each R,S ∈ D2(H),

MKh̵(R,S) ∶= inf
Q∈C(R,S)

√
traceH⊗H(Q1/2CQ1/2) ,

where

C ∶=
d

∑
j=1

((qj ⊗ I − I ⊗ qj)2 − h̵2(∂qj ⊗ I − I ⊗ ∂qj)2) .

Theorem 2.1 and Proposition 3.2 are a consequence of the following inequality,
which controls the continuous dependence of the solution to the von Neumann
equation in terms of the initial data and on the potential.

Theorem 5.2. Let Rinε ∈ D2(H) and Rε(t) be the solution of (17), ε ∈ [0,1]. Then,
for each t ∈ R, ε ∈ [0,1], one has

MKh̵(R0(t),Rε(t))2 ≤ e∣t∣Λ(∇V )MKh̵(Rin0 ,Rinε )2

+εe
∣t∣Λ(∇V ) − 1

Λ(∇V )
∥∇U∥L∞

√
trace((Rin0 )1/2H(Rin0 )1/2) + 2µ∥V ∥L∞

+εe
∣t∣Λ(∇V ) − 1

Λ(∇V )
∥∇U∥L∞

√
trace((Rinε )1/2H(Rinε )1/2) + 2(µ∥V ∥L∞ + ε∥U∥L∞) ,

where

Λ(∇V ) = 1 − λ + µLip(∇V ).

Note that, as mentioned before, when λ = 1, Λ(∇V ) = µLip(∇V ) and in the
inequality above, the function

z ↦ ez − 1

z
is extended by continuity at z = 0.

Proof. In order to lighten the formulas we will use the following notations

(18) V1 = µV, V2 = µV + εU,

so that

H0 =Hλ,00 + V1 and Hε =Hλ,00 + V2.

Let Qin ∈ C(Rin0 ,Rinε ), and let Q be the solution of the von Neumann equation

ih̵∂tQ = [(Hλ,00 + V1)⊗ I + I ⊗ (Hλ,00 + V2),Q] , Q∣
t=0

= Qin .

Then

Q(t) ∈ C(R0(t),Rε(t)) , for each t ≥ 0

(see for instance Lemma 5.1 in [GMP16]).
Next we compute

d

dt
traceH⊗H(Q(t)1/2CQ(t)1/2)

= i

h̵
traceH⊗H(Q(t)1/2[(Hλ,00 + V1)⊗ I + I ⊗ (Hλ,00 + V2),C]Q(t)1/2) .

One finds that

i

h̵
[− 1

2
h̵2(∆⊗ I + I ⊗∆),C] =

d

∑
j=1

(qj ⊗ I − I ⊗ qj) ∨ (−ih̵(∂qj ⊗ I − I ⊗ ∂qj)) ,
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while

i

h̵
[(V1 ⊗ I + I ⊗ V2),C] = −

d

∑
j=1

(∂qjV1 ⊗ I − I ⊗ ∂qjV2) ∨ (−ih̵(∂qj ⊗ I − I ⊗ ∂qj)) ,

with the notation

A ∨B ∶= AB +BA.
In particular

i

h̵
[ 1

2
(∣q∣2 ⊗ I + I ⊗ ∣q∣2),C] = −

d

∑
j=1

(qj ⊗ I − I ⊗ qj) ∨ (−ih̵(∂qj ⊗ I − I ⊗ ∂qj)) .

See [GMP16] on p. 190. Hence

d

dt
traceH⊗H(Q(t)1/2CQ(t)1/2)

−(1 − λ) traceH⊗H
⎛
⎝
Q(t)1/2

d

∑
j=1

(qj ⊗ I − I ⊗ qj) ∨ (−ih̵(∂qj ⊗ I − I ⊗ ∂qj))Q(t)1/2⎞
⎠

= traceH⊗H
⎛
⎝
Q(t)1/2

d

∑
j=1

(∂qjV1 ⊗ I − I ⊗ ∂qjV2) ∨ (−ih̵(∂qj ⊗ I − I ⊗ ∂qj))Q(t)1/2⎞
⎠

= traceH⊗H
⎛
⎝
Q(t)1/2

d

∑
j=1

(∂qjV1 ⊗ I − I ⊗ ∂qjV1) ∨ (−ih̵(∂qj ⊗ I − I ⊗ ∂qj))Q(t)1/2⎞
⎠

+ traceH⊗H
⎛
⎝
Q(t)1/2

d

∑
j=1

(I ⊗ ∂qj(V1 − V2) ∨ (−ih̵(∂qj ⊗ I − I ⊗ ∂qj))Q(t)1/2⎞
⎠

=∶ τ1 + τ2 .
At this point, we recall the elementary operator inequality

A∗B +B∗A ≤ A∗A +B∗B .

