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Abstract The CUPID Collaboration is designing a tonne-
scale, background-free detector to search for double beta
decay with sufficient sensitivity to fully explore the param-
eter space corresponding to the inverted neutrino mass hier-
archy scenario. One of the CUPID demonstrators, CUPID-
Mo, has proved the potential of enriched Li2100MoO4 crys-
tals as suitable detectors for neutrinoless double beta decay
search. In this work, we characterised cubic crystals that,
compared to the cylindrical crystals used by CUPID-Mo, are
more appealing for the construction of tightly packed arrays.
We measured an average energy resolution of (6.7±0.6) keV
FWHM in the region of interest, approaching the CUPID
target of 5 keV FWHM. We assessed the identification of
α particles with and without a reflecting foil that enhances
the scintillation light collection efficiency, proving that the
baseline design of CUPID already ensures a complete sup-
pression of this α-induced background contribution. We also
used the collected data to validate a Monte Carlo simulation
modelling the light collection efficiency, which will enable
further optimisations of the detector.

1 Introduction

Double beta decay occurs when a nucleus spontaneously
changes its atomic number by two units [1]. Despite the low
probability for this process to happen, double beta decay has
been already observed for 12 nuclei, with typical half-lives
in the range of 1018–1024 yr [2]. In recent times, some exper-

a e-mail: cupid.publications@lngs.infn.it (corresponding author)
b Also at Physik-Department, Technische Universität München, Garch-
ing, Germany

imental techniques have reached such a high precision on
the measurement of this process that today it is possible to
infer important nuclear properties or even search for physics
beyond the Standard Model of Particles and Fields (SM) by
studying spectral distortions [3–9].

Many theoretical frameworks predict that double beta
decay can also occur without the emission of neutrinos
[10,11]. Such a process, forbidden by the SM, will result
in the creation of only two electrons, thus violating the con-
servation of the total lepton number [12]. Furthermore, neu-
trinoless double beta decay (0νββ) will occur if neutrinos and
antineutrinos are the same particles, in contrast to all other
fermions [13]. Thus, the observation of this process would
allow the inference of fundamental properties of neutrinos
and set important milestones for leptogenesis theories and
particle physics.

Despite the tremendous progress in the past few decades,
0νββ keeps eluding detection. The most competitive exper-
iments are now setting lower limits on its half-life in the
range of 1024–1026 yr [14–22]. The proposed next-generation
experiment CUPID (CUORE Upgrade with Particle IDenti-
fication [23–25]) aims to push the half-life sensitivity beyond
1027 yr by operating a tonne-scale detector in background-
free conditions.

CUPID will rely on the well established technology of
scintillating cryogenic calorimeters (often referred as scintil-
lating bolometers). Cryogenic calorimeters have been devel-
oped for almost 40 years [26,27], starting from samples of
few grams and proving the feasibility of tonne-scale detectors
through the CUORE experiment [28]. The significant results
obtained by CUORE, which recently reached 1 ton·yr expo-
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sure, marks for its successor CUPID an important milestone
to build on.

The success of CUPID hinges on an important technolog-
ical innovation: implementation of a background-free tech-
nology. According to the CUORE background model [29],
the dominant background source for cryogenic calorime-
ters are α particles produced by the radioactive decays of
the residual contamination of the materials constituting the
detector. The CUORE Collaboration has already pushed the
radiopurity limit with strict material selection and clean-
ing techniques. A further background suppression can be
obtained mainly through particle identification. CUPID will
exploit the simultaneous read-out of the calorimetric signal
and scintillation light, taking advantage of the different light
yield of electrons (potential signal) and α particles, to actively
reject the α background [30–32].

Additionally, CUPID will have to deal with the back-
ground induced by β and γ ’s. Since the intensity of such
events drops above the 2615 keV γ peak of 208Tl, which is
generally assumed as the end-point of the environmental γ

radioactivity, CUPID will search for 0νββ using an isotope
with a higher Qββ value: 100Mo, Qββ = (3034.40 ± 0.17)
keV [33].

