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Abstract. We present a construction of symmetry plane-groups for quasiperi-
odic point-sets named beta-lattices. The framework is issued from beta-
integers counting systems. Beta-lattices are vector superpositions of
beta-integers. When 8 > 1 is a quadratic PisotVijayaraghavan alge-
braic unit, the set of beta-integers can be equipped with an abelian
group structure and an internal multiplicative law. When = (1 +

V/5)/2,1++/2 and 2 ++/3, we show that these arithmetic and alge-
braic structures lead to freely generated symmetry plane-groups for
beta-lattices. These plane-groups are based on repetitions of discrete
adapted rotations and translations we shall refer to as “beta-rotations
and “beta-translations. Hence beta-lattices, endowed with beta-rotations
and beta-translations, can be viewed like lattices. The quasiperiodic
function pg(n), defined on the set of beta-integers as counting the num-
ber of small tiles between the origin and the nth beta-integer, plays a
central part in these new group structures. In particular, this function
behaves asymptotically like a linear function. As an interesting conse-
quence, beta-lattices and their symmetries behave asymptotically like
lattices and lattice symmetries, respectively.



1. Introduction

Underlymg the notion of a tiling there 1s the notion of a point-set. In this paper, we
assume point-sets to be Delaunay sets [16,17). There exist infinitely many possibilities
to build a tiling from a Delaunay set, and conversely, there are infinitely many ways to
build a Delaunay set from its associated tiling. A possible method 1s to consider the set
of vertices of a tiling as an associated Delaunay set [12], which is the correspondence
we will assume m the following. We will indifferently mention a tiling or its associated
Delaunay set, displaying or not the edges in the figures.

In general, there does not exist a symmetry group for a tiling nor for its associated
Delaunay set, except for perniodic tilings and /attices. Historically, the latter merge from
crystallography, and are associated with crystals. Note that in 1991, afier the discovery
of modulated phases and of quasicrystals, crystallography have been divided in two
categories: periodic crystallography, and aperiodic crystallography [10]. Let us sketch
the general algebraic frame of periodic crystallography.

Definition 1. A crystallographic group in RY, or a space-group in RY, is a discrete
group of 1sometries whose maximal translation subgroup is of rank . hence 1somorphic
to 74,

Definition 2. A penodic crystal is the orbit under the action of a crystallographic group
of a finite number of points of R,

We can illustrate these definitions with the square lattice A=Z + Z¢'™?, which is
a classical lattice case. This set presents a 4-fold rotational symmetry. The symmetry
space-group G associated with A 1s the semi-direct product of the translation-group of
A by its rotation-group

G = A>a{l,—1,¢" "2}
its intemal law being
(AR)A.R'Y = (++ RV.RR")

with 4, 2"€ A and RR € {1, —1,¢™? 7172}

In the context of the 18th problem of Hilbert, Bieberbach has shown that the num-
ber of isomorphism classes (equivalently of conjugation classes) of crystallographic
groups 1s finite for all d [25]. Therefore, the number of crystallographic groups leaving
invariant a fixed crystal of B¢ is finite.

For quasicrystals, as a consequence of apeniodicity, we do not have such a convenient
algebraic structure of symmetry space-groups, as in the periodic case. For quasicrystals
determined by some quadratic Pisot-Vijayaraghavan (PV) unit, generically denoted by
f =1, we can introduce an underlying structure, the so-called beta-lattice [1]. Exper-
imentally observed quasicrystals are related to well-known PV numbers [11], namely
for f=t="25 B 5-1+ 2 and p=0=2+ 3.



Beta-lattices are based on beta-integers. When ff 1s a PV number, the set of beta-
integers, denoted by £, 1s a self-similar Meyer set, with self-similanty factor ff. Recall
that a Delaunay set is a Meyer set A€ RY if A — AC A+ F, where F is a finite set.
We generically define a beta-lattice I' = I'(f) € RY by

d
I' = E Zﬁe‘-
i=1
with (e;) a base of R4, Therefore, I' is a self-similar Meyer set with self-similarity
factor ff. With this respect, beta-lattices are eligible frames in which one could think
of the properties of quasiperiodic pomt-sets and tilings, thus generalizing the notion of
lattice in periodic cases.

The aim of the present work 1s to extend the algebraic frame of penodic crystals
to beta-lattices: we construct a space-group matching Definition 1 such that the beta-
lattice is the orbit under the action of this space-group of a finite set of points of R,
as in Definition 2. In other words, we show that a beta-lattice 1s at least a “crystal”
for a “space-group” that we determine explicitly.

We consider the cases in which f§ 1s one of the “quasicrystallographic™ numbers
mentioned above. Since we restnet ourselves to the case d =2, we rather talk of
“plane-groups™. We proceed by first recalling the intemal additive and multiplicative
laws on the set of beta-integers £y C R, which “almost™ endow this set with a struc-
ture of ordered ring (order induced by that of [R) [6], then by establishing a set of
algebraic operations, acting on the given beta-lattice by leaving it invariant. We report
on the algebraic constructions of such extended plane-groups, leaving aside the deli-
cate questions of compatible metrics and of the number (finite or infinite) of possible
“space-groups™ leaving mvariant a given beta-lattice. However we show that the internal
transformations defined on beta-lattices are compatible with Euclidean transformations.
Compatibility property is given by the following definition.

)

Definition 3. Let T be an intemal law defined on R, and let A CRY be a set. We
say that an internal operation T defined on A is T-compatible with the operation T
ifforall 4, /€A, ATV eA mplies AT A'=4T7.