Therefore,
d

∑
j=1

(qj ⊗ I − I ⊗ qj) ∨ (−ih̵(∂qj ⊗ I − I ⊗ ∂qj)) ≤ C

and, for each ` > Lip(∇V1)1/2, one has

d

∑
j=1

(∂qjV1 ⊗ I − I ⊗ ∂qjV1) ∨ (−ih̵(∂qj ⊗ I − I ⊗ ∂qj))

=
d

∑
j=1

1

`
(∂qjV1 ⊗ I − I ⊗ ∂qjV1) ∨ `(−ih̵(∂qj ⊗ I − I ⊗ ∂qj))

≤
d

∑
j=1

(Lip(∇V1)2

`2
(qj ⊗ I − I ⊗ qj)2 + `2(−ih̵(∂qj ⊗ I − I ⊗ ∂qj))2) .

Letting `→ Lip(∇V )1/2 shows that

d

∑
j=1

(∂qjV1 ⊗ I − I ⊗ ∂qjV1) ∨ (−ih̵(∂qj ⊗ I − I ⊗ ∂qj)) ≤ Lip(∇V1)C ,

so that

τ1 ≤ Lip(∇V1) traceH⊗H(Q(t)1/2CQ(t)1/2) .
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For the term τ2, we simply use the Cauchy-Schwarz inequality:

τ2 = traceH⊗H
⎛
⎝
Q(t)1/2

d

∑
j=1

(I ⊗ ∂qj(V1 − V2) ∨ (−ih̵(∂qj ⊗ I − I ⊗ ∂qj))Q(t)1/2⎞
⎠

≤
d

∑
j=1

∥Q(t)1/2(I ⊗ ∂qj(V1 − V2))∥2∣∣ − ih̵(∂qj ⊗ I − I ⊗ ∂qj)Q(t)1/2∣∣2

≤
d

∑
j=1

∥Q(t)1/2(I ⊗ ∂qj(V1 − V2))∥2∣∣(−ih̵∂qj ⊗ I)Q(t)1/2∣∣2

+
d

∑
j=1

∥Q(t)1/2(I ⊗ ∂qj(V1 − V2))∥2 + ∣∣(I ⊗ (−ih̵∂qj))Q(t)1/2∣∣2

= τ21 + τ22 .

Now

τ21 ≤
⎛
⎝

d

∑
j=1

∥Q(t)1/2(I ⊗ ∂qj(V1 − V2))∥2
2

⎞
⎠

1/2
⎛
⎝

d

∑
j=1

∥(−ih̵∂qj ⊗ I)Q(t)1/2∥2
2

⎞
⎠

1/2

=
⎛
⎝

d

∑
j=1

trace (Q(t)1/2(I ⊗ ∂qj(V1 − V2))2Q(t)1/2)
⎞
⎠

1/2

× (trace (Q(t)1/2(−h̵2∆⊗ I)Q(t)1/2))
1/2

so that

τ21 ≤ ∥∇(V1 − V2)∥L∞(Rd) trace(R0(t)1/2Hλ,00 R0(t)1/2)1/2 ,

and likewise

τ22 ≤ ∥∇(V1 − V2)∥L∞(Rd) trace(Rε(t)1/2Hλ,00 Rε(t)1/2)1/2 .

Summarizing, we have proved that

d

dt
traceH⊗H(Q(t)1/2CQ(t)1/2) ≤ traceH⊗H(Q(t)1/2CQ(t)1/2)

+Lip(∇V1) traceH⊗H(Q(t)1/2CQ(t)1/2)

+∥∇(V1 − V2)∥L∞(Rd)(trace(R0(t)1/2Hλ,00 R0(t)1/2)1/2

+ trace(Rε(t)1/2Hλ,00 Rε(t)1/2)1/2) .

