
HAL Id: hal-03136655
https://hal.science/hal-03136655v1

Submitted on 9 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pickup and delivery problems with autonomous vehicles
on rings

Manuel Trotta, Claudia Archetti, Dominique Feillet, Alain Quilliot

To cite this version:
Manuel Trotta, Claudia Archetti, Dominique Feillet, Alain Quilliot. Pickup and delivery prob-
lems with autonomous vehicles on rings. European Journal of Operational Research, inPress,
�10.1016/j.ejor.2021.07.050�. �hal-03136655�

https://hal.science/hal-03136655v1
https://hal.archives-ouvertes.fr

C
M
P

–

C
A
M
P
U
S

G
E
O
R
G
E
S

C
H
A
R
P
A
K

P
R
O
V
E
N
C
E

C
E
N
T
R
E

M
I
C
R
O
E
L
E
C
T
R
O
N
I
Q
U
E

D
E

P
R
O
V
E
N
C
E

Pickup and delivery problems with
autonomous vehicles on rings

Manuel Trotta1, Claudia Archetti2, Dominique Feillet 3,
Alain Quilliot 4

1 Université Clermont Auvergne, UMR CNRS 6158 LIMOS,
F-13541 Gardanne France

manuel.trotta@emse.fr

2 ESSEC Business School, 3 Avenue Bernard Hirsch,
95000 Cergy, France
archetti@essec.edu

3 Mines Saint-Etienne, Univ. Clermont Auvergne, CNRS, UMR 6158
LIMOS, Centre CMP, F-13541 Gardanne, France

dominique.feillet@mines-stetienne.fr

4 LIMOS, ISIMA, Campus des Cézeaux, Aubiére Cedex, France
alain.quilliot@isima.fr

Working Paper EMSE CMP–SFL 2021/2

In this paper we introduce a new class of Pickup and Delivery problems on circles (or rings).

We consider m stations arranged in a circle and n transportation requests. Each request i asks

for the transportation of a certain quantity qi from a pickup station si to a delivery station ti.

A fleet of capacitated vehicles is available at the depot. In the first part of the paper we

propose a classification scheme for these problems. In the second part, we address the variants

in which the vehicles are allowed to move in a single direction of the circle (either clockwise or

counterclockwise) and the objective is to minimize the number of tours on the ring while serving

all the requests. We provide a complexity analysis for this class of problems. We develop

polynomial time algorithms for the variants that are polynomially solvable and proofs of NP-

hardness for the variants that are NP-hard. In addition, for the latter, we provide mathematical

formulations and perform computational tests that show the effectiveness of these formulations.

Finally, we compare optimal solutions with those obtained using a straightforward greedy

algorithm.

Pickup and delivery problems with autonomous vehicles on rings

Manuel Trottaa,1,∗, Claudia Archettib, Dominique Feilletc, Alain Quilliotd

aUniversité Clermont Auvergne, CNRS, UMR 6158 LIMOS, F-13541 Gardanne France
bESSEC Business School, 3 Avenue Bernard Hirsch, 95000 Cergy, France

cMines Saint-Etienne, Univ. Clermont Auvergne, CNRS, UMR 6158 LIMOS, Centre CMP, F-13541
Gardanne France

dLIMOS, Institut Supérieur d’Informatique de Modélisation et leurs Applications and ISIMA, Campus des
Cézeaux, Aubiére Cedex, France

Abstract

In this paper we introduce a new class of Pickup and Delivery problems on circles (or rings).

We consider m stations arranged in a circle and n transportation requests. Each request i

asks for the transportation of a certain quantity qi from a pickup station si to a delivery

station ti. A fleet of capacitated vehicles is available at the depot. In the first part of the

paper we propose a classification scheme for these problems. In the second part, we address

the variants in which the vehicles are allowed to move in a single direction of the circle

(either clockwise or counterclockwise) and the objective is to minimize the number of tours

on the ring while serving all the requests. We provide a complexity analysis for this class

of problems. We develop polynomial time algorithms for the variants that are polynomially

solvable and proofs of NP-hardness for the variants that are NP-hard. In addition, for the

latter, we provide mathematical formulations and perform computational tests that show the

effectiveness of these formulations. Finally, we compare optimal solutions with those obtained

using a straightforward greedy algorithm.

Keywords: Routing, pickup and delivery problems, ring, computational complexity

1. Introduction

It is a matter of fact that urban mobility, by means of public transport or personal cars,

has become a key factor in people’s everyday life, making it easier. Nowadays, working

activities are more and more concentrated in urban areas. Thus, more and more people

commute on urban areas on a daily basis. This clearly causes a number of issues, and public

entities are struggling to find ways and policies that help in facing the ever growing demand

∗Corresponding author
Email addresses: manuel.trotta@emse.fr (Manuel Trotta), archetti@essec.edu (Claudia Archetti),

dominique.feillet@mines-stetienne.fr (Dominique Feillet), alain.quilliot@isima.fr (Alain Quilliot)
1This work was sponsored by a public grant overseen by the French National Research Agency as part of

the “Investissements d’Avenir” through the IMobS3 Laboratory of Excellence (ANR-10-LABX-0016) and the
IDEX-ISITE initiative CAP 20-25 (ANR-16-IDEX-0001).

Preprint submitted to EJOR January 28, 2021

of service. Among the different solutions proposed in the recent years, the one in which

we are interested in this paper is the use of autonomous vehicles, like cars, minibuses and

shuttles. The use of these vehicles raises legal, ethical, economic and safety issues. Due to

these problems it is not likely that autonomous vehicles will totally replace normal vehicles

soon. However, they will probably first be authorized for collective transportation.

There already exist few cases where fully autonomous vehicles are used in public trans-

portation. In May 2019 Groupe Renault, the Transdev Group, IRT SystemX, Institut

VEDECOM and the University of Paris-Saclay initiated a new project called Paris-Saclay

Autonomous Lab (par (2019)). Its purpose was to develop new autonomous (i.e. driver-

less) mobility services using dedicated lane and public streets to supplement the existing

Saclay Plateau transportation system. An overnight public transportation service using an

autonomous Transdev-Lohr i-Cristal shuttle was designed to serve the Saclay Plateau neigh-

borhoods from the Massy station. On December 2018, Keolis and the European Metropolis of

Lille launched an electric autonomous shuttle service at the University of Lille in Villeneuve

d’Ascq, with a student population of 20,000 and 1,600 researchers (lil (2018)). The service

at Lille university had employed two NAVYA electric autonomous shuttles for a period of

one year with four dedicated stops on a 1.4 km circle route, and had provided connections to

two metro stations. More recently, in Lyon a project has been launched to study the use of

electric autonomous shuttles for urban mobility (lyo (2020)).

In Antonialli (2019) a worldwide benchmark on the use of Autonomous Shuttles for Col-

lective Transport (ASCT) has been performed. By the time this research was carried out, a

total of 92 experiments were identified, spread over 32 countries around the world and en-

abled by 20 different autonomous shuttle manufacturers. Results showed a European lead on

both the number of experiments and manufacturers, with highlights to the French startups

Navya and EasyMile. Regarding the road environment, two distinct scenarios were observed.

