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Abstract.



We present the construction of a symmetry plane-group for a quasiperiodic point-set
in the plane named t-lattice, T being the golden-ratio. The t-lattice generalizes the
notion of periodic lattice to quasiperiodicity. The algebraic framework is issued from
the counting svstem of t-integers. The set of t-integers can be equipped with an abelian
group structure and an internal multiplicative law. These arithmetic structures lead to a
[freely generated symmetry plane-group for the t-lattice, based on repetitions of discrete
“r-rotations” and “t-translations” in the plane. Hence the t-lattice, endowed with
these adapted rotations and translations, can be viewed as a lattice with “rotational ™
symmetries.



1. Introduction

Historically, periodic tilings and lattices merge from Crystallography., and are associated
with crystals. A crystallographic group of R, is a discrete group of isometries whose
maximal translation subgroup is of rank d. A crystal, as it is commonly used in Physics,
is the orbit under the action of a crystallographic group of a finite number of points of
[R9, Let us recall the example of the square lattice A = Z + Ze¥ . The symmetry space-
group G of A is the semi-direct product of the group of translations of A by its group of
rotations G = Ax {1, —1,¢'¥, e '), its composition law being defined by (A, R)(A', R") =
(L4 RA,RR), withx, ’’ € Aand R, R" € {1, —1,¢'%, e %),

FFor quasicrystals, as a consequence of their aperiodicity, we generally do not have
such an algebraic frame. For quasicrystals determined by some Pisot number g > 1, we
can introduce an underlying structure, generically called beta-lartice [3]. Experimentally
observed quasicrystals are related to well known Pisot numbers: r = '—‘fﬁ with symmetry
of order 5 or 10, 8 = 1 + /2 with symmetry of order 8, and 0 = 2 + V3 with symmetry
of order 12, Beta-lattices are Meyer sets, which have the property to be self-similar, with g
as self-similarity factor [5]. Beta-lattices are eligible “counting systems™ for quasicrystals,
that is an algebraic framework in which one could study the properties of quasiperiodic
point-sets and tilings.

The objective of the present work consists in generalizing the above context of crystals
to beta-lattices, the r-lattice, I'(7), being an illustration (Fig. 1). The algebraic framework
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FIGURE 1 Two tilings of the t-lattice I'(7).

is issued from the counting system called 7-integers and denoted by Z.. We show that this
r-lattice is a “crystal” for a “plane-group” that we will explicitly determine. First, we recall
the internal laws, called r-addition and quasi-multiplication, on the set Z,, then we establish
the algebraic operations of 7-translations and r-rotations, leaving the t-lattice invariant,
and finally we construct a plane-group for the t-lattice which possesses the same algebraic
structure as a plane-group in the classical lattice case.

2. The Set of 7-Integers Z,

Any real number x > 0 can be developed in series of powers of 7, x = Y_,_, x;t', such
that the sequence of digits (x;);<y. called the t-expansion, is computed through the greedy
algorithm (see [4] and references therein). The set of positive t-integers is the set of positive
real numbers x who's T-expansions are such that (x;)g<i<¢, and x = 205.' Skx,t". For
example 72 + 1 and 7 are r-integers, but 1/ and 2 are not (Table 1). The set of t-integers
7y is self-similar and symmetrical with respect to the origin

tZy C 2Ly, Zy = -1L,. (D

The set of r-integers is associated to a tiling of the real line, with two tiles L and §, the
lengths of the tiles being £(L) = 1, and £(S) = 1 /7.

The set of T-integers verifies the following arithmetic property. Let b, and b, be the
mth and nth t-integers respectively. Then b, + b, = by, + {0, £1/t}, and b, x b, =
B psimpsiny + 10, 1/} The function pg(j) counts the number of small tiles between 0
and b; in the tiling associated to Z,. For instance, ps(2) = 1, since there is one long tile
and one small tile between 0 and 7 = b,. From these relations, we introduce the following

TABLE 1 Some t-expansions
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internal laws [2]

by ® by = bpyin (2)
bm ® bn = bmn—ps(m)ps(n) s (3)

respectively called here r-addition and quasi-multiplication. The r-addition is consistent
with addition on [, and the quasi-multiplication is consistent with multiplication on £, with
regards to the additive and multiplicative properties of 7-integers stated above. Note that
(Z;. &) is an abelian group, but since the quasi-multiplication is neither associative, nor is
it distributive with respect to the r-addition, (Z., &, ®) is not a ring.