The combination of scintillating bolometers and high Qββ

value emitters was developed by the LUCIFER [34–41] and
LUMINEU [42–48] projects, as well as by the AMoRE Col-
laboration [49]. The outcomes of LUCIFER and LUMINEU
were two medium-scale demonstrators, CUPID-0[3,4,19,
50–52] and CUPID-Mo [21,48,53,54] respectively. Thanks
to the high collected statistics, CUPID-0 proved that the tech-
nique of scintillating bolometers allows to suppress the α

background by about 3 orders of magnitude, matching the
CUPID requirements. The complementary effort of CUPID-
Mo, allowed to assess the performance of Li2100MoO4 crys-
tals in terms of energy resolution, particle identification capa-
bility, radio-purity and reproducibility. For these reasons,
Li2100MoO4 scintillating bolometer was chosen to be the
baseline detector for the CUPID experiment.

CUPID-Mo used cylindrical Li2100MoO4 crystals cou-
pled to light detectors and surrounded by a reflecting foil.
Cubic crystals would largely simplify the construction of
a tightly packed array, maximizing the emitter mass and
enhancing the background suppression via the rejection of
coincidences, i.e., events that release energy in more than
one crystal.

In this work, we characterized for the first time cubic
Li2100MoO4 crystals, in order to prove that they comply with
the CUPID goals: an energy resolution of 5 keV FWHM and
complete rejection of the α background in the region of inter-
est.

We have also assessed the impact of a reflecting foil on
light collection. Being a potentially contaminated material,
the reflecting foil is not a desirable component of the detector.

Fig. 1 Rendering of the 8-crystal array. The array consists of 8
Li2100MoO4 crystals (45 × 45 × 45 mm, corresponding to a mass of
∼ 280 g) arranged in two floors. Crystals belonging to the bottom floor
were surrounded by a reflecting foil (not shown in the rendering). The
light emitted by Li2100MoO4 crystals was detected by Ge light detectors
(�44 × 0.175 mm) arranged in three floors

Furthermore, it limits the study of coincidences among crys-
tals, absorbing the α and β particles emitted on their surfaces.
On the other hand, the light collection that can be achieved
without a reflector was never measured. For this reason, we
operated crystals both with and without a reflecting foil.

2 The 8-crystal prototype

A prototype was designed to fulfill the following require-
ments:

– compact architecture with high efficiency of space usage,
as the available space is limited by the experimental vol-
ume of the cryostat;

– simple and modular assembly, minimizing the number of
structural parts;

– minimization of the support structure volume and weight;
– low radioactivity of all the elements.

We designed a prototype consisting of eight Li2100MoO4

crystals disposed in two floors and interleaved by light detec-
tors (Fig. 1). The crystals on the bottom floor were surrounded
by a Vikuiti™ from 3M reflecting foil, while those on the top
floor were not surrounded by a reflector.
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The mechanical structure included PTFE supports and two
types of copper elements: frames and columns. Both materi-
als are available with high radiopurity. Such a structure offers
simplicity in assembly and could represent the starting point
for the design of the final CUPID towers.

The Li2100MoO4 crystals are (97.7 ± 0.3)% enriched in
100Mo and have a cubic shape with a 45 mm side and mass
of ∼ 280 g. The growth of the eight Li2MoO4 crystals con-
taining molybdenum enriched in the isotope 100Mo was per-
formed within the CROSS project [55], following the proto-
col set up by LUMINEU [46,47]. Due to restrictions imposed
by the dimensions of the crucible used for the crystals growth,
the edges of the Li2100MoO4 samples were rounded. The heat
signal produced by each Li2100MoO4 crystal was measured
using a Neutron Transmutation Doped germanium thermis-
tor (NTD-Ge [56]), which produces a typical voltage signal
of tens-hundreds of µV per 1 MeV of deposited energy. Each
detector was also equipped with a silicon heater. Periodic ref-
erence pulses can be injected via the heater and this is gen-
erally used to correct small temperature variations and drifts
during the data taking [57,58]. In this characterization run,
the injected pulses were instead utilized for pile-up studies on
the Li2100MoO4 crystals [59]. The sensors and heaters were
attached to the crystals using a two-component epoxy resin
(Araldite Rapid®) which is a well studied glue for bolomet-
ric detectors. The electrical connections were done through
copper pins crimping, as e.g. in CUPID-0 [41].