The article 1s organized as follows. In Section 2, we recall some definitions on
Delaunay sets, Meyer sets, and on cyclotomic PV numbers. In Section 3, we recall
results on the arithmetics and the mternal laws on Zg. Most of this material can be
found 1n [6], and 1s essential for the understanding of the present article. In Section 4,
we give the definition of beta-lattices in the plane, together with their rotational and
translational properties. A general form for beta-lattices is I}(f) = Zg + Zpe ™™ for f
a cyclotomic PV unit of symmetry V. Fig. 1 is a possible tiling of such a beta-lattice
with ff =1, the golden mean, namely a z-lattice. Section 5 is the central part of the
article, with its main result: the construction of the plane-groups associated with the
beta-lattices. We use the internal additive and multiplicative laws on £ to define a
symmetry point-group for [(f) in Theorem 1, and the free symmetry plane-group of
I(f) in Theorem 2. Then we illustrate the action of the symmetry plane-group of
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Fig. 1. A tiling of the r-lattice Ii(1).

I1(7) on the tiles of a z-lattice. Section 6 1s dedicated to the asymptotic properties of
beta-lattices. The striking feature which is shown there is that asymptotically the set
of beta-integers behaves like a nng, but with a contraction factor. We touch here the
fundamental question of whether a beta-lattice can be considered as a module over an
ordered ning. If it were the case, the present construction would enter into the realm of
the Artin—Schreier theory ([13, Chapter 6]). Eventually, we make explicit the rotation
actions for the quasicrystallographic numbers 7z, 6 and 0 in the appendix.

2. Preliminaries
2.1. Delaunay sets and Meyer sets

Delaunay sets were introduced as a mathematical idealization of a solid-state struc-
ture, see [12]. A set ACRY is said to be uniformly discrete if there exists >0 such
that |[x — y||=r, for all x,y €A. We can equivalently say that every closed ball of
radius » contains at most a point of A. A set A 1s said to be relatively dense if there
exists R >0 such that for all y€ RY, there exists x& A such that [|x — y|| <R. We can
equivalently say that every open ball of radius R contains at least a point of A. If both



conditions are satisfied, A 1s said to be a Delaunay set. The possible range of ratios
R/r 1s studied in [21] as a function of 4. The action of the group of rigid motions
(or Euclidean displacements) of B¢ on the set of uniformly discrete sets and Delaunay
sets can be found in [22).

The first models of quasicrystal were mtroduced by Meyer [16-18], and they are
now known as Meyer sets. A set AC R is said to be a Meyer set if it is a Delaunay
set and 1f there exists a finite set £ such that

A—=ACA+F.

This 1s equivalent to A — A being a Delaunay set. A review on Meyer sets can be
found i [19,20].

2.2, Crystals and Bravais lattices

Bravais lattices are used as mathematical models for crystals. A Bravais lattice is an
infinite discrete point-set such that the neighborhoods of a point are the same whichever
point of the set 1s considered. Geometrically, a Bravais lattice 1s characterized by all
Euclidean transformations (translations and possibly rotations) that transform the lattice
into itself. The condition 2cos2n/N € Z characterizes Bravais lattices which are left
invariant under rotation of 27/N, N-fold Bravais lattices, in R* (and in R%). Let us
put {=¢*V N — 1 If we consider the Z-module in the plane

4 4

=2+ +20+---+2 ' =7 [2cos27”] +Z [2cos27”] £,

we get the cyclotomic ring of order N. This N-fold structure 1s genencally dense in
C, except precisely for the crystallographic cases. We indeed check that Z[{] =Z for
N=1or2, Z[{]=Z + Zi for N =4 (square lattice), and Z[{]=Z + Z¢"? for the
triangular and hexagonal cases NV =3 and 6. Note that a Bravais lattice 1s a Meyer set
such that F = {0}.

2.3. Non-crystallographic cases

For a general N, the number 2cos2m/V 1s an algebraic integer of degree m =
@(N)2<[(N —1)/2| where ¢ is the Euler function and | y| denotes the integer part
of a real number y. We shall now recall some definitions on numbers.

A Pisot—Vijayaraghavan number, or PV number in short, 1s an algebraic integer
f=1 such that all its Galois conjugates (i.c. other roots of the involved algebraic
equation) have their moduli strictly smaller than 1. A cyclotomic PV number with
symmetry of order NV i1s a PV number 8 such that

4

z [ZCOS 277:] = Z[p). (1)

Then Z[{] = Z[f] + Z[B)L, with {=¢*"¥ is a ring mvariant under rotation of order
N (see [1]). This ring is the natural framework for two-dimensional structures having



f as scaling factor, and 27/N rotational symmetry. In this paper, we will focus on
quadratic PV units. They are of two kinds. The first kind 1s such that f§ is solution of

X2=aX+1. a=1

and 1ts conjugate 1s /' = —1/f. The second kind is such that f§ 1s solution of

2

X°=aX—-1, a=3

and 1ts conjugate 1s "= 1/f. Let us give some examples of those numbers, together
with their respective Galois conjugates, related to non-crystallographic cyclotomic struc-
tures in the plane, and minimal polynomials, the following notations being used through-
out the article:

2n
=1+ 2cos —.

‘V.: ﬁ:r: 2 5
1
r'=—;=1—r, X?—X —1 (pentagonal case),
1+\/§ 2n
N=10, f=1= 3 —2co.sm,
7 = —— = 11—z, X*—X—1 (decagonal case),
2
N =8, ﬁ=6=1+\/§=1+2cos?n,
1
o = -3 = 2-6, X*—2X —1 (octogonal case),
2
N =12, ﬁ=0=2+\/§=2+2cosl—;,
()’=]6=4—(), X? —4X +1 (dodecagonal case).

Note that in the case N =7, we have ff=1+2cos2n/7 which is solution of the cubic
equation X° — 2X? — X + 1=0. At this point, we should be aware that finding a
PV number such that the cyclotomic condition (1) is fulfilled for N =16 is an open
problem!

3. Additive and multiplicative properties of beta-integers
3.1. Beta-expansions

When a number =1 appears as a kind of fundamental mvariant in a given structure,
it 1s tempting to introduce into the procedure of understanding the latter a counting

system based precisely on this . Let us explain here what we mean by counting
system.