In the first, shuttles circulate in closed/controlled areas (such as university campuses, parks,

hospitals, resorts, airports, and other designated roads); this kind of deployment comprised

52.17% of the projects. In the second scenario (47.83%), shuttles were able to circulate

among mixed traffic – for these cases the routes were mainly predetermined in city-centers or

areas with a slow-speed circulation for regular vehicles. By analyzing the prevailing business

models, the author observed that the vast majority of experiments tackled public transport

schemes (96.55%) with daily commuters as the main revenue source for the transport oper-

ator. Systems with regular lines comprised the vast majority of models among the sampled

projects (91.21%) while demand-responsive transport answered to only 4.40% and a mixed

approach comprising both operation models was present in the other 4.40%. Notwithstand-

2

ing, as more countries and cities begin to allow testing and circulation of AVs, the percentage

of on-demand autonomous mobility is likely to increase.

In this work, we investigate on-demand services carried out using autonomous vehicles

on circular networks. Circular networks are typical in the closed/controlled areas mentioned

above. These problems belong to the class of Vehicle Routing Problems with Pickups and

Deliveries (VRPPD). For an overview on the VRPPD the reader is referred to Desaulniers

et al. (2002). For a survey on pickup and delivery problems the reader is referred to Parragh

et al. (2008, 2007), where the problems are classified as Pickup and Delivery Vehicle Routing

Problem (PDVRP), where pickup and delivery points are unpaired, the Pickup and Delivery

Problem (PDP), where pickup and delivery points are paired, and the Dial-A-Ride Prob-

lem (DARP) which deals with passenger transportation between paired pickup and delivery

points. The research on Pickup and Delivery problems is still very active (see Wu et al.

(2019), Rüther & Rieck (2020)). The reader is referred to Berbeglia et al. (2007, 2010) for

surveys on static and dynamic Pickup and Delivery problems. Toth & Vigo (2014) contains

two chapters on the PDP, respectively the PDP for goods transportation (Battarra et al.

(2014)) and for people transportation (Doerner & Salazar-González (2014)). For a review

article on the DARP the reader is referred to Cordeau & Laporte (2007). For more recent

surveys on dial-a-ride problems, see Ho et al. (2018) and Molenbruch et al. (2017). For a

high-level classification of dial-a-ride problems, the reader is referred to Gökay et al. (2019).

Concerning problems defined on circles, the exisiting literature is limited. Gendreau et al.

(1999) developed a linear time exact algorithm for the Single-Vehicle Pickup and Delivery

Problem defined on a cycle graph. Tzoreff et al. (2002) studied the Vehicle Routing Problem

with Pickup and Delivery on some special graphs. They developed an optimal algorithm

that runs in polynomial time for cycle graphs. Ilani et al. (2015) presented some optimal

polynomial-time algorithms for two variants of the Fixed Route DARP with a circular route.

The first one considers a fleet of infinite capacity vehicles, while the second one considers

the more general case of vehicles with heterogeneous capacities. Dial-a-Ride problems with

autonomous vehicles have also been studied in Pimenta et al. (2017) and Bäıou et al. (2018).

A number of related problems arise in the field of industrial automation. Atallah &

Kosaraju (1988) were probably the first to study the problem of efficiently rearranging parts

in the plane with a centrally placed gripper that can rotate. This problem is known as the

Stacker Crane Problem (SCP), and they proposed a polynomial time algorithm for the SCP

on a circle. Anily & Pfeffer (2013) studied a similar problem, the Uncapacitated Swapping

Problem, on a line and on a circle, where the objective is to rearrange objects of different

types on a circular graph using an uncapacitated vehicle. It can be seen as a generalization

3

of the SCP. They proposed a polynomial time algorithm for both cases of a line and a circle.

The contributions of this paper can be summarized as follows. We introduce a new class of

problems, the Pickup and Delivery Problems on Rings (PDP-R). We propose a classification

scheme for these problems which resembles the classification used for scheduling problems.

In this class, we investigate a subclass where vehicles all travel in the same direction along

the circle and the objective is to minimize the time at which the last vehicle returns to the

depot. The peculiarity of these problems is that they do not involve any routing decision:

the vehicles repeatedly turn around the circle until all pickup and delivery services have been

carried out. The optimization comes from the efficient assignment of operations to vehicles

and the scheduling of these operations. We determine the computational complexity for

all variants of this subclass. We develop polynomial time algorithms for the problems that

are polynomially solvable and proofs of NP-hardness for the others. In addition, for the

latter, we provide efficient mathematical formulations that allow solving large-size instances

quickly. Finally, we compare optimal solutions with those obtained using a straightforward

greedy algorithm, that could be easily implemented by practitioners.

The rest of the paper is organized as follows. In Section 2, we introduce notation and some

basic definitions, and we present the classification scheme. Section 3 is dedicated to problems

with unitary requests and no release/due dates. Section 4 is devoted to problems with unitary

requests and release/due dates. Section 5 deals with problems having non-unitary requests.

Computational experiments and the greedy algorithm are presented in Section 6. In Section

7, we summarize the results and present the perspectives of this work.

2. Problem description, classification and scope of the paper

In this section, we first provide a general description of the PDP-R. Then, we introduce

a classification scheme. Finally, we present the variants addressed in this paper.

2.1. General problem description

The setting of the PDP-R is the following. The ring is represented by a directed graph

whose set of nodes includes m stations numbered from 0 to m − 1. To simplify further

notation, station 0 is indifferently denoted as 0 or m. The set of arcs consists of 2×m links

(j, j + 1) and (j + 1, j) between consecutive stations (0 ≤ j ≤ m− 1) (see Figure 1). Travel

times δj,j+1 and δj+1,j are defined between two consecutive stations (j = 0, ...,m− 1). These

travel times are not necessarily symmetric.

4

3

2

1

0

Figure 1: PDP-R with four stations (station 0 is the depot)

We consider a multiset R of n transportation requests. In the more general case, each

request i ∈ R is defined by: a pickup station si and a target station ti (si, ti = 0, ...,m−1, si 6=

ti), a quantity qi to be transported, a release date ri and a due date di. The release date

indicates the earliest time for the pickup operation, the due date is the latest time for the

delivery. R is defined as a multiset instead of a set because it can contain identical requests.

The requests are served by a fleet of vehicles that can travel along the ring in either one

or both directions. The vehicles are capacitated, so the load they can transport at the same

time cannot exceed their capacity. Station 0 is the depot, i.e., a station where the vehicles

are located before starting the service and have to return after having served all the requests.

Without loss of generality, we assume that travel times are equal to distances, and therefore

the words time and distance are interchangeable.

2.2. A classification scheme

One of the objectives of this work is to propose a classification scheme for PDP-R prob-

lems. It has been inspired by the three-field classification introduced in Graham et al. (1979)

for scheduling problems . It is composed of three fields - α, β and γ - separated by a vertical

bar. Each field may be a comma separated list of words that describes one or more features

of the problem.

The α field contains information on the vehicles, separated by a comma:

• number of available vehicles: 1 or V (with V > 1);

• capacity of the vehicles: 1 or Q (with Q > 1) or Qv (if vehicles have different capacities).

The β field reports optional constraints, i.e., the field is empty in case of default settings.