Concerning the light detectors (LDs), for this work we
used the same type of devices already leveraged by CUPID-
Mo [53] and CUPID-0[60]. When an electron of few MeV
interacts in a Li2100MoO4 crystal, the expected light signal is
of the order of few keV [46,48,53]. “Standard” technologies
for light detection (PMT, photodiodes, etc) are not convenient
for the applications at cryogenic temperatures. To convert
few keV into a readable voltage signal at ∼ 10 mK, we used
cryogenic calorimeters made of �44×0.175 mm germanium
disks as light detectors. Also the Ge crystals were equipped
with an NTD-Ge thermistor and a heater. To increase the
light collection, an antireflecting ∼ 70 nm SiO layer [61] was
deposited on both sides of LD as e.g. in CUPID-Mo [53]. The
surface of the LDs foreseen for the thermal sensors and the
heater was left uncoated (Fig. 2).

In order to calibrate the LDs in the energy scale of scin-
tillation light signals, we deposited an X-ray source (55Fe,
emitting X-rays at 5.9 keV and 6.4 keV) on supports facing
the surface of the germanium disks.

The prototype was operated in a milli-Kelvin facility
located in the Hall C of the deep underground Laboratori
Nazionali del Gran Sasso of INFN, Italy.

Fig. 2 Photo of the array during assembly (top view). An NTD-Ge
thermistor is glued on top of each crystal. As Li2100MoO4 crystals are
almost transparent, we see also the bottom layer of LDs with a SiO
coating

3 Data analysis

The voltage signals were amplified and filtered with a 120
dB/decade, six-pole anti-aliasing active Bessel filter [62–68].
We used a custom DAQ software package to save on disk the
data stream acquired through a 18 bit analog-to-digital board
with a sampling frequency of 2 kHz [69].

A derivative trigger was applied to the data to identify
thermal pulses; the trigger parameters were tuned for each
detector according to its noise and the shape of the thermal
pulse response. Moreover, a random trigger was set every
60 s, to sample detector baselines without any signal. For
each trigger, we constructed a 5-s-long time window for both
LDs and Li2100MoO4 crystals (from now on, LMO).

The triggered data were then processed offline via a ded-
icated analysis chain, which was adapted from a C++ based
analysis framework developed for CUORE [70], CUPID-0
[71] and their predecessors [72].

A matched filter algorithm (Optimum Filter) [73,74] was
applied to the thermal pulses to evaluate the signal amplitude
by suppressing the most intense noise frequencies. For each
event, we reconstructed other basic parameters, such as the
baseline value, which was treated as a proxy for the detec-
tor temperature, the baseline RMS, the pulse rise and decay
times, and other shape parameters.

We acquired calibration runs with 232Th sources outside
the cryostat, to characterize the LMO response as a func-
tion of the deposited energy. The thermal instabilities of the
detector could affect its intrinsic gain, resulting in a degra-
dation of energy resolution. We used constant energy events
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(2615 keV γ quanta) to trace the evolution of the pulse ampli-
tude as a function of the crystal temperature, and correct for
such dependency (stabilization procedure).

The corrected amplitudes were converted into energy
using the most intense gamma peaks produced by the 232Th
sources and building calibration functions accordingly.

We followed a different approach for the LD pulse recon-
struction, accounting for their worse signal-to-noise ratio.
The signal template for LDs was built by averaging pulses
produced by the 55Fe X-ray sources. Using this signal tem-
plate, we applied the Optimum Filter algorithm also to LDs.
We further improved the estimation of the light amplitude
by using the fixed time-delay between light and heat signals
due to the jitter of the electronics chain [75]. We first selected
high energy events to derive the jitter for each detector. We
then evaluated the amplitude of the filtered light pulse at a
fixed time delay with respect to the heat pulse. We underline
that such procedure does not change significantly the evalu-
ation of the light signal in the region of interest, but it allows
to remove a small non-linearity due to the optimum filter at
very low energy.

The energy resolution of LDs is ∼ 1%, thus larger com-
pared to the typical gain variations. Thus, we did not have to
repeat the stabilization procedure used for the LMO detec-
tors. We energy-calibrated the amplitudes of the LDs using
a linear function with zero intercept. The calibration coeffi-
cient was derived fitting the 5.9 keV peak of the 55Fe source.

This procedure allowed us to compute the “light yield”
(LY ) of our detectors, i.e., the amount of scintillation light
(in keV) detected in the LDs for a given energy deposition
(in MeV) in the LMOs.

4 Results

Among the 8 LMO crystals of the presented setup, we noticed
that 2 of them (LMO-2, LMO-8) were not functioning when
we reached base temperature, due to broken electric contacts.
We will present the analysis of the data acquired for the other
6 LMO detectors and related LDs.