Among all beta-representations of a real number x =0, 1.¢. infinite sequences (x;); =k,
such that x= Y, _ x;f' for a certain integer k, there exists a particular one, called
the beta-expansion, which 1s obtained through the “greedy algorithm™ (see [23,24]).
Recall that |y| is the integer part of the real number y, and denote by {y} the
fractional part of y. There exists k € Z such that ff<x <! Let x = |x/f*| and
re = {x/B*}. For i<k, put x; = [Brisy |, and » = {fris1}. Then we get the expansion
x=xff 4+ x f 4+ If x<1 then k<0, and we put xp =x_; = --- = x4 = 0.
The beta-expansion of x 1s denoted by

(X)p = XgXp_y -~ "Xy Xg - X_ (X3 -.

called the canonical alphabet, where [ 8] denotes the smallest mteger larger than . If
an expansion ends in infinitely many zeros, it is said to be finite, and the ending zeros
are omitted. For mstance, if f =7~ 1.618---, then x; € {0.1}. The t-expansion of] say,
4 =7 +1+1/t%is {4), = 101.01. There is a representation which plays an important role
in the theory. The beta-expansion of 1, denoted by dp(1), is computed by the following
process [24]. Let the beta-transformation be defined on [0.1] by Ty(x)= fixmod 1.
Then dy(1) = (t;)i=1, where ;= Uﬂ;“'(l)J. Bertrand has proved that if fi1s a PV
number, then dp(1) is eventually periodic [2]. For mstance, d.(1)=11, ds(1)=21,
and dg(1)=322--- =3(2)”, where (-)” means that the digit between parenthesis is
repeated an infinite number of times. A number f§ such that dg(1) 1s eventually periodic
is traditionally called a beta-number. Since these numbers were introduced by Parry
[23], we propose to call them Parry manbers. When dy(1) is finite, f§ is said to be a
simple Parry number.

The digits x; obtained by this algorithm are integers from the set A ={0,....[f] —1},

3.2, The set of beta-integers

We now come to the notion of beta-integer. The set of beta-integers is the set of
real numbers whose beta-expansions are polynomial,

Zy={x e R|{|xl}p = x--- %o}
=Z;u(—2;),

where Z; is the set of non-negative beta-integers. The set £ is self-similar and sym-
metrical with respect to the ongin

By C &y, Ly =-—-4Lp.

It has been shown in [3] that if § is a PV number then Zg is a Meyer set. This
means that there exists a finite set F such that 7y — 73 C 7y + F. This beta-dependent
set F has to be charactenized in order to see to what extent beta-integers differ from
ordinary integers with respect to additive and multiplicative structures. This problem is
solved in [34.6] for all quadratic PV units and for a few higher-degree cases (see also
[27]). We now restrict the presentation to quadratic PV units. There are two cases to
consider.



Case 1 (f is solution of X* = aX + 1, a=1): The Galois conjugate is ' = —1/f. The
canonical alphabet is equal to A= {0.....a}, the beta-expansion of 1 is finite, equal to

dp(1)=al, and every positive number of Z[f] has a finite beta-expansion [7]. Denote
& = {L.S}. Define the substitution gy by

[ L+ I°S,
B8 L.

The fixed point of the substitution, denoted by aﬁ’“(L), 1s associated with a uling of
the positive real lme, made with the two tiles L and S, where the lengths of the tiles
are /(L)=1, /(S)=Ty(1)=f —a=1/p, see [26,5]. The nodes of this tiling are the
positive beta-integers.

Case 2 (f is solution of X* =aX — 1, a=3): The Galois conjugate is ' = 1/f. The
canonical alphabet is equal to 4= {0.....a— 1}, the beta-expansion of 1 is eventually
periodic, equal to dg(1)=(a — 1)@ — 2)*, and every positive number of Z[f] has an
eventually periodic beta-expansion, which is finite for numbers from R([f], [7]. The
substitution o is defined on & = {L.S} by

. L[S,
R R St

As in Case 1, the fixed point of the substitution is denoted by aﬁ’“(L), and 1s associated
with a tuling of the positive real line, made with the two tiles L and S. The lengths of
the tiles are /(L)=1, /(S)=Ty(1)=f —(a—1)=1— 1/ [26,5]. The nodes of this
tiling are the positive beta-integers.

In both cases, we shall denote by |¢7‘;’(L)| the number of letters in the word generated
by a‘;’(L), and by |¢7‘;’(L)|L, respectively |¢7‘;’(L)|g, the number of letters L, respectively
S. mn the later word.

3.3. Beta-integers arithmetics

Since £y is a Meyer set symmetrical with respect to the origin, we have 7y —
Zy==2p+ Zy CZy+ F. Hence, the set Z can be qualified as “quasi-additive™. It can
also be qualified as “quasi-multiplicative”. Accordingly, addition and multiplication of
beta-integers are characterized below.

e In Case 1, we have

zﬁ+zﬁczﬁ+{o,i(l—%)}czﬁ,ﬂ'ﬁ{ (2)
1 a )
ZﬁXZﬁCZﬁ+{0,:§:F,...,:§:B} Cz,gl."ﬁ'. (3)

For instance, for f=17, 1 +1=2=t+(1 = 1/2), and (P + I+ )=+ — /7.



e In Case 2, we have

1 N
Zﬁ+ZﬁCZﬁ+{0,:§:F}Ezﬁ, (4)

Zy + Zy C Zy/p,
~1
ZﬁXZﬁCZﬁ+{0,:i:—,...,:i:a—} C Z4/p. (5)

For mnstance, for f=0,24+2=0+1/0=2x2.
The set Zﬁ, mtroduced n Eq. (4), 1s called the set of decorated beta-integers. This set
plays an important role m the theory of algebraic model sets, and 1s to be mentioned
in the two-dimensional case (Fig. 4).

3.4. Beta-integers as an additive group
Let b, and b, be the mth and nth beta-integer.

Definition 4. We define the beta-addition as the following internal additive law on the
set of beta-integers

bm 2] bn - bm+n'
The beta-substraction is defined by
bm e bn - bm—n - bm & ( _bn ).