The optional constraints, separated by a comma, are:

• sd (single direction): vehicles all follow the same direction, fixed from the beginning

(clockwise or counterclockwise);

5

• md (mixed single-direction): each vehicle follows a single direction, fixed from the

beginning, that can be either clockwise or counterclockwise;

• ri: pickups are subject to release dates;

• di: deliveries are subject to due dates;

• u: demands are unitary.

The default settings are: bi-directional, meaning that vehicles travel in both directions; no

release and due dates; demands corresponding to generic quantities qi.

Finally, field γ indicates the objective function:

• Cmax: makespan, i.e., the completion time of the last request scheduled among all the

vehicles;

•
∑
Ci: total completion time, i.e., the sum of completion times over all vehicles;

• CLT : closing time, i.e., time at which the last vehicle comes back to the depot when

all requests are served.

For example, the PDP-R with one vehicle of unit capacity rotating clockwise with no

release dates and due dates whose objective is the minimization of the maximum completion

time is denoted by 1, 1|sd, u|Cmax.

2.3. Scope of the paper and related definitions

In this paper, we present theoretical results and computational experiments concerning all

the problem variants where the vehicles are allowed to move on the ring in a single direction

(sd) and the objective function is the minimization of the closing time (CLT). Without loss

of generality, we assume that all vehicles go clockwise.

Due to the circular layout, to go from j1 to j2, vehicles must pass through all intermediate

stations between j1 and j2, that is: stations j1+1, . . . , j2−1 if j1 < j2, stations j1+1, . . . ,m−

1, 0, . . . , j2 − 1 otherwise. This allows us to define the distance between two stations from

distances between consecutive stations:

δj1,j2 =


∑j2−1

k=j1
δk,k+1 if j1 < j2∑m−1

k=j1
δk,k+1 +

∑j2−1
k=0 δk,k+1 otherwise

(1)

Note that distances δj1,j2 satisfy the triangle inequality. We call L the length of a complete

tour, starting from the depot and returning back to the depot.

To ease the readability in the remainder of the paper, we introduce a few definitions.

6

Definition 1. We say that a request i ∈ R covers a segment [j, j + 1] if stations j and j + 1

are within stations si and ti when going clockwise. Equivalently, it means that a vehicle needs

to traverse arc (j, j + 1) in order to serve i.

Definition 2. We say that a request i ∈ R covers a station j if it covers both segments

[j − 1, j] and [j, j + 1].

In particular, a request i covers the depot when 0 < ti < si.

Definition 3. We say that two requests i1, i2 ∈ R overlap if at least one segment [j, j + 1]

of the ring is covered by both requests (j = 0, ...,m− 1).

Definition 4. If two requests do not overlap they are said to be compatible. Otherwise, they

are said to be in conflict (or conflicting).

Figure 2 shows an example with four stations and three requests identified by their

pair (si, ti): (3, 1), (1, 2), (1, 0). Requests (3, 1) and (1, 2) are compatible, while requests

{(1, 2), (1, 0)} or {(1, 0), (3, 1)} are in conflict (requests overlap in both pairs).

3

2

1

0

Figure 2: An example of compatible and overlapping requests

Definition 5. A tour is a complete rotation of a vehicle around the ring, starting from station

0, passing through all stations j (j = 1, ...,m− 1) and getting back to 0.

Definition 6. A schedule is an assignment of the requests to the vehicles that specifies, for

each vehicle, the tour in which the requests are executed. A schedule is also a solution for the

problem.

7

Definition 7. A request is said active at a given time when the service of this request is

started but not finished, i.e., the request has been picked up at station si but not yet delivered

to station ti.

3. Problems with unitary requests and no release/due dates

In this section, we first prove that problem 1, 1|sd, u|CLT is polynomially solvable. In

this case, the fleet is limited to a single vehicle of unit capacity and requests have unitary

demands. No release dates nor due dates are considered.

We then investigate other classes of problems with unitary demands and no release/due

dates. Remember that, as all other problems addressed in this paper, we consider that

vehicles are subject to the sd constraint (single-direction) and that the objective is CLT

(closing time). We show that these problems are NP-hard (Section 3.2) and propose a mixed

integer linear programming formulation (Section 3.3).

3.1. Problem 1, 1|sd, u|CLT

A single vehicle of capacity one has to serve the multiset R of n unitary requests. It is

constrained to travel clockwise. The objective is to serve all requests and return to the depot

as early as possible. Equivalently, it consists in minimizing the number of tours traveled by

the vehicle to serve all requests.

We propose a polynomial-time algorithm that solves the problem. The basic idea is to

construct a graph whose vertices represent the stations and whose arcs represent the requests,

and then find an Eulerian tour in this graph.

We introduce the following notation. TOPT is the optimal number of tours. We denote

z(R) the optimal closing time. We express z as a function of R because we introduce

dummy requests in the algorithm, as explained later. Note that z(R) = L×TOPT . Requests

are defined by their origin and their destination; we represent them by pair (si, ti). Then,

R = ((si, ti) : 1 ≤ i ≤ n). We define for all stations j (j = 0, ...,m− 1):

• N(j, j + 1) : the number of requests that cover segment [j, j + 1];

• N∗(j) : the number of requests that cover station j;

• N sup = max(N(j, j + 1) : 0 ≤ j ≤ m − 1). N sup is the maximum number of pairwise

overlapping requests.

Note that N∗(j) ≤ N(j, j + 1) and, thus, also, N∗(j) ≤ N sup for j = 0, ...,m− 1.

The pseudo-code of the algorithm for solving problem 1, 1|sd, u|CLT is provided in Algo-

rithm 1.

8

Algorithm 1 Solution algorithm for problem 1, 1|sd, u|CLT
1: for all j ∈ {0, . . . ,m− 1} do

2: compute N(j, j + 1) and N∗(j)

3: end for

4: compute N sup

5: R(1) ← R

6: for all j ∈ {0, . . . ,m− 1} do

7: add N sup −N(j, j + 1) copies of (j, j + 1) to R(1)

8: end for

9: R(2) ← R(1)

10: if N∗(0) = N sup then

11: for all j ∈ {0, . . . ,m− 1} do

12: add (j, j + 1) to R(2)

13: end for

14: end if

15: G ← ({0, . . . ,m− 1},R(2))

16: {(C1, n
inf
1)..., (CP , n

inf
P)} ← decomposeEulerian(G)

17: Λ← C1

18: if P > 1 then

19: for all p ∈ {2, . . . , P} do

20: add (ninfp−1, n
inf
p) to Λ

21: add Cp to Λ

22: end for

23: add (ninfP , ninf1) to Λ

24: end if

25: return Λ

In Lines 1 to 4, we first compute values N(j, j+ 1) and N∗(j) for j = 0, . . . ,m−1. Then,

we compute N sup.

Lines 5 to 8 complete the multiset of requests so that the number of requests covering

every segment [j, j + 1] is exactly N sup. To this end, artifical requests (j, j + 1) are added.

We denote R(1) the new multiset. We will see in Lemma 2 that adding these requests does

not change the optimal solution value: z(R(1)) = z(R).

If the number of requests covering station 0 is equal to N sup, we modify again the request

multiset in Lines 9 to 14. The new multiset is called R(2). In addition to R(1), it contains a

9

request (j, j + 1) for every segment [j, j + 1]. Again, we will see in Lemma 4 that z(R(2)) =

z(R(1)).

