Quantum and Semiquantum Pseudometrics and applications - Archive ouverte HAL
Article Dans Une Revue Journal of Functional Analysis Année : 2022

Quantum and Semiquantum Pseudometrics and applications

François Golse
  • Fonction : Auteur
  • PersonId : 838357
Thierry Paul
  • Fonction : Auteur
  • PersonId : 878449
  • IdRef : 158973372

Résumé

We establish a Kantorovich duality for he pseudometric $\cE_\hb$ introduced in [F. Golse, T. Paul, Arch. Rational Mech. Anal. \textbf{223} (2017), 57--94], obtained from the usual Monge-Kantorovich distance $\MKd$ between classical densities by quantization of one side of the two densities involved. We show several type of inequalities comparing $\MKd$, $\cE_\hb$ and $MK_\hb$, a full quantum analogue of $\MKd$ introduced in [F. Golse, C. Mouhot, T. Paul, Commun. Math. Phys. \textbf{343} (2016), 165--205], including an up to $\hbar$ triangle inequality for $MK_\hb$. Finally, we show that, when nice optimal Kantorovich potentials exist for $\cE_\hb$, optimal couplings induce classical/quantum optimal transports and the potentials are linked by a semiquantum Legendre type transform.
Fichier principal
Vignette du fichier
NewTriangARMA5.pdf (534.97 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03136855 , version 1 (09-02-2021)

Identifiants

  • HAL Id : hal-03136855 , version 1

Citer

François Golse, Thierry Paul. Quantum and Semiquantum Pseudometrics and applications. Journal of Functional Analysis, In press. ⟨hal-03136855⟩
141 Consultations
44 Téléchargements

Partager

More