The detector response depends on the operating tempera-
ture: a lower temperature decreases the thermal capacitance
and enhances the NTD-Ge response, generally leading to a
better signal-to-noise ratio.

For this work, we operated the detectors at 18 mK, with
working NTD-Ge resistances of 10–50 M� for the LMO
detectors. Due to technical problems related to the test cryo-
genic facility, it was not possible to operate the detector at
∼ 10 mK (working resistance of hundreds of M�), where we
expect the best performance. We measured a signal amplitude
ranging from 30 to 120µV/MeV (mean: ∼ 50 µV/MeV),
and a baseline energy resolution of 1.0–1.8 keV RMS (mean:
∼ 1.3 keV).

The characteristic rise and decay times (defined as the
time difference between the 90% and the 10% of the leading
edge, and the time difference between the 30% and 90% of
the trailing edge, respectively) were ∼ 18 ms and ∼ 120 ms.
The response of these detectors is consistent with the one
of cylindrical LMO detectors operated in similar conditions
[46,53].

On average, the LDs intrinsic signal amplitude resulted
∼ 5 mV/MeV, the baseline resolution ∼ 40 eV RMS and the
characteristic times ∼ 3 ms (rise) and ∼ 16 ms (decay). The
measured parameters were in full agreement with the typical
performance of germanium LDs with NTD-Ge readout [40,
53].

For each LMO channel, we evaluated the energy resolu-
tion at the several γ peaks used for calibration and extrapo-
lated to the Qββ of 100Mo. Considering all the 6 LMO detec-
tors, the average FWHM at 2615 keV γ peak is (7.5 ± 0.4)
keV, while the FWHM at Qββ is (8.2 ± 0.5) keV. However,
three LMO detectors (LMO-3, LMO-4, LMO-7) were instru-
mented with silicon heaters used for pile-up studies [59]; we
observed that the heater system on those LMO crystals was
inducing extraneous noise and instabilities in the detectors,
affecting the quality of the calibration data. The system to
artificially inject pile-up events will not be present in CUPID.
Thus, for a more realistic estimation of the CUPID detector
performance, we discarded these 3 LMO crystals from the
final resolution results.

In Fig. 3, we report the FWHM energy resolution as a
function of the energy, evaluated from the cumulative calibra-
tion spectrum of the other LMO detectors (LMO-1, LMO-5,
LMO-6). The extrapolated FWHM at Qββ is (6.7±0.6) keV.
This value is already very close to the CUPID goal of 5 keV
FWHM. Furthermore, it has to be interpreted as a conser-
vative value, as the detectors were operated at a higher than
expected temperature (limiting the signal-to-noise ratio) and
in unstable noise conditions because of major safety upgrades
to the cryogenic facility. The operation at colder tempera-
tures and in stable conditions will allow to further improve
this result (as demonstrated with cylindrical LMOs [46]).

As mentioned before, one of the main goals of this mea-
surement was to compare the average LY for LMO detectors
with/without the reflecting foil and study the discrimination
power for α and β/γ separation in the combined light-heat
scenario.

Figure 4 reports the LY measured by a single light detector
as a function of the heat for an LMO surrounded by reflecting
foil, and for an LMO without reflector.

In both scenarios, we can clearly identify two popula-
tions of events. With an energy reaching 2615 keV, β/γ

events populate the band with higher LY . At very low energy,
the light-amplitude can be slightly mis-reconstructed, due to
noise superimposed to small scintillation light signals, caus-
ing a spread in the LY distribution.
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Fig. 3 FWHM energy resolution as a function of the energy. Data were
fitted with a linear function: FWHM = p0 + p1 ×E (blue line). Green
dotted line (color online): Qββ of 100Mo

The band with lower LY is populated by α particles. At
high energy we recognize a cluster of events due to an internal
crystal contamination in 210Po (ascribed to a 210Pb contami-
nation [44]). This emitter should produce a peak at ∼ 5.4
MeV but, since the detector was energy-calibrated using
gamma’s, the α peak is observed at slightly higher electron-
equivalent energy (+7%, in agreement with previous studies
with lithium molybdate bolometers [39,45,46,53,76]).

The other events at lower energies can be ascribed to α

particles produced by a 238U/234U source. The source was
covered with a thin mylar foil to smear the energy of the α

particles and characterize the rejection of the α background
also at low energy.