The next step consists in introducing a directed multigraph G (Line 15). In this graph,

the vertex set is the set of stations. An arc is added between two stations j1 and j2 for

each request (j1, j2) in the extended multiset of requests. A cost δj1,j2 is defined for each arc

(j1, j2). We will prove in Lemma 5 that graph G is semi-Eulerian.

Semi-Eulerian graphs can be exhaustively decomposed into a set of Eulerian circuits with

disjoint vertices (see Wahlström (2018), in which these kinds of graphs are called balanced).

Procedure decomposeEulerian(G) at Line 16 executes this decomposition. It results in a set

of P circuits C1 to CP . In addition, it computes station ninfp of minimal index in every circuit

Cp. Without loss of generality, we assume ninf1 < · · · < ninfP .

If P = 1, that is, if graph G is Eulerian, the procedure returns the schedule defined

by circuit C1 (Lines 17 and 25). Note that the schedule corresponds to the sequence in

which requests are served which, in turn, is the sequence in which the corresponding arcs are

traversed in the Eulerian graph. Otherwise, in Lines 17 to 24, the algorithm connects the

P circuits using arcs (ninfp , ninfp+1) to obtain a single circuit Λ. Then, it returns the schedule

obtained from this circuit (Line 25). We prove in Theorem 1 that in both cases the schedules

are optimal.

We now prove the various lemmas that are needed to prove the main result in Theorem

1. In what follows, multisets R(1) and R(2), graph G and circuit Λ are those obtained from

Algorithm 1. Two illustrative examples follow.

Lemma 1. TOPT ≥ N sup.

Proof. Since we consider a vehicle of capacity one, conflicting requests must be served in

different tours. The N sup requests that cover the same segment must then be active on N sup

different tours. It follows that the number of tour in any feasible solution is at least N sup.

Lemma 2. Multiset R(1) is such that z(R(1)) = z(R).

Proof. We call Λ∗(R) the optimal schedule when the request set is R. From Lemma 1, we

know that the vehicle performs at least N sup tours in Λ∗(R). Furthermore, we know that

every segment [j, j + 1] is covered exactly N(j, j + 1) times in request multiset R. It means

that the vehicle is not active on at least N sup −N(j, j + 1) tours in schedule Λ∗(R) when it

traverses segment [j, j + 1]. A feasible schedule for request multiset R(1) can be constructed

from Λ∗(R) by serving the new requests (j, j+1) when the vehicle is not active. This schedule

has the same cost than Λ∗(R), that is, z(R). It follows that z(R(1)) ≤ z(R). Trivially, as

R ⊆ R(1), we have that z(R(1)) ≥ z(R). Thus, z(R(1)) = z(R).

10

Lemma 3. If N∗(0) = N sup, TOPT ≥ N sup + 1.

Proof. If N∗(0) = N sup, N sup requests cover the depot and have to be active at the depot

on different tours. Given a feasible solution, the first active request at the depot cannot be

finished before tour number 2, the second before tour number 3, and, by a simple induction,

active request number N sup before tour number N sup + 1. It implies TOPT ≥ N sup + 1.

Lemma 4. Multisets R(1) and R(2) are such that z(R(2)) = z(R(1)).

Proof. If N∗(0) < N sup, R(2) = R(1). Otherwise, we can follow exactly the same proof as

in Lemma 2. With request multiset R(2), we know, thanks to Lemma 3, that the vehicle

performs at least N sup + 1 tours. So, compared to R(1), an additional request can be added

for each segment [j, j + 1] without increasing the solution cost.

Lemma 5. Graph G is semi-Eulerian.

Proof. For each node j of graph G, let d+G(j) be the number of outgoing arcs and d−G(j) be the

number of ingoing arcs. To show that the graph is semi-Eulerian, we prove d+G(j) = d−G(j)

for j = 0, . . . ,m − 1. We know that every segment [j, j + 1] is covered by the same number

N of requests from R(2) (N = N sup or N sup + 1, depending on condition N∗(0) < N sup).

Let us consider j ∈ {0, . . . ,m − 1}, d+G(j) + N∗(j) = N = d−G(j) + N∗(j), which proves the

lemma.

Lemma 6. If N∗(0) = N sup, graph G is Eulerian.

Proof. If N∗(0) = N sup, R(2) contains at least once each request (j, j+1) for j = 0, . . . ,m−1.

These requests create a directed circuit in G containing all the nodes. Graph G is then strongly

connected. As Lemma 5 states that G is semi-Eulerian, then G is Eulerian.

Theorem 1. Schedule Λ is optimal. Three cases can be distinguished:

1. If N∗(0) = N sup, TOPT = N sup + 1

2. If N∗(0) < N sup and graph G is Eulerian (algorithm decomposeEulerian(G) returns a

single circuit), TOPT = N sup

3. If N∗(0) < N sup and graph G is not Eulerian (algorithm decomposeEulerian(G) returns

several circuits), TOPT = N sup + 1

Proof. We prove the three cases separately:

1. If N∗(0) = N sup, G is Eulerian. Every segment [j, j + 1] is covered exactly N sup + 1

times in R(2), so the sum of request lengths is (N sup +1)×L. Circuit Λ contains an arc

11

for each request in R(2). Its total length is also (N sup +1)×L. Thus, TOPT ≤ N sup +1.

From Lemma 1, we have TOPT ≥ N sup + 1. This demonstrates that TOPT = N sup + 1

and that schedule Λ is optimal.

2. If N∗(0) < N sup and graph G is Eulerian, we can apply exactly the same proof, except

that every segment is now covered N sup times. We obtain TOPT = N sup and schedule

Λ is optimal.

3. If N∗(0) < N sup and graph G is not Eulerian, we first show that TOPT ≥ N sup + 1.

Assume TOPT ≤ N sup. From Lemma 1 it means TOPT = N sup, that is, the optimal

schedule exactly covers the arcs in G. However, this contradicts the fact that G is not

connected. Thus, TOPT ≥ N sup+1. We now show that schedule Λ is optimal. The total

length of this schedule is N sup×L+
∑

1≤p≤P−1 δninf
p ,ninf

p+1
+ δ

ninf
P ,ninf

1
= N sup×L+L =

(N sup + 1)× L. Thus, the number of tours is N sup + 1 and it is optimal.

Using Hierholzer’s algorithm , procedure decomposeEulerian(G) can be implemented

with a complexity O(N sup×m) (see, for example, Jungnickel (2013)). The different loops of

the algorithm (to compute values N(j, j+1) and N∗(j), to construct R(1) and R(2), to obtain

Λ) all have either the same complexity or a lower complexity. The overall complexity of the

algorithm is thus O(N sup×m). Seeing that N sup ≤ n, it proves that problem 1, 1|sd, u|CLT

is polyniomally solvable.

We illustrate the algorithm with two simple examples.