The set of beta-integers endowed with the beta-addition has an abelian group struc-
ture [4,6]. Actually, we can endow any countable strictly increasing sequence % =
(8, ez of real numbers, s, =0, with such an internal additive law by simple isomor-
phic transport of the additive group structure of the integers, the additive law of %
being defined by

Slﬂ »Eq "‘Il d';l Slﬂ +ne
Recall that the internal additive law @ defined on %, is said to be compatible with
addition of real numbers if for all (m.n) € Z2, s5,,+s5, € % implies s, +5, = s, & 5,,, and
obviously, for an arbitrary sequence %, the law & is not compatible with the addition
of real numbers. Yet this property holds true for Zp!

Lemma 1. Beta-addition is compatible with addition if  is a quadratic PV unit.

Proof. It has been proven in [4,6] that beta-addition has the following minimal dis-
tortion property with respect to addition: for all (b,.b,) € Zf., with f§ a quadratic PV
unit,

{0.£(1 — )} in Case 1,

10.+1/6} in Case 2. (6)

bm +bn - (bm ’E’bn) € {



Suppose that for a given couple of integers (m.n), there exist g such that b, +b, = b,.
Then b, —(b,, & b,) verifies (6), and this implies b, —(b,, & b,) = 0. Indeed the distances
between two non-equal beta-mtegers are larger than or equal to /(S) =1/ m Case 1,
and /(S)=1-1/f m Case 2. So we have b, = b,, & b, = by, which gives g=m+n.
O

For mstance, if f=z,then 1 & 1=7tand 2—t=1—1/r,and if f=0, then 2:2=10
and 4 — 0=1/0.

3.5, Internal multiplicative law for beta-integers

We could attempt to play the same game with multiplication by defining
bl"“ X ”bll d';rblﬂll

for all (b,,,,b,.)ezji. However, we reject this definition of an internal multiplica-
tive law since it is not compatible with multiplication in . For instance, for ff =1,
bg ng=rXr='[2=b3 ?ébq.

Definition 5. We define the guasi-muldtiplication as the following intemal multiplicative
law on the set of beta-integers:

- ! i Case 1.
bm ® b,, — { hmn apdm)pgln)) s (7)

[Rmn—m’(m Jos{n)) in Casc 2s

where, for n =0, pg(n) denotes the number of tiles S between by =0 and b, [6]. For
instance, for 7, ps(5) =2 while for 0, ps(5) = 1. Geometrically, for n =0, the nth beta-
integer is the right vertex of the nth tile of the tiling associated with Z g, which can
be expressed as b, =n +(—1+ 7(5))p(S) and from which we derive the following:

1

1 -1/
ps(n) = P(n—b,) Case 2.

ps(n) = (n—»b,) Case I,

For n<0, ps(n)=—ps(—n).

Lemma 2. Quasi-mudtiplication is compatible with multiplication of real numbers
if B is a quadratic PV unit.

Proof. Quasi-multiplication has minimal distortion property with respect to multiplica-
tion [4.,6): for all (b,.b,)€E Zf., with f# quadratic PV unit,

{(0.1,....a — 1) 2220} Case 2.

{(0.+1.....+a)(1 — )} Case 1.

bmbn - (bm & bn) € { (8)

Suppose that for a given couple of integers (m.n), there exist a g such that b,b, = b,.
Then b, —(b,, @b, ) verifies (8), and this implies b, — (b, @ b,) = 0. Indeed the distances



between two non-equal beta-mtegers are larger than or equal to /(S)=1/f m Case 1,
and /(§)=1—1/f in Case 2. We then have b, = b, @by = By —ap sy 10 Case 1 and
by = by @ by = By pmyp gy 0 Case 2, which gives g = mn — aps(m)ps(n) m Case 1,
and g=mn — pg(m)ps(n) in Case 2. O

An interesting outcome of this multiplicative structure is the following explicit result
conceming self-similanty propertics of the set of beta-mtegers.

Let U =(uy)yen be the linear recurrent sequence of integers associated with . In
Case 1, the u, are defined by w2 =au, +u, with wy=1, 4y =a+ 1. In Case 2,
the u, are defined by w2 = auy | — u, with wg =1, uy =a. The recurrence is possibly
extended to negative indices.

Proposition 1. Let 8 be a quadratic PV unit, and £y the corresponding set of beta-
integers. Then for g€ ™ and b, € £y we have the self-similarity formulas:

ﬁ‘lb" - bu,bn - bu, @b,, - bu, n—apgluy)pg{n) = bl(, n—{ag —1y_y ) pg(n) (in Case 1).
ﬁ‘lb" — bu.,bn — bu., @b,, — bu., n—pslug)psin) = bu., n—{ug_1) psin) (i" Case 2)

The proof 1s a direct consequence of the definition of the quasi-multiplication and
of the following lemma giving some of the properties of the counting function ps.

Lemma 3. The values assumed by the counting function ps(n) when n=u, €U
are

ps(uy) = =20 (in Case 1),
a

Ps(uy) = uy—y (in Case 2).

e 1 Lol s — . ot 1 L1
Proof. Case 1: Let w, = pgs(u,). By construction, u, = lg;(L)| and wy, =|gz(L)[s.
Therefore, the sequence (wy,) satisfies the same linear recurrence as (1), that is w, =
awy_1+wy_2, with wy =0, wy = 1. Thus wy = aw+wp = (12— )/a=a and w3 = aws +
wi = (u3 —u3)/a=a* + 1. The recurrence is proved through Wyst = awy +wy— = a(u, —
uy—1)fa+(uy—y —uy_2)a=(u —u,)la.
Case 2: Let wy, = ps(u, ). We have wy, =aw, ) —w,_2, with wy=0 and w; = 1. Then
wi=aw, — wo=u =a and wy=awy — w; =uy =a> — 1. The recurrence is proved
through wy =aw, —w,_ =au,_| —w_>=u, O

It should be noticed that quasi-multiplication does not define a group for not being
associative and s not distributive with respect to beta-addition. So it seems hopeless to
obtain a ring structure, like we have with mtegers, with such an internal multiplicative
law. Note that beta-addition and quasi-multiplication are related to some operations in
numeration systems studied in [9,14,15). Nevertheless, the set of beta-integers recovers
a ring structure asymptotically, as shall be explamed in Section 6.