To evaluate the LY , we selected electrons and α particles
with energy exceeding 1 MeV. We summed the light collected
by LD located on the top and bottom of each LMO crystal,
and derived the mean of the distribution of these events. We
obtained a summed average LYβ/γ = (1.10±0.05) keV/MeV
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Fig. 4 Light yield measured in a LD as a function of the energy
deposited in the LMO surrounded by the reflecting foil (blue) and LMO
without reflector (red). Data were collected with a 232Th γ source and
a smeared α source

for the LMO surrounded by the reflecting foil, and LYβ/γ =
(0.50 ± 0.05) keV/MeV for the LMO without reflector. The
LYα for α particles resulted LYα = (0.19 ± 0.01) keV/MeV
for the LMO surrounded by the reflecting foil, and LYα =
(0.085 ± 0.004) keV/MeV for the LMO without reflector.

The measured LY is lower than that of e.g. cylindri-
cal LMOs of CUPID-Mo (1.35 keV/MeV for 2 LDs [53])
because of a non optimal light collection efficiency (more
details in the following). Also, LY differences among LMO
crystals were very small (lower than 20%) and mainly due to
systematic uncertainties in the energy calibration of the light
detectors.

We finally highlight that, due to the geometry of the array,
the top and bottom LDs had the same light collection effi-
ciency. As shown in Fig. 4, in which we reported the top LD
only, each LD was measuring half of the total collected light.

In order to quantify the discrimination capabilities between
the α and the β/γ populations provided by the scintillation
signal, we measure the difference between the average LY
for signals produced by the two kinds of particles (LYβ/γ ,
LYα). The difference is then compared accounting for the
width of the two distributions.

For this purpose, we defined a Discrimination Power (DP)
[77]:

DP ≡
∣
∣LYβ/γ − LYα

∣
∣

√

σ 2
β/γ + σ 2

α

. (1)

We underline that such parameter depends on the energy, as
the resolution of LDs (and thus the DP) improves signifi-
cantly at higher energy (Fig. 4). Due to the limited statistics
we had to enlarge the region to compute the DP down to
1 MeV, a region well below the Qββ . As a consequence, the
DP values obtained in this work have to be considered as
conservative results.

We evaluated the DP for each single LD (top and bottom)
and for the sum of the LY of the top-bottom LDs. The results
are summarized in Table 1.

Table 1 Discrimination Power (DP) for LD top, LD bottom and the sum
of the two light detectors. LMO-1,3,4 are surrounded by the reflecting
foil, while LMO-5,6,7 are without a reflecting foil

DP (top) DP (bottom) DP (sum)

LMO-1 7.3 8.6 10.8

LMO-3 6.9 7.1 10.2

LMO-4 6.9 7.1 8.7

LMO-5 3.4 4.3 4.6

LMO-6 2.3 3.9 4.4

LMO-7 4.7 3.3 5.5
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In case of LMO crystals surrounded by the reflective foil,
the average DP for all single LDs is ∼ 7.3, ensuring a com-
plete rejection of α events. In this case, using a second LD
would not drastically improve the suppression of the α back-
ground, which is already beyond the CUPID target.

The average DP for single LDs facing bare crystals is
∼ 3.6, leading to ∼ 0.05% of α events which cannot be dis-
tinguished from the β/γ ones. Even if this rejection capabil-
ity would comply with the CUPID requirements, we observe
that there are some cases in which the DP shows slightly
lower values because of higher noise of the LD (for exam-
ple, for LMO-6 the DP using the top light detector is only
2.3). It is worth observing that summing the light collected
by the top/bottom LDs allows to reach a DP much larger than
4, and thus a negligible α background.

We can conclude that with the reflecting foil even a single
LD is sufficient for CUPID α discrimination goal, while with-
out a reflecting foil it appears that having two LDs is more
effective for tagging the α events even in noisy light detectors.
Summing the LY of the two LDs facing an LMO detector,
indeed, can help improve the discrimination capabilities in
case of the bare crystals, where the detected scintillation light
is poor and so is the single detector LY .

The measurement of the LY was used to validate a Monte
Carlo simulation of the scintillation light based on the Litrani
software [78]. We reconstructed the geometry of the detec-
tor, using the optical properties of lithium molybdate crystals
[79], its scintillation spectrum [80] and scintillation decay
time at cryogenic temperatures [81]. The optical properties
of the coated germanium disk and the reflecting foil were
taken from [82]. The only missing parameter for the simula-
tion was the absolute number of photons emitted by LMO at
18 mK. To our knowledge, this value is not reported in liter-
ature and would require dedicated measurements. The lack
of the number of emitted photons prevented a direct compar-
ison between the simulated and the measured light absorbed
by the germanium LDs. Nevertheless, we could use the sim-
ulation to do a comparative study and predict the effect of
the reflecting foil.