Example 1

Let us consider a ring with m = 5 equidistant stations (numbered from 0 to 4) and four

requests: R = {(4, 2), (2, 3), (1, 3), (3, 1)} (see Figure 3). On this example:

• N(0, 1) = N(1, 2) = N(2, 3) = N(4, 0) = 2, N(3, 4) = 1, N sup = 2 and N∗(0) = 2

• R(1) = R∪ {(3, 4)} (see Figure 4)

• R(2) = R(1) ∪ {(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)} (see Figure 4)

Based on multiset R(2), we obtain graph G represented on Figure 5. Applying Hierholzer’s

algorithm provides a single optimal circuit (the graph is Eulerian), e.g.: 0 → 1 → 2 → 3 →

1→ 3→ 4→ 2→ 3→ 4→ 0. This circuit gives the schedule (2, 3), (3, 1), (1, 3), (4, 2) which

is completed in three tours on the ring.

12

4

3

2

1

0

Figure 3: Example 1: Ring and initial requests (R)

4

3

2

1

0

(a) Request multiset R(1)

4

3

2

1

0

(b) Request multiset R(2)

Figure 4: Addition of new requests. The dashed arc denotes the request added in lines 6-8, while the dash-

dotted arcs denote the requests added in lines 9-14 of Algorithm 1.

13

0

1

3

24

Figure 5: Graph G of Example 1

Example 2

We consider the same ring and a new request set: R = {(0, 4), (4, 0)(1, 3), (3, 1)} (see

Figure 6):

• N(0, 1) = N(1, 2) = N(2, 3) = N(3, 4) = N(4, 0) = 2, N sup = 2 and N∗(0) = 1

• no new requests are added: R(2) = R(1) = R

Graph G is depicted on Figure A.13. Applying Hierholzer’s algorithm provides two Eulerian

circuits C1 = 0→ 4→ 0 and C2 = 1→ 3→ 1. These two circuits are reconnected with arcs

(0, 1) and (1, 0) to form Λ = 0 → 4 → 0 → 1 → 3 → 1 → 0. The vehicle performs 3 tours

and the schedule is (0, 4), (4, 0), (1, 3), (3, 1).

14

4

3

2

1

0

Figure 6: Example 2: Ring and initial requests (R)

0

4

1

3

2

Figure 7: Graph G of Example 2

3.2. Problems α|sd, u|CLT , with α = V, 1 or 1, Q or V,Q or V,Qv

In this section we demonstrate that different generalizations of problem 1, 1|sd, u|CLT

are NP-hard.

We first show that the problem with multiple vehicles of capacity 1 is NP-hard (problem

V, 1|sd, u|CLT). Because of the length of the proof, the proof is omitted here and can be found

in the Appendix. We then show that this problem is equivalent to the problem faced when the

fleet is composed of a single vehicle of non-unitary capacity (problem 1, Q|sd, u|CLT), which

demonstrates that 1, Q|sd, u|CLT is also NP-hard. These results show that V,Q|sd, u|CLT

and V,Qv|sd, u|CLT , that generalize the two others, are NP-hard.

Theorem 2. Problem V, 1|sd, u|CLT is NP-hard.

Proof. See proof in Appendix.

15

Theorem 3. Problem 1, Q|sd, u|CLT is NP-hard.

Proof. We consider an instance of 1, Q|sd, u|CLT and the equivalent instance of V, 1|sd, u|CLT

where the vehicle of capacity Q is replaced by V vehicles of capacity 1, with V = Q. To

prove that 1, Q|sd, u|CLT is NP-hard, we show that any feasible solution Λ1,Q of the former

problem can be transformed to a same-cost feasible solution ΛV,1 of the latter, and vice-versa.

Considering a feasible schedule Λ1,Q, we assign a number vi between 1 and Q to all

requests i ∈ R, so that two requests active at the same time have different numbers. This

numbering always exists as, when a request starts, at most Q − 1 other requests are active

and so, a number between 1 and Q is available. Then, we build schedule ΛV,1 by starting

all requests as in Λ1,Q and by assigning every request to vehicle number vi. The schedule

is feasible because two requests with the same number are not active at the same time and

because vi ≤ V for all requests. Both schedules Λ1,Q and ΛV,1 are feasible for their respective

problem and have the same closing time. Starting with a feasible schedule ΛV,1, the reverse

transformation can be applied exactly the same, with the same conclusion. The two problems

having the same set of feasible solutions with equivalent costs, they have the same complexity.

It permits to conclude that problem 1, Q|sd, u|CLT is NP-hard.

3.3. An integer linear programming formulation for problem V,Q|sd, u|CLT

As problem V,Q|sd, u|CLT is NP-hard, we propose a mathematical formulation that

could allow solving it. The formulation makes use of the following notation, in addition to

the one introduced in previous sections.

• K: maximum tour number at which a request should be started

• R[j, j + 1]: set of requests in R that cover segment [j, j + 1].

• cik: cost of inserting request i ∈ R if it is started in tour number k

cik =


k if si < ti

k + 1 otherwise

To calculate K, finding a feasible solution is enough. Requests can be ordered in the

increasing order of their pickup station, and started in consecutive tours. Then, the last

request would start at tour n. We set K = n.

We introduce the following decision variables:

xik =


1 if request i is started in tour k

0 otherwise

(1 ≤ i ≤ n, 1 ≤ k ≤ K)

CLT = closing time.

16

Note that that the closing time corresponds to the maximum number of tours traversed

by each vehicle multiplied by the length of the ring L. As L is a constant, then minimizing

CLT corresponds to minimizing the the maximum number of tours traversed by each vehicle.

Thus, in the following we refer to CLT as the latter number.

The mixed integer linear program is then:

min CLT (2)

s.t.:

∑
{i∈R[j,j+1],si≤j}

xik +
∑

{i∈R[j,j+1],si≥j+1}

xik−1 ≤ V ×Q (0 ≤ j ≤ m− 1, 1 ≤ k ≤ K) (3)

∑
k∈K

xik = 1 (1 ≤ i ≤ n) (4)

CLT ≥
∑
k∈K

cikxik (1 ≤ i ≤ n) (5)

xik ∈ {0, 1} (1 ≤ i ≤ n, 1 ≤ k ≤ K) (6)

CLT ≥ 0 (7)

The objective function minimizes the closing time, expressed in number of tours. Con-

straints (3) make sure that the number of active requests never exceeds the total capacity

of the V vehicles. For each segment [j, j + 1] and each tour k, this number is evaluated by

counting the active requests that started in the tour before station j and those that started

in the preceding tour after station j + 1. Constraints (4) make sure that every request is

served. Constraints (5) compute the maximal tour number CLT . Constraints (6)-(7) define

decision variables.

4. Problems with unitary requests and release/due dates

In this section, we analyze the class of problems where each request i ∈ R is unitary and is

subject to a release date ri and a due date di. Note that in the context of the single-direction

(sd) constraint, release dates and due dates can be expressed as the smallest and the highest

tour number in which the request can be served.

4.1. Problem 1, 1|sd, u, ri, di|CLT

This section is devoted to the problem where a single vehicle of capacity one has to

serve the requests. The problem is the same as in Section 3.1 with the addition of release

dates and due dates. We show that, when having release dates and due dates, the problems

17

becomes NP-hard. We proceed by reduction from a variant of the list coloring problem, called

(γ, µ)-coloring problem, introduced Bonomo et al. (2009) and shown to be NP-hard.