4. Beta-lattices in the plane
4.1. General considerations

We have seen that the condition 2cos(2n/N)e Z, 1.e. N=1.2.3.4 and 6, charac-
terizes N-fold Bravais lattices in R? (and in R*). We would like to generalize this
notion when N is quasicrystallographic 1.e. N =5,10,8 and 12, respectively, associ-
ated with one of the cyclotomic Pisot units 7=2cos(27/10), d = 1 + 2cos(27/8) and
) =242 cos(27/12). As a consequence of the results presented above, if (e;) 1s a basis
of R4, then the point set

d
I' = ZI Zﬁe,'

is a Meyer set and a lattice for the law @, Morcover Zg @ I'C I'. We shall adopt the
generic name of beta-lattice for such a I'. Examples of beta-lattices in the plane are
point-sets of the form

]‘q(ﬁ) = Zﬁ + Zﬁl:q,
with {=¢2"V for l<g<N — 1. Note that the latter are not rotationally invanant.
Examples of rotationally mvanant point-sets based on beta-integers are

dcl.fv—l )
ALUNY. 1<g<N-1
=0

and
der M2
Zy[l)= > Zgl/.
J=0

These sets A, and Zg[(] are Meyer sets.

Let us now focus on the simplest case, namely NV =5 or 10. It 1s more convenient
to introduce the root of unity {=¢"™5, since t=2cosn/5={ + (¢, where (¢ is the
complex conjugate of . We obtain the set

Z[) = Z.+ZL+ 2L+ 20 + 2
Consider now the following z-lattices in the plane:
y=2.+ 2.0 qg=1,2, 3, or4

The followmng inclusions were proven in [3]:
r,cZ.[{] c I—;’
T

It has been shown that a large class of aperiodic sets can be embedded in beta-lattices
such as I(f) (see [3]).
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Fig. 2. The r-lattice I7(1) with points (left), and its trivial tiling made by joining points along the honzontal
axis, and along the direction defined by {
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Fig. 3. The o-lattice Ij(d) with points (left), and its trivial tiling obtained by joining points along the
harizontal axis, and along the direction defined by (.

On hgs 2-4, we displayed the t-lattice Ii(7), the d-lattice I1(d) and the decorated
-lattice, ][(())-—Zﬁ + ZpC, respectively, both as point-sets, and as tilings.

4.2. Rotational properties of the beta-lattices I)(ff)

Although beta-lattices are not rotationally mvariant, we can nevertheless study the
action of rotations on them. In this section, and throughout the rest of the article, we
focus on [i(f). For f=7 and d, any beta-lattice I,(f)) is a subset of the properly
scaled beta-lattice [1(f). Therefore, the rotational properties of I(f) can always be



Fig. 4. The decorated -lattice 1i(0) with points (left), and its trivial tiling obtained by joining points along
the horizontal axis, and along the direction defined by .

reexpressed m terms of the rotational properties of [7(f). Note that since 0 1s a
quadratic PV unit of the second kind, the statement is shightly different, since the
fi-lattices I,(f1) are not subsets of the properly scaled Ii(f), for g # 1, but of its
decorated version I(0). _
We introduce the algebraic integer associated with {, 7=+ =2cos(2n/N), which

entails (> =—1+ y{, and

F=n,+vl, ge{0.1,....N -1} (9)
A rotation by g27/N on an arbitrary clement b, + b,{ of I1(ff) then gives

Cq(bm + an) - (”qu - "qbn) + ("qu + ('h,r + "qZ)bn ): (10)

This is not an element of [1(f) in general, but belongs to a deflated version of I(f)
by a certam factor. If we consider the values of the pairs (7,. v,) and of n,+v,7, when
f assumes the specific values 7 and 4, we can determine this deflation factor. When
=0, (b, + b,{) belongs to the twice decorated 0-lattice l.(()) as will be shown
explicitly.

e When fi =1, the results are given for {=¢2%10 4 =1
q = 0 1 2 3 4
(Mg vg) = (1,0) (0.1) (=L7) (—7.7) (—2.1)
Ng+vyr = 1 T T 1 0.

together with (7,45, vy45) = (—n,. —v, ). Hence

e (Y

I'y(7)

2
-

C



Note that simce 7 =71, [i(7) 18 endowed with specific properties which are not en-
countered in other cases, namely when =4, and ff = (0. These properties are given
by the following lemma.

Lemma 4. For {=¢"™5, all elements of the cyclic group {{.g€{0.1.2,....9}} are
elements of the t-lattice 1j(7).

Proof. The demonstration is trivial from the values assumed by 7, and v, in the case
of 7,

=ny + v, with ng v, € {0,£1, %1} |
Also note that from the self-similarity property of Z. we have b, € Z., v,b, €2,

and (1, + v, )b, €Z., for all g and n.
e When ﬁ d, t,—c"’s and 1= o—1.

g = 0 1 2 3
(Mg vy) = (1.0) (0.1) (=Lé—1)(=6+11)
Ny+vezy= 1 6—1 1 0,

together with (7,44, vy4a) = (—14.—v, ). Hence

:"r.(é)cru(é)+({°i(“3) ( 7]5)}
Los(73) = 3)h)

Note that d — 1 =+/2 is not a d-integer. Its d-expansion is (6 — 1);=1-1. It tums
out that only L0, Y and 1 are in 1(8).
e When =10, [= ‘2’ 2 and y=0-2.

g = 0 1 2 3 4 5
(Mg vy) = (1,0) (0,1) (=1,0—=2) (=0+2.2) (=2.0-2) (-0 +2.1)
Ng+vez= 1 0-2 2 -2 1 0.

together with (9,46, vgr6) =(—14.—V,). Note that 0 —2=1/3 is not a 0-intcgcr.
Moreover, the (-expansion of 0 — 2 is infinite: {0 — 2}y =1-(2)“. Then, only {, %,
(" and 1 are in [{(0). Let us introduce the decorated O-lattice [3(0), as we have
donc m the one-dimensional case (Eq. (4)),

|(0) C ] |(0) 0 + Zos



Since 00 —2 =2 — 1/0, then all (¢ are in [}(0), and

Aryoyc o ():i:1 :i:2 ():i:1 :i:2 {
5 l( )C l( )+ s 69 5 + s 59 6 5
C 0= 2y + 20, (11)

where ég =&y +{0.£1/0.£2/0}.
4.3. Translational properties

They are deduced from Egs. (2) and (4). In Case 1,

Fy(BY+T(B) € I'y(B)/B?

and in Case 2,

Fyp)+T () C Ty p).