3. Tau-Lattices and Plane-Groups

We now focus on the 7-lattices in the plane
rr)=2Z,+Zc, t=c'%. 4)

Note that the latter is not rotationally invariant. The material of this section can be found
[1].

A point group for the r-lattice in the plane—Since the r-lattice I'(7) is not rotationally
invariant, we shall enforce invariance by changing the additive and multiplicative laws
by t-additive and quasi-multiplicative laws. Let 5, and v, the real numbers such that
£ =y + vl

Definition 1. The following 10 operators ry, g =0, 1, ---. 9, are defined on I'(t) by:
rq © (bm + bn.c) o ’]qu 5%} (—\'qbn) + (("q + r"q)bn @D \'qu.)g- (5)

Introducing the identity action 1d, the space inversion o in the complex plane, o ©z = —z,
and the associative composition rule, (rr')©z = r ©(r'©z), we trivially check thatro = Id
and Fa4nf2 = 0rg =r,0 forq =0,1,---.4

Now the computing of composition of any two of such r-rotations r, yields the following
important result.

Proposition 1. Let W, denote the semi-group freely generated by all r,,
q €10, 1, -+, n—1}. Among all such extended rotations, only ro, ry, ru2 1, fuj2i1s a1, 0
have their inverse in \,,.

As an immediate consequence, we can assert the following on the existence of an extended
symmetry group for I'(t).

Corollary 1. The group Ry freely generated by the four-element set {ro, o, ry, ry2 1} is
a symmetry group for the t-lattice I'(t). It will be called in the present context the point
symmetry group of I'(t).

A plane-group for the -lattice—We now introduce into the present formalism the fol-
lowing t-translations acting on I'(1).



Definition 2. Let zg = by, + by, ¢ be an element of I'(t). There corresponds to it the
following internal action t,, : I'(t) — I'(1)

(Z) =z® ZO = bm @D bmo + (b, ® bng)c (6)

The set of such t-translations forms an abelian group isomorphic to I'(t), considered itself
as a group for the law &. For this reason it will be also denoted by ' ().

A simple computation leads to the following result.
Proposition 2. The group Sy, freely generated by the five-element set {rg. o, ry, ra, t} is

a symmetry group for the t-lattice I'(t). This group is the semi-direct product of I'(t) and
Rio

Sio =T'(r) x Rio = {(b, R) € I'(r) x Ryo} (M
with the composition rule
(b, RV R)=(bB ROV, RR). (8)

In the present context, S, will be called the space symmetry group of I'(t). The action of
an element of Sy on I'(7) is thus defined as

(b,R)- z=b®ROz=t(RO2) €I(1). 9

Cut-and-project sets under group actions—Now that we have constructed a space-group
for I'(t) we can observe the action on this group on cut-and-project sets. Figure 2 displays
a cut-and-project set of decagonal window, and its transforms under the action of t; and of
.

Tiles under group action—We also would like to illustrate the action of )y by showing how
atile of I'(r) is transformed under the action of an element of S). Letz = b,, 4+-b,¢ € I'(1).
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FIGURE 2 Embedding of a decagonal cut-and-project set in I'(7) (left), and of its trans-
forms under #; (center) and r2ry (right).



Y U A - 7L - LT
. ','/ ,*\7“ . § .,I.' ., ,.-. J /k\ﬁ‘. i‘( ".'.
ave %7 S S

. .

FIGURE 3 Rotation operator r; applied to elementary tiles of the r-lattice. Note how the
tiles are deformed in order for the vertices to remain in I'(7).

An elementary quadrilateral tile on zis T(z) = {z. 2@ 1, 2@ £, 2@ (1 4 ¢)}. Let us apply
the rotation operator »; on T(z) and around one of the edges of T(z). For instance, a rotation
around z is defined as

L O_(T@) ={2. 2. 2B (-1 4+ 1) 2B (-1 +720)}). (10

Examples of such rotation operations are displayed on Fig. 3. This operation not only rotates,
but distorts the tiles.
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