Definition 8. Given a graph G = (V, E) and functions γ, µ : V → N such that γ(v) ≤ µ(v)

for every v ∈ V, we say that G is (γ, µ)-colorable if there exists a function f : V → N of G

such that γ(v) ≤ f(v) ≤ µ(v) for every v ∈ V, and f(v) 6= f(v′) for every (v, v′) ∈ E.

In Bonomo et al. (2009) it is shown that this problem generalizes the graph coloring

problem and is NP-hard, also in the case where the underlying graph is an interval graph.

Theorem 4. Problem 1, 1|sd, u, ri, di|CLT is NP-hard.

Proof. The main argument in the proof is that the constraints implied by release dates

and due dates can be equivalently expressed as constraints on the lowest and largest tour

number on which a request can be started. The starting tour of a request can then be

interpreted as a color, bounded by these two limits. Given that fact, we first show how to

transform an instance of the (γ, µ)-coloring problem on an interval graph into an instance of

1, 1|sd, u, ri, di|CLT .

We consider an instance Ic of the (γ, µ)-coloring problem on an interval graph. A =

{(a1, b1), ..., (an, bn)} is a set of n intervals on a real line with a < b for each (a, b) ∈ A. An

interval graph H = (V, E) is constructed from A by introducing a vertex vi for each interval

(ai, bi) ∈ A and by adding an edge (vi, vj) each time intervals (ai, bi) and (aj , bj) overlap. Let

γ and µ be two functions that map vertices in V into natural numbers, such that γ(v) ≤ µ(v)

for each v ∈ V. Instance Ic consists in deciding if there exists a coloring function f : V → N

such that γ(v) ≤ f(v) ≤ µ(v) for each v ∈ V and f(v) 6= f(v′) for (v, v′) ∈ E .

We build an instance Is of 1, 1|sd, u, ri, di|CLT as follows. Let D denote the set of interval

extremities: D = {ai, bi : i = 1, ..., n}. We sort D in increasing order and introduce a station

in the ring for every element in D, in this order. We complete the ring with station 0. This

way, the number m of stations is at most two times the number n of intervals plus the depot

(m ≤ 2n + 1). We define unitary distances between successive stations, which gives a tour

length L = |D| + 1. We introduce a request in R for every interval in A. Given interval

(ai, bi), request i is defined as follows: si is the station obtained from extremity ai, ti is the

station obtained from extremity bi, ri is set to L× γ(vi) and di = L× (µ(vi) + 1)). Basically,

this means that request i has to be active between the beginning of tour number γ(vi) and

the end of tour number µ(vi). We note that no request covers the depot, so two requests

will be scheduled in the same tour if and only if they do not overlap. Note also that this

construction is polynomial.

18

We claim that H is (γ, µ) colorable if and only if Is admits a feasible schedule. A feasible

schedule for Is is a function f : R → N that assigns each request i ∈ R to a tour (that is the

tour in which the request is served) so that requests do not overlap and that the tour number

of request i lies between the lowest possible tour number and highest possible tour number

given by the release and due dates, that is, γ(vi) and µ(vi). More formally, function f has to

be such that:

• f(i1) = f(i2) =⇒ i1 and i2 do not overlap ∀i1, i2 ∈ R

• γ(vi) ≤ f(i) ≤ µ(vi) ∀i ∈ R

Assume first that H is (γ, µ)-colorable. This means that a function g : V → N is a coloring

for H. Let f : R→ N be a function such that f(i) = g(vi), vi ∈ V . It is easy to see that f is

a feasible schedule for Is.

On the other hand, assume that Is admits a feasible schedule f . Let g : V → R be a

function such that g(vi) = f(i), (ai, bi) ∈ A. It is easy to see that g is a coloring function

for H. In fact, g(vi1) = g(vi2) means that requests i1 and i2 do not overlap, i.e., edge

(vi1 , vi2) /∈ E . In addition, from the definition of ri and di, γ(vi) ≤ g(vi) ≤ µ(vi).

It shows that solving the (γ, µ)-coloring problem on an interval graph amounts to finding

a feasible solution to an instance of problem 1, 1|sd, u, ri, di|CLT . This proves that problem

1, 1|sd, u, ri, di|CLT is NP-hard.

Given the result of Theorem 4, it follows that all problems with release and due dates,

monodirectional and where the objective function is the minimization of CLT are NP-Hard.

In the following section, we present a mathematical formulation for problem V,Q|sd, u, ri, di|CLT

which can be used to solve also problems α|sd, u, ri, di|CLT , with α = 1, 1 or 1, Q or V, 1,

and that could be easily adapted to solve problems with heterogeneous fleet of vehicles.

4.2. Integer linear programming formulation for problem V,Q|sd, u, ri, di|CLT

In addition to notation defined in previous sections, we define Ki as the set of tour numbers

in which request i can be started

Ki = {k ∈ N : (k − 1)L+ δ0,si ≥ ri and (k − 1)L+ δ0,si + δsi,ti ≤ di}

Also, we tighten K, that is, the tour number upper bound for the last started request, by

taking account of due dates:

K = max
1≤i≤n

(

⌈
di
L

⌉
)

Decision variables are the same as in model (2)-(7). The formulation is given by (2)-(3),

(5)-(7) and the following modification of constraints (4):

19

∑
k∈Ki

xik = 1 (1 ≤ i ≤ n) (8)

Constraints (8) make sure that every request is served and that release and due dates are

respected.

5. Problems with non-unitary requests

In this section, we consider the extension of previous problems to non-unitary requests.

Note that in this context, the caseQ = 1 does not make sense. Remembering that 1, Q|sd, u|CLT

is NP-hard (see Section 3.2), we can conclude that all problems investigated in this section

are NP-hard.

5.1. Alternative complexity proof for problem 1, Q|sd|CLT

Though theorems 2 and 3 show that problem 1, Q|sd|CLT is NP-hard, the proof appears

overly complex when requests are not necessarily unitary. In this section, we propose a

simpler proof based on a reduction from the Bin Packing Problem (BPP).

The BPP is defined as follows. We are given a finite set O of n objects and K bins. Let

W ∈ Z+ be the bin capacity and wo be the weight of each object o ∈ O, with wo ≤W . The

problem consists in determining whether a partition of O in K disjoint subsets O1, . . . ,OK

exists such that the sum of item weights in each subset Ok is at most W . This problem is

NP-complete.

Theorem 5. 1, Q|sd|CLT is NP-hard

Proof. We consider the decision version of problem 1, Q|sd|CLT , i.e., the problem of deter-

mining, given an integer C, whether a feasible schedule exists with CLT ≤ C.

Let us consider an instance IB for the BPP, with a set O of objects and K bins. We

construct an instance IS for 1, Q|sd|CLT as follows. We define a ring with two stations

S = {0, 1}. For each object o ∈ O, we introduce a request i in R, with si = 0, ti = 1 and

qi = wo. The capacity Q of the vehicle is set to bin capacity W . We finally set C = K. In

instance IS , all requests overlap, hence, a schedule Λ is feasible if and only if:

• in each tour, the sum of the demands of the requests started in the tour is not greater

than Q,

• the schedule contains at most C tours.