On the other hand, since

ih̵∂tRj(t) = [Hλ,00 + Vj ,Rj(t)] ,

one has

trace(Rj(t)1/2(Hλ,00 + Vj)Rj(t)1/2) = trace((Rinj )1/2(Hλ,00 + Vj)(Rinj )1/2)

so that

trace(Rj(t)1/2Hλ,00 Rj(t)1/2) ≤ trace((Rinj )1/2Hλ,00 (Rinj )1/2) + 2∥Vj∥L∞(Rd) .
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Hence
d

dt
traceH⊗H(Q(t)1/2CQ(t)1/2) ≤ (1 − λ + Lip(∇V1)) traceH⊗H(Q(t)1/2CQ(t)1/2)

+∥∇(V1 − V2)∥L∞(Rd)

√
trace((Rin0 )1/2Hλ,00 (Rin0 )1/2) + 2∥V1∥L∞(Rd)

+∥∇(V1 − V2)∥L∞(Rd)

√
trace((Rinε )1/2Hλ,00 (Rinε )1/2) + 2∥V2∥L∞(Rd) .

By Gronwall’s inequality, choosing Qin to be an optimal coupling of Rin0 and Rinε ,
one finds that, denoting Λ(∇V1) = 1 − λ + Lip(∇V1),

MKh̵(R0(t),Rε(t))2 ≤ traceH⊗H(Q(t)1/2CQ(t)1/2) ≤ etΛ(∇V1)MKh̵(Rin0 ,Rinε )2

+e
tΛ(∇V1) − 1

Λ(∇V1)
∥∇(V1 − V2)∥L∞(Rd)

√
trace((Rin0 )1/2Hλ,00 (Rin0 )1/2) + 2∥V1∥L∞(Rd)

+e
tΛ(∇V1) − 1

Λ(∇V1)
∥∇(V1 − V2)∥L∞(Rd)

√
trace((Rinε )1/2Hλ,00 H

λ,0
0 (Rinε )1/2) + 2∥V2∥L∞(Rd) ,

which is the desired inequality by coming back to V,U through (18) and using

∥µV + εU∥ ≤ µ∥V ∥ + ε∥U∥.
�

Proof of Theorem 2.1 and Proposition 3.2. Observe that the estimate above is uni-
form in h̵ — more precisely, the moduli of continuity in the initial data and in the
potential are independent of h̵. Of course, the pseudo-distance MKh̵ itself is not
independent of h̵. For R,S ∈ D(H) let us define

δ(Wh̵[R],Wh̵[S]) ∶=(19)

sup
max

∣α∣+∣β∣≤2[d/4]+3
∥∂αq ∂

β
p f∥L∞(R2d)≤1

∣∫
R2d

f(q, p)(Wh̵[R],Wh̵[S]) ∗ q, p)dqdp∣.

Lemma 5.3. For any R,S ∈ D2(H),

d(R,S) ≤ 2dδ(Wh̵[R],Wh̵[S]) ≤ 2d(MKh̵(R,S) +Cdh̵) with Cd = (1 + γd√
π
)2d,

where γd ≤ d3/4(192e−
1
4 π−

5
4 )d

4e
1
4

(dd)11/4 is the constant appearing in the Caldaron-

Vaillancourt theorem (see Appendix C in [GP20a]).

Proof. The proof consists in applying Theorem A.7 in [GJP20] and Theorem 2.3
(2) in [GMP16]. �

Using Lemma 5.3 and Theorem 5.2 we get that

(2−dd(R0(t),Rε(t)) −Cdh̵)2

≤ (δ(Wh̵[R0(t)],Wh̵[Rε(t)]) −Cdh̵)2

≤MKh̵(R0(t),Rε(t))2

≤ etΛ(ε∇V1)MKh̵(Rin0 ,Rinε )2

+εe
tΛ(ε∇V1) − 1

Λ(∇V1)
∥∇(V1 − V2)∥L∞(Rd)

√
trace((Rin0 )1/2Hλ,00 (Rin0 )1/2) + 2ε∥V1∥L∞(Rd)

+εe
tΛ(ε∇V1) − 1

Λ(∇V1)
∥∇(V1 − V2)∥L∞(Rd)

√
trace((Rinε )1/2Hλ,00 (Rinε )1/2) + 2ε∥V2∥L∞(Rd)
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∶= etΛ(∇V1)MKh̵(Rin0 ,Rinε )2 + γ(t)ε.(20)

Therefore Theorem 2.1 and Proposition 3.2 are proven as soon as

(21) MKh̵(Rin,Rin)2 ≤D′h̵

since then

d(R0(t),Rε(t)) ≤ 2dδ(Wh̵[R0(t)],Wh̵[Rε(t)])