5. A plane-group for beta-lattices

Since beta-lattices of the type I(ff) are not rotationally and translationally invariant,
we shall enforce mvariance by replacing the usual additive and multiplicative laws by
the beta-addition and the quasi-multiplication.

5.1, A point-group for beta-lattices in the plane

Explicit calculations of internal rotation actions on [j(f), referred to as beta-
rotations, are given in the appendix. Note that since the quasi-multiplication is not
distributive with respect to beta-addition, we find several candidates for internal rota-
tional operators on [j(f). The choice for the beta-rotations presented in the following
proposition 18 drven by compatibility property. Other internal rotational operator are
not compatible with Euclidean rotations!

We formally mmitate the expressions of successive rotations given by Eq. (10), by
replacing in the equations, + and — by @ and &, and x by ®, when necessary.
Proposition 2 below defines the beta-rotations on I(f3).

Proposition 2.
o When fi =1, with the notations of (9), the following 10 operators . g=0,1,....9,
leave I)(7) invariant:

7y © (b + bul) = Hybw © vghu + (Vgbu & (g + v )by )L
o When =0, the following operators leave 1\(3) invariant:

r @ (bm + bn‘:) —-— -bn + (bm &b ‘Sbn =] bn )‘: —-— -bn + bm+2n—2p,\‘(n)‘:e



n© (bm +b,{) = —(bm 5] ‘Sbn S by) + (‘5bm S by @ by )
—-— -bm+2n—2p,dn) + b2m+n—2p,r(m)‘:e
r® (bm +b,,l:) = -(6bm *:’bm &b bn) + bm‘: - -b2m+n—2p,r(m) + bm‘:

o When =0, the following operators leave I1(0) invariant:

11 © (b +byl) = —by + (b & 0by © 2b, ). = —by + buws2n—psimy s
1y @ (by + b, L) = —(by & 0b, & 2b,) + (0b,, & 2b,, & 2b,)(
= —bmi2n—psiny + B2 20—ps(m)b»
r3 @ (by + b, L) = —(0b,, ©2b,, & 2b,) + (2b,, & 0b, & 2b,)(
= —bamsan—pgm) + B 2n—p )
14 @ (by + b,0) = —(2b,, & 0b,, & 2b,) + (0b,, & 2b, & b,)
= —bami2m—psim) + Brmin—psm?s
rs @ (by + b, 0) = —(0byy ©2by & by) + byl = —byi2m—psim) + bl
For =1, 06 or 0, let the composition rule of these operators on I\(f}) be defined by
rrYoz=ro@ o:z)
and denote by Id the identity and by 1 the space inversion

| RO

Then, the composition rule (r,") — rr' is associative and the following identities hold:
ro=1Id and 1y no =1y =n for g=0,1.....(N2) =1, where N is the symmetry order

of B.

Lemma 5. Beta-rotations defined in Proposition 2 on I/(f) are compatible with
rotations when [ assumes one of the specified values ©, 6 and 0.

Proof. We deduce from Egs. (6) and (8) that beta-rotations have minimal distortion
property with respect to ordinary rotations: let z,,, = b, + b, € I} (f), then

o B=1, {zpn — 1 ©zuma € {0. (1 — 1)} + {0,201 — 1)}L,

o B=0, (zpn — 1y @ 2y €40, (1 — 1), £2(1 — 1)} + {0, (1 — 1).42(1 — L)}L,

o =0,z — 1 O zpa € {0,253} + {0, £ £2}.

Proposition 2 shows that beta-rotations can be decomposed in terms of beta-additions
and quasi-multplications. Compatibility of beta-rotation with cuclidian rotation 1s
thus a consequence of +-compatibility of beta-addition and x-compatibility of quasi-
multiplication. O

Computing the composition of any two of such beta-rotations 7, yields the following
important result.

Proposition 3. For =1, 6 and 0 and for N =10, 8 and 12, respectively, let Ry =
Ry(f) denote the semi-group freely generated by all r,, g€ {0.1,....N — 1}. Among
all beta-rotations, only ro,r\.rya—1.ry241. "y —1. and 1 have their inverse in Ry .



Proof. The following identities are straightforwardly checked:

FIPNR—| = IN2-1F| = PN2HIIN—| =FPNIIN2—-1 = 1,
F\PN—| =N ) = IPN2-1FN241 = PN24IINR2 -1 = 1.

A case study of all possible combmations of 7 shows that no other such operators are
mvertible. O

An mmediate consequence is the existence of a symmetry group for [i(f), Le.
a group of planar transformations leaving [{(f8) invariant.

Theorem 1. For =1, 6 and 0, the group Ry = Ry(f), freely generated by the four
element set {ry.1.r\.rys_y}, is a symmetry group for the beta-lattice I)(f). It is
called the symmetry point-group of ().

Proof. An casy computation shows that the elements of #y are mvertible. Associativity
of the law of iternal composition of elements of #y 1s a consequence of Proposition 2.
O

5.2, A plane-group for beta-lattices I1(f)

We now imtroduce into the present formalism the beta-translations acting on [i( f§).

Proposition 4. Let zy = b, + b, L be an element of the beta-lattice Ii( ). There cor-
responds to it the internal action t., - Ii(f)— Li(f)

ty(z2) =zBzg d='l by ® bmu + (bn & bnu X = bm+mu + blH—m L.