In Fig. 5 we report the predicted ratio of the light collected
with a reflecting foil to the light collected without a reflecting
foil.

The ratio is reported as a function of the surface roughness,
which played an important role with other crystals [82,83].
In this study, on the contrary, we observed that the emis-
sion of scintillation light in LMO crystals does not depend
significantly on the surface roughness. The reason for this
behaviour resides in the small refractive index of LMO, lead-
ing to a narrow critical angle and, as a consequence, to a high
escape probability of the emitted photons.

The roughness angle is a simulation parameter that cannot
be easily related to the crystal surface. Low roughness angles
describe the scenario in which the crystals are optically pol-
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Fig. 5 Ratio of the light collected with a reflecting foil to the light
collected without a reflecting foil, as a function of the surface roughness.
The LMO crystals were non optically polished, so the results of interest
for this work are those in the central region of the X-axis

ished, while high roughness angles refer to rough crystal sur-
faces. The crystals used in this work were polished following
the LUMINEU protocol, but not to optical grade. As so, we
expect the intermediate roughness angles to better describe
the experimental conditions. We also observe that, especially
in this parameter region, the ratio with/without reflector is in
good agreement with the measured value of 2.20 ± 0.24.

This study shows that the simulation can be an effective
tool to model light production, propagation and absorption
in scintillating bolometers.

After validating the simulation framework, we used it to
predict the improvement in light collection that could be
obtained by using (i) a squared light detector that fully cov-
ers the LMO side and (ii) a light detector very close to the
scintillator. In the current prototype, the distance between
LMO and light detector is 6.5 mm. With a different mechan-
ical structure we could narrow it down to 0.5 mm. The sim-
ulation suggests that these simple geometrical modifications
will enhance the collected light by 60%.

Preliminary works also proved that putting the light detec-
tor in contact with the main crystal allows to increase the
light collection without affecting the bolometric performance
of the device [84]. This experimental scenario cannot be
described by a simulation, which would assume an ideal
contact between the two surfaces. In reality, both surfaces
feature micro-defects preventing an optical contact, which
cannot be easily implemented in a simulation. For this rea-
son, we believe it is important to repeat the studies performed
in Ref. [84] with Li2100MoO4 crystals, and determine if the
direct coupling can further enhance light collection.

As proved in this work, increasing the light collection
would not be strictly necessary for CUPID. Nevertheless, it
would bring many advantages such as:
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– improving the rejection of background induced by pile-
up. Light pulses are faster compared to heat pulses
and thus could help disentangling two partly overlapped
pulses. Improving the signal-to-noise ratio of such pulses
would make the pile-up rejection more effective [85–87];

– tolerating the (potential) malfunctioning of one of the two
light detectors coupled to the LMO crystals;

– coping with a possible higher noise of some LD.

The proposed improvements of the geometry will be studied
in future measurements to develop a risk mitigation strategy.

5 Conclusions

We tested an array of eight enriched cubic Li2100MoO4 crys-
tals (280 g each) at the Gran Sasso underground laboratory, in
the framework of the CUPID project. Despite the sub-optimal
measurement conditions, we obtained an energy resolution of
(6.7±0.6) keV FWHM at Qββ of 100Mo (3034 keV), almost
in compliance with the CUPID goal of 5 keV. We foresee a
further improvement by operating the crystals at tempera-
tures lower than 18 mK (reached in the present study) and in
more stable cryogenic conditions.

We characterized the particle identification capabilities in
different experimental conditions (with and without reflect-
ing foil and using one or two light detectors) and demon-
strated that the baseline design of CUPID already guarantees
the necessary rejection of the α background.

We developed a Monte Carlo simulation of the scintilla-
tion light and validated it against the collected data. We iden-
tified the limits of the mechanical assembly used in this test
and proposed some upgrades for the structure of the CUPID
towers. According to the simulation, such improvements will
allow to enhance the light collection by 60%. Even if increas-
ing the light collection is not crucial for CUPID, it will bring
many advantages both in terms of background suppression
and risk mitigation.
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