20

We show that IB is feasible if and only if IS is. Assume first IB feasible. We build a schedule Λ

for IS by executing the requests of the K bins in K separate tours. Conversely, let us assume

IS feasible. We consider a feasible schedule Λ. We build a solution for IB by assigning all

requests starting in the same tour to the same bin. This shows that solving the BPP can be

reduced to solving the decision version of 1, Q|sd|CLT , with a polynomial reduction, which

proves that 1, Q|sd|CLT is NP-hard.

5.2. An integer linear programming model

In this section, we present a mathematical formulation for problem V,Q|sd, ri, di|CLT .

This formulation can also be used to solve problems 1, 1|sd, ri, di|CLT , 1, Q|sd, ri, di|CLT

and V, 1|sd, ri, di|CLT .

This formulation extends the formulations presented in Section 3.3 and 4.2. We use the

notation introduced in these sections. Tour assignment variables takes a third index to take

into account the vehicle that serves a request:

xikv =


1 if request i is started in tour k by vehicle v

0 otherwise

The mixed integer linear program is then:

min CLT (9)

s.t.:

∑
{i∈R[j,j+1],si≤j}

qixikv +
∑

{i∈R[j,j+1],si≥j+1}

qixik−1v ≤ Q (0 ≤ j ≤ m− 1, 1 ≤ k ≤ K, 1 ≤ v ≤ V)

(10)∑
v∈{1,...,V }

∑
k∈Ki

xikv = 1 (1 ≤ i ≤ n) (11)

CLT ≥
∑

v∈{1,...,V }

∑
k∈Ki

cikxikv (1 ≤ i ≤ n) (12)

xikv ∈ {0, 1} (1 ≤ i ≤ n, 1 ≤ k ≤ K, 1 ≤ v ≤ V)

(13)

CLT ≥ 0 (14)

The objective function minimizes the closing time, expressed as number of tours, over

all vehicles. Constraints (10) ensure that vehicle capacities are satisfied. They disaggregate

constraints (3) for each vehicle. Constraints (11) make sure that every requests is served, at

21

an acceptable time. Constraints (12) compute CLT . Constraints (13)-(14) define variables

domain.

We propose the following symmetry breaking constraints to strengthen formulation (9)–

(14). The first set of constraints ranks vehicles according to the number of satisfied requests:

the smallest the vehicle index, the largest the number of satisfied requests

n∑
i=1

∑
k∈Ki

xikv ≥
n∑

i=1

∑
k∈Ki

xikv+1 (1 ≤ v ≤ V − 1). (15)

The second set imposes that the first requests are served by the first vehicles: the i first

requests have to be assigned to vehicles in set {1, . . . , i}:∑
u∈{1,...,j}

∑
v∈{1,...,j}

∑
k∈Ki

xukv = j (1 ≤ j ≤ min(V, n)). (16)

Note that (15) and (16) cannot be used simultaneously.

We evaluated computationally the impact of these constraints and noticed a slight im-

provement, in terms of computing times, over the formulation without symmetry breaking

constraints. In particular, the most effective constraints are the ones given by inequalities

(16). Thus, the computational results presented in the following include these constraints.

6. Computational tests

We now present the set of experiments we made in order to evaluate the efficacy of the

formulations presented above. The formulations are solved through CPLEX 12.9.0 on a

computer equipped with an Intel Core i7-9700 processor and 32GB of RAM. For all instances

a time limit of 30 minutes was set. As shown in the results, all instances were solved (either

to optimality or by proving infeasibility) within this time limit.

6.1. Instance sets

As far as we know, the problems investigated in this paper are new and no benchmark

instances exist. We propose to generate random instances as follows. All random numbers

are chosen from uniform distributions.

We consider a ring with m = 10 stations. The number of requests is chosen in the set

{20, 40, 80, 160}, and we generated 5 instances for each number of requests. The pickup

station of a request is randomly taken in {0, . . . ,m−1} and the target station in {0, . . . ,m−

1} \ {si}. For each instance, distances between consecutive stations are randomly drawn in

[1, 10]. This gives a total of 20 combinations of the parameters mentioned above.

Every instance is replicated several times with different fleet of vehicles and demand val-

ues. We consider the following values for V and Q: V ∈ {1, 2, 3}, Q ∈ {1, 2, 4, 8}. When

22

demands are not unitary, they are generated in interval [1, Q]. For each of the 20 combina-

tions mentioned above, this gives 12 fleet/demand compositions for unitary and non-unitary

demands, respectively.

When needed, release dates and due dates are defined based on the following observations.

The expected length of a request is approximately L
2 . The expected demand is approximately

Q
2 when demands are non-unitary or exactly 1 when they are. So, every request approximately

generates an expected workload L
2 ×

Q
2 in unit-of-distance × unit-of-demand for non-unitary

demands and an expected workload L
2 otherwise. The total expected workload is thus L

2 ×
Q
2 × n or L

2 × n, respectively. The fleet brings a total capacity CLT × V × Q in the same

unit. With a capacity fully exploited, CLT should thus approach nL
4V when demands are not

unitary, nL
2QV otherwise. We denote as C this value.

Then:

• Release dates are randomly generated in intervals [0, 1.5C] (tight) or [0, 2C] (wide)

• Due dates are generated in intervals [ri +L, ri +L+C] (tight) or [ri +L, ri +L+ 1.5C]

(wide)

For the 20 × 24 combinations above, this gives four alternatives for release and due dates:

t-t, t-w, w-t, w-w, where t and w stand for tight and wide, respectively.

For each instance constructed this way, two variants are finally considered: the original

instance and the instance where due dates are relaxed. The reason behind the latter is to

investigate the impact of due dates on the problem tractability. Also, it might correspond to

a realistic situation where, for example, goods have to be moved between stations to prepare

the planning for the next day. In this case, goods are ready at a given time at the pickup

station (the release date) but there is no restriction on the time at which they should be

available at the delivery station.

To calculate value K in the case with release dates and no due date, it suffices to notice

that at the beginning of tour
⌈
2C
L

⌉
+ 1 all requests are ready to be processed (release dates

are passed). Then, the reasoning of Section 3.3 can be applied to set K =
⌈
2C
L

⌉
+ n.

6.2. Greedy algorithm

In order to evaluate the benefits of solving the problems to optimality, we designed the

following simple greedy algorithm that is easy to implement and that would be easy to un-

derstand for practitioners. We then compared the solutions provided by the greedy algorithm

with the optimal solutions. The greedy algorithm works as follows.

23

When a vehicle reaches a station that is the pickup station of at least one request and

this request can be started, it is started. If several requests can be started at the same

time, ties are broken by giving priority to requests according to the following criteria, taken

hierarchically:

• earliest due date first (due date is considered infinite if no due date is defined);

• largest demand first;

• longest distance to reach the delivery node first.

Note that, in case of instances with unit demands and no release/due dates, only the

third criterion is used.

6.3. Computational results for V,Q|sd, u|CLT

In Table 1 we report results for problem V,Q|sd, u|CLT . All results are averaged over the

5 instances with the same value of n, V and Q, considering feasible instances only. Column

CPU(s) reports the solution time of the formulation in Section 3.3, in seconds. Column feas

reports the number of feasible instances. Column grSuccess reports the number of instances

for which the greedy algorithm found a feasible solution. Column TOPT reports the value of

the optimal solution (closing time expressed in number of tours). Column gapGr gives the

average percentage gap of the solutions found with the greedy algorithm with respect to the

optimal solution.