The set of beta-transilations forms an abelian group isomorphic to the beta-lattice
L) considered itself as a group for the law . For this reason it will be also
denoted by I ().

Proof. The beta-translation 1s a simple two-dimensional generalization of the one-
dimensional beta-addition. O

As a direct generalization of one-dimensional beta-addition, it is obvious that beta-
translation has minimal distortion property with respect to translation, and 1s compatible
with it. Using Proposition 4, we come to the main result of this article.

Theorem 2. For =1, 6 and 0, and for N =10, 8 and 12, respectively, the group
Sy =SN(P) freely generated by the five-element set {ro, 1.ry. riyay—1.0 } is a symme-
try group for the beta-lattice I1(f). This group is the semi-direct product of I/(f)
and Ry

Sy=T1(f)==Ry



with the composition rule
(b.R)H.R)=(b@R® I RR").
In the present context, Yy is called the symmetry plane-group of Ii( ).
The action of an element of %y on (/) 1s thus defined as
(b.R)-z=b@&ROz=1(R®z) e I'(p).
Proof. An casy computation shows that the clements of %), are invertible. Associativity

of the law of internal composition of elements of %y 1s a consequence of Proposition 2
and of Theorem 1. O

3.3. Tile transformations wsing internal operations on I\(7)

We would like to illustrate the action of %, on [{(f8), in the case of 7, by showing
how a tile of Ij(7) 1s transformed under the action of an element of .%.
Let z=b,, + b, L€ I{(7). An elementary quadrilateral tile on z 1s the followmng:

Te)={zzelzalza(1+)}

From the definition of Ij(7), we trivially see that ther exist four kinds of elementary
tiles, which we shall denote by LL, LS, SL and SS, as a reference to the length of
their edges (see Fig. 5).

In case of a translation operation by zg, t- . the clementary quadrilateral tile T(z) 1s
transformed into another elementary quadnlateral tile, whether of the same kind or of
another kind, according to

t(TE)=Teo®z)={2Bz2208z8 LzgBz B {zgBzB (1 + )}
Another interesting transformation arises when one applies the beta-rotation operator ry
on T(z) and around one of the vertex of T(z). For mstance, the beta-rotation around
z 1s given by

t(n 0A(T)) = {zz@ Lza(-1+ )z @ (-1 + )}
Examples of such rotation operations are displayed on Fig. 6. This operation not only

rotates, but distorts the tiles, in general. Therefore, the beta-rotated tile is not elementary
anymore.

S =

S. Elementary quadnlateral tiles for the r-lattice Ii(r). From left to nght: LL, LS, SL, §S. See also
2

Fig.

Fig
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Fig. 6. Rotation operator ry applied to elementary tiles of the t-lattice Ii(r), T(0), T(1) (up), T({) and
T(1 + ) (down). Note how the tiles are deformed, by this operation, in order for the vertices to remain in
Ii(1). The arrows indicate the vertices of the new tile in which are mapped the vertices of the original tile.

6. Asymptotic properties

An imteresting feature of beta-lattices 1s that they behave like lattices asymptoti-

cally.

Lemma 6. The asymptotic behavior of the counting function ps is given by

(n) (1 1)" (Case 1),
psin = _ = = ase
Ps || —oc ﬂ a '

ps(n) = (Case 2).

= B
Proof. Case 1: The proof is based on the development of mtegers in the linear system
U =(1g)gen. We have n= Z'f:(, wd;. Then ps(n)= Zfzops(u,- Vd, = Zfz(,(u,-,"kz)(l -
wi—/u;)d;. When n— oo we know that w;y/u;— 1/ and pg(n)=(l/a)1 — 1/)
Zfz(, wdi = (nfa)(1 — 1/8), as n— oo.

Case 2: As in the first case, the proof is based on the development of integers in
(14,): n= z,‘.;. ugd, ps(n) = Zf:o ps(u;)d; = fo:(, u_d; = Zfﬁ.(u,-.-"'a)( 1+ w2 /u;)d;.
When n— oo we know that w;_»/u; = (1;_2/u;y Yy /u;) = 1/ = (a/f)— 1. Therefore
ps(n)=(1/4) Zf:o wd; =n/fi, as n—oc. O

Lemma 6 tells us what is the asymptotic behavior of beta-integers for large n, and
of the multiplication & for large m and n. From Eq. (7) and Lemma 6 is deduced the
following result.



Proposition 5. Let f§ be a quadratic PV unit number. Then the following asymptotic
behaviour of beta-integers holds true

w R pm,

|| —oc !

2
by @ b, =~ Y mn,
|m|,| 0| —oc

where

a

' 1—#=a(ﬂ—a)+2 (Case 2).

- { = 11— by = a2 (pee 1),

Proof. Case 1: Any beta-integer b, can be wntten b, =n — ps(n)1 — 1/8). When n
becomes large, we can replace pg(n) by its asymptotic value. We then have b, =n(1 —
(1/a)(1 — 1/B)*) =yn.

Case 2: In the same fashion, we have b, =n — pg(n)1/f, and by replacing ps(n) by
its asymptotic value for large n we obtain b, =n(1 — 1/*)=yn.

The second part of the proposition is a direct consequence of the first part. O

We then almost recover the definition of multiplication we were thinking about
at the beginning of Section 3.5, left alone that in both cases we have a contraction
of the resulting index by a factor y<1. We should notice that the multiplication &
is asymptotically associative and distributive with respect to the addition . In this
sense, we can say that Zg is asymptotically a ring

bm®(bnE'I':’bp)_(bmgbn)@(bmgbp) ~=

. nl.| p| 0
by @ (b, @ by)— (b @2 b,) @b, ~ .
[ Jor] | ] =2

Note that m, n and p must be such that m+n and m + p are large numbers, otherwise
the above equations are not true.