≤
√

22de∣t∣µLip (∇V )D′h̵ + 22dγ(t)ε + 2dCdh̵

≤
√
C(t)ε +D(t)h̵

with, since h̵ ≤ 1,

C(t) = 22d+1γ(t)(22)

D(t) = e∣t∣µLip (∇V )22d+1(D′(t) +C2
d)(23)

Lemma 5.4. For R ∈ D2(H) let

∆(R) ∶=
√

trace (R 1
2 (((x − trace (R 1

2xR
1
2 ))2 + (−i∇x − trace (R 1

2 (−i∇x)R
1
2 ))2)R 1

2 ).

Note that when R is a pure state i.e. R = ∣ψ⟩⟨ψ∣, ∆(R) is, modulo a slight abuse of
notation, the same as in the definition (1).

Then

MKh̵(R,R) ≤
√

2∆(R).
Moreover, for any ψ ∈ H,

MKh̵(∣ψ⟩⟨ψ∣, ∣ψ⟩⟨ψ∣) =
√

2∆(∣ψ).

Proof. The proof consists in remarking that R⊗R is indeed a coupling between R
and itself. Therefore

MKh̵(R)2 ≤ trace ((R
1
2 ⊗R

1
2 )C(R

1
2 ⊗R

1
2 ))

= trace ((R
1
2 ⊗R

1
2 )(x2 ⊗ I + I ⊗ x2 − 2x⊗ x)(R

1
2 ⊗R

1
2 ))

+ same with x↔ −ih̵∇x
= trace (R

1
2x2R

1
2 +R

1
2x2R

1
2 − 2R

1
2xR

1
2 .R

1
2xR

1
2 )

+ same with x↔ −ih̵∇x
= 2 trace (R

1
2x2R

1
2 − (R

1
2xR

1
2 )2)

+ same with x↔ −ih̵∇x
= 2∆(R).

The equality is proven the same way, after Lemma 2.1 (ii) in [GP20b] which stipu-
lates that the only coupling between ∣ψ⟩⟨ψ∣ and itself is ∣ψ⟩⟨ψ∣⊗ ∣ψ⟩⟨ψ∣. �

This proves Theorem 2.1, and Theorem 4.1 when Rin satisfies hypothesis (i).
If the initial data Rin is a Töplitz operator, specifically if

Rin = OPTh̵ [(2πh̵)dµin] ,
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with the notation of [GMP16] one can go further and apply Theorem 2.3 (1) in
[GMP16]:

MKh̵(Rin,Rin) ≤ 2dh̵,

so that (21) is again satisfied and Theorem 4.1 is proven when Rin satisfies the
hypothesis (iv).

The proof in the case of the hypothesis (ii), (iii) and (v) follows directly the first
inequality of Theorem 8.1 in [GP20b] with R = S = Rin, together with item (I)
(through the Corollary of Theorem 3.1 in [GP20a]) and item (II) of Theorem 4.1

in [GP20a], with µ(h̵) = µ′(h̵) = C, ν(h̵) = ν′(h̵) = C
√
h̵ and τ(h̵) = h̵, respectively.

Indeed, [GP20b, Theorem 8.1, (iii) first inequality] stipulates that, for all density
matrix R,

MKh̵(Rin,Rin) ≤ 2Eh̵(W̃h̵[Rin],Rin)
where Eh̵ is a semiquantum pseudometric whose knowledge of the definition [GP17,
Definition 2.2] is not strictly necessary for our purpose here since Theorem 4.1 in

[GP20a]) shows that, when µ(h̵) = µ′(h̵) = C, ν(h̵) = ν′(h̵) = C
√
h̵ and τ(h̵) = h̵,

Eh̵(W̃h̵[Rin],Rin) = O(
√
h̵).

Hence

MKh̵(Rin,Rin)2 ≤D′h̵

for some constant D′ explicitely recoverable from [GP20a, Theorem 4.1].
This completes the proof of Theorems 2.1 and 4.1. �

6. Proof of Corollaries 2.2 and 4.2

Let us first derive the easy standard following estimate.

Proposition 6.1. For every t ∈ R,

∥R0(t) −Rε(t)∥1 ≤ 2t
ε

h̵
∥U∥∞

Proof. The solution of (17) is explicitly given by

Rε(t) = e−i
tHε
h̵ Rinei

tHε
h̵

Therefore, one easily shows that

R0(t) −Rε(t) =
1

ih̵
∫

t

0
e−i

(t−s)Hε
h̵ [εU,R0(t)]ei

(t−s)Hε
h̵ .

and the result follows from

∥[εU,R0(t)]∥1 ≤ 2ε∥U∥∥R0(t)∥1.

�

Corollaries 2.2, 4.2 will follow by interpolation between Theorem 5.2 and Propo-
sition 6.1, through the following inequality.

Lemma 6.2. For any R,S ∈ D2(H),

d(R,S) ≤ 2d∥R − S∥1

Proof. This is Theorem A7 in [GJP20], item (2) �
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Therefore, by Theorem 2.1 and Lemma 6.2 we get, for each h̵, ε ∈ [0,1],

d(R1(t),R2(t)) ≤ min (
√
C(t)ε +D(t)h̵,2∣t∣ ε

h̵
∥U∥∞).

Obviously, min (
√
C(t)ε +D(t)h̵,2∣t∣ ε

h̵
∥U∥∞) ≤ min (

√
C(t) +D(t),2∣t∣∥U∥∞)ε 1

3 for

ε, h̵ ≤ 1, since, when h̵ ≤ ε 2
3 , h̵, ε ≤ ε 2

3 , and, when h̵ ≥ ε 2
3 , ε

h̵
≤ ε 1

3 . The Corollary is
proved.

7. Proof of Proposition 2.4

The upper bound is given simply by Lemma 5.3 and the following inequality,
proved in [GP18, Section 4]

MKh̵(∣ψz1⟩⟨ψz1 ∣, ∣ψz2⟩⟨ψz2 ∣)2 ≤ ∣z1 − z2∣2 + 2dh̵.

For the lower bound, we will pick a test operator in the form of a Töplitz operator
with symbol f ≥ 0:

F ∶= OPTh̵ [(2πh̵)df].

One easily verifies that traceF = ∫R2d f(q, p)dqdp.
Moreover, see [GJP20, Appendix B],

1
ih̵

[F,−ih̵∂xj ] = OPTh̵ [(2πh̵)d∂pjf], j = 1, . . . , d,

1
ih̵

[F,xj] = OPTh̵ [(2πh̵)d(−∂qjf)], j = 1, . . . , d,

∥F ∥1 ≤ ∥f∥L1(R2d).

Therefore, it is easy to construct functions f such that F ∶= OPTh̵ [(2πh̵)df] satisfies
the constraints of the maximization problem in the definition of d.

Moreover, denoting z = (q, p) ∈ R2d,

d(∣ψz1⟩⟨ψz1 ∣, ∣ψz2⟩⟨ψz2 ∣) ≥ ∣ trace (F (∣ψz1⟩⟨ψz1 ∣ − ∣ψz2⟩⟨ψz2 ∣))∣
= ∣⟨ψz1 ∣F ∣ψz1⟩ − ⟨ψz2 ∣F ∣ψz2⟩∣

= ∣∫
R2d

f(z)(∣⟨ψz ∣ψz1⟩∣2 − ∣⟨ψz ∣ψz2⟩∣2)
dqdp

(2πh̵)d ∣

= ∣∫
R2d

f(z)(e−
∣z−z1 ∣

2

2h̵ − e−
∣z−z2 ∣

2

2h̵ ) dqdp
(2πh̵)d ∣

≥ ∣f(z1) − f(z2)∣

− 2
e
h̵ max

∥α∣,∣β∣≤2
∫
R2d

∣∂αq ∂βp f(q, p)∣dqdp.

Let us suppose now that f ∈ S(R2d) and f is convex in a convex domain con-
taining z1, z2. Then, one can certainly rescale, translate and rotate f such that

● f(z1) − f(z2) ≥ ∇f(z2).(z1 − z2) convexity
● ∣f(z1) − f(z2)∣ ≥ C ∣z1 − z2∣, C > 0 rotation and translation
● max

∣α∣,∣β∣≤2[ d4 ]+3
∥Dα−ih̵∇DβxF ∥1 ≤ max

∥α∣,∣β∣≤2
∥∂αq ∂βp f∥L1(R2d) ≤ 1 rescaling.

Hence

C ∣z1 − z2∣ − h̵ ≤ d(∣ψz1⟩⟨ψz1 ∣, ∣ψz2⟩⟨ψz2 ∣).
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