Consequently, we compute the asymptotic behavior of rotational intemal laws of
beta-lattices, as defined m Section 5.1 in the studied cases.
e When ff=17, we have for invertible operators

r O (by + b,.C)[ =  p(—=n+(m+m)).

m|,|n| —oc
ra@(by +b,L) =  y(—tm—n—ml).
|m)|,| 0] —oc

e When ff=46, we have for vertible operators

ri@(by+bL) = pW—n+(m+ (35— 1)n)).

|m)|,| 0] —oc

r3 ::Z:u(b,,,+b,,.:)[ =  p—(d—1)ym—n+ml).

m|,|n| —oc



e When ff= 0, we have for invertible operators

r© (bm + an) = ..’.(_” + (m + (0 - 2)” )C)~

||| ] — e

rs @ (by + byl) = :(_(0 —2)m —n+md).

||| ] — e

At this pomt one should be aware that these asymptotic beta-rotations are equivalent
to rotations for large |m| and |n|, and an casy computation shows that for z,, , € I} (f§)

LZmn — 11 &) Zyen = 0,
|| || — e
wN2—1

5 Zpan — TN2—1 © Zyen =
|| || — e

with V =10.8 and 12.

7. Conclusion

The main result of this article 1s the construction of a symmetry plane-group for
beta-lattices for three quadratic PV units. Though preliminary, this study shows the
richness of the beta-lattices as far as all the operations of the plane-group can be
made arithmetically explicit. Many questions seem to be open, such as the number
of possible plane-groups leaving a beta-lattice invanant. Another important issue is
to determine whether there 1s or not a metric left mvariant under the action of such
groups. It has been shown that a large class of point sets, such as model sets, can be
embedded in beta-lattices [8]. A question related to distortion of distances is the action
of beta-rotations and beta-translations over a pomt set embedded in a beta-lattice and
over the tiling associated to this pomt set. The point group #y(ff) also deserves to
be carefully studied. The link between beta-lattices and the class of finitely generated
modules over ordered rings would deserves to be handled nicely in the framework
of the Artin—Schreier theory. The case of PV of higher degree remains open. The
present contribution shows the potentiality offered by a class of beta-lattices to provide
structure models of more general quasiperiodic crystals, and possibly to predict new
crystals.

Appendix A. Explicit internal beta-rotations actions on beta-lattices

In this section, we make the beta-rotation explicit for the quasicrystallographic num-
bers 7, 4, and 0, and for all the corresponding g, the remaining beta-rotation being
deduced from them by combining with space mversion. We give the resulting integer
indexes in terms of m.n, and the counting function pg as all involved relations have
been introduced in Egs. (6) and (7).



Al Case of the wlattice I)(7)

n ® (bm + bn‘:) — b—n + bm+2n—;ﬁx(nb‘:s
n© (bm + bn‘:) — b—m—'.’nﬂﬁ,\(nb + bl(uH—n)—;ﬁ,\‘(ln)—;ﬁ,\“n N:s
rn® (bm + bn‘:) — b—lnH—nH—m(mH—m(nb + blmﬁl—m(lnb‘;

g © (bm + bn‘:) —-— b—'.’m—nﬂﬁ.\(mb + bm‘:'
A.2. Case of the d-lattice 11(d)

For the d-rotations we would like to proceed to the formal imitation of Eq. (10) as
in the case of 7. The case of d however is slightly more complicated since n,b, and
vyb, are not in Z;. When we compute the rotation of an arbitrary element of [3(6),
we need to determine the value of (6 — 1)b,, which is of course not a d-integer in
the general case. Recall that & 1s not distributive with respect to . Therefore, we
have to replace (6 — 1)b, either by (6 & 1)@ b, = by, or by b, © b, = b2, ) (recall
that from self-similarity of d-integers we have 6 @ b, = db,). We then have to make a
choice about which operation to choose to build the point-group of [1(d). We chose
to replace (6 — 1)b, by db, & b, in Section 5, since this case satisfies the compatibility
property. Other operations may be interesting. For example, the other intemal rotation
laws do not satisfy the compatibility property and do not have the same asymptotic
behavior.

—bn + bm+"n {
. v 2n—ps(n)ss
r© (bm +bn‘>) - { by 4 boin ‘:
—Un m+2nss
—an-'.’n— psln) + blm+n— pelm b‘:s
—an—"n + bl’m+n {
— v 2 —pstm)ss
ry @ (b, +5b,0) = b b .
T Om42n—pgin) + D24t

v
—an—'.’n + bl’m+n bs

- —b — 5 + b «~
3@ (bm -+ b,lg,) - { b31n+n —:_,\;;n b« s
—2mtn .

A.3. Case of the O-lattice 1;(0)

As in the case of the d-lattice, we have to decide which operation to use to build the
point-group of I}(() because of the factor (0 — 2)b,, mtroduced in the computation of
rotations of [i(). Once again, we have replaced (0 —2)b, by 0b, &2 @ b, = bay— )
in Section 5.2. We give now all possibilities.

—bn + bm+2n—;ﬁ.\( n N:s

rn © (b,,, +bn‘:) - { —b, + b C
n m+2nbs



_bm+-2n—p,r(n) + bZnH—Zn—p_i(m)‘:s
—Dpepan + b’.m+—2n—p_‘(m)‘”
_bm+-2n—p,r(n) + b2m+-2n‘:s

v
\ ~ Pm+2n + b’.m+—2n‘:s

7y @ (b + b, L) = 4

{ -
_b2m+2n—p5(m) + bZnH—Zn—p_i(n)‘”

_b2m+-n + b’.m+—2n—p_‘(n)‘:s
_b2m+2n—p5(m) + b2m+-2n‘:s
_b2m+-2n + b2m+2n‘:s

r3 @ (by +5,0) = J

\
.

‘2

2+ 21— pgin) + bn+—2m—p_f(m)‘:s

‘2

y w + Byiam— {,
g © (bm +bn‘:) - * e e p,r(m)i:
m+21— psn) + bn 2mbs

b2m+2n + bn+2m‘:s

N

\

_b2m+-n—p_f(m) + bm ‘:s

r5®(bm+bn‘:)={_b’ N +bl:
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