24

n V Q CPU(s) feas grSuccess CLT gapGr(%)

20 1 1 0.1 5 5 13.0 4.5

20 1 2 0.0 5 5 6.8 5.4

20 1 4 0.0 5 5 3.8 11.7

20 1 8 0.0 5 5 2.6 20.0

20 2 1 0.1 5 5 6.8 8.7

20 2 2 0.0 5 5 3.8 11.7

20 2 4 0.0 5 5 2.6 20.0

20 2 8 0.0 5 5 2.0 0.0

20 3 1 0.1 5 5 4.8 9.0

20 3 2 0.0 5 5 3.0 6.7

20 3 4 0.0 5 5 2.2 10.0

20 3 8 0.0 5 5 2.0 0.0

40 1 1 0.3 5 5 25.4 0.7

40 1 2 0.2 5 5 13.2 6.1

40 1 4 0.1 5 5 7.0 2.9

40 1 8 0.1 5 5 4.0 10.0

40 2 1 0.4 5 5 13.2 4.7

40 2 2 0.2 5 5 7.0 9.0

40 2 4 0.1 5 5 4.0 5.0

40 2 8 0.1 5 5 2.6 20.0

40 3 1 0.4 5 5 9.0 4.2

40 3 2 0.2 5 5 5.0 8.0

40 3 4 0.1 5 5 3.0 13.3

40 3 8 0.1 5 5 2.0 10.0

n V Q CPU(s) feas grSuccess CLT gapGr(%)

80 1 1 2.5 5 5 46.4 1.3

80 1 2 1.2 5 5 23.4 1.6

80 1 4 0.6 5 5 12.0 1.7

80 1 8 0.2 5 5 6.4 12.9

80 2 1 2.5 5 5 23.4 1.6

80 2 2 1.3 5 5 12.0 5.0

80 2 4 0.6 5 5 6.4 6.2

80 2 8 0.4 5 5 3.4 25.0

80 3 1 3.8 5 5 15.8 3.8

80 3 2 1.7 5 5 8.2 9.7

80 3 4 0.8 5 5 4.4 19.0

80 3 8 0.3 5 5 3.0 6.7

160 1 1 17.6 5 5 87.4 0.2

160 1 2 8.2 5 5 44.2 0.9

160 1 4 5.3 5 5 22.2 2.8

160 1 8 2.0 5 5 11.4 5.5

160 2 1 30.9 5 5 44.2 0.5

160 2 2 19.9 5 5 22.2 1.9

160 2 4 6.6 5 5 11.4 5.5

160 2 8 3.3 5 5 6.0 16.7

160 3 1 39.9 5 5 29.4 2.1

160 3 2 18.8 5 5 15.0 5.4

160 3 4 9.9 5 5 7.8 10.4

160 3 8 4.3 5 5 4.0 25.0

Table 1: Problem V,Q|sd, u|CLT

We can observe that the formulation in Section 3.3 is extremely effective. In fact, the

computational time is always smaller than 40 seconds. The computational time increases

with the number of requests, as expected, and decreases with the vehicle capacity. Also,

the solution value decreases as the capacity increases, as expected. The performance of the

greedy algorithm highly depends on vehicle capacity: the larger the capacity, the worse is the

performance. This might be due to the fact that, when increasing the capacity, the chances

of making a bad choice of assignment of requests to vehicles increases. On the other side,

we see that the gap decreases with solution values. This was expected: in fact, the relative

impact of bad choices made by the greedy algorithm decreases.

6.4. Computational results for V,Q|sd, u, ri, di|CLT

Tables 2 and 3 report results for problem V,Q|sd, u, ri, di|CLT . The meaning of the

column headings is the same as above. “-” indicates that either the instance is infeasible or

the greedy algorithm failed in finding a solution. In Table 2, three cases are considered for

release and due dates: tight-tight (t-t), tight-wide (t-w) and tight release dates without due

25

dates (t). The three remaining cases are reported in Table 3.

26

n V Q t-t t-w t

CPU(s) feas grSuccess CLT gapGr CPU(s) feas grSuccess CLT gapGr CPU(s) feas grSuccess CLT gapGr

20 1 1 0.0 3 0 17.3 - 0.0 4 1 17.0 6.7 0.0 5 5 17.4 7.0

20 1 2 0.0 5 0 9.2 - 0.0 5 0 9.2 - 0.0 5 5 9.2 8.7

20 1 4 0.0 5 0 5.0 - 0.0 5 1 4.8 20.0 0.0 5 5 5.0 12.0

20 1 8 0.0 5 0 3.0 - 0.0 5 2 2.8 25.0 0.0 5 5 3.0 26.7

20 2 1 0.0 5 0 8.6 - 0.0 5 0 9.2 - 0.0 5 5 8.6 9.4

20 2 2 0.0 5 2 4.8 22.5 0.0 5 2 4.6 20.0 0.0 5 5 4.6 22.0

20 2 4 0.0 5 0 3.0 - 0.0 5 0 3.2 - 0.0 5 5 3.0 20.0

20 2 8 0.0 5 0 2.0 - 0.0 5 0 2.0 - 0.0 5 5 2.0 50.0

20 3 1 0.0 5 2 6.2 18.3 0.0 4 2 6.5 0.0 0.0 5 5 6.2 10.7

20 3 2 0.0 5 0 3.6 - 0.0 5 2 3.6 12.5 0.0 5 5 3.6 23.3

20 3 4 0.0 5 0 2.8 - 0.0 5 1 2.8 0.0 0.0 5 5 2.8 10.0

20 3 8 0.0 5 0 2.0 - 0.0 5 0 2.0 - 0.0 5 5 2.0 30.0

40 1 1 0.0 5 0 34.2 - 0.0 5 2 31.2 1.7 0.1 5 5 34.0 3.5

40 1 2 0.0 5 0 16.4 - 0.0 5 0 16.6 - 0.0 5 5 16.4 7.4

40 1 4 0.0 5 0 9.2 - 0.0 5 1 8.6 0.0 0.0 5 5 9.0 4.7

40 1 8 0.0 5 0 5.0 - 0.0 5 0 4.8 - 0.0 5 5 5.0 8.0

40 2 1 0.0 5 0 16.6 - 0.0 5 0 16.4 - 0.1 5 5 16.6 3.8

40 2 2 0.0 5 1 9.0 0.0 0.0 5 3 8.8 7.9 0.0 5 5 9.0 2.2

40 2 4 0.0 5 0 4.8 - 0.0 5 0 5.0 - 0.0 5 5 4.8 13.0

40 2 8 0.0 5 0 3.0 - 0.0 5 0 3.0 - 0.0 5 5 3.0 33.3

40 3 1 0.0 5 0 11.0 - 0.0 5 1 11.6 8.3 0.1 5 5 11.0 7.3

40 3 2 0.0 5 0 6.2 - 0.0 5 0 5.8 - 0.1 5 5 6.2 16.2

40 3 4 0.0 5 0 4.0 - 0.0 5 0 4.0 - 0.1 5 5 4.0 0.0

40 3 8 0.0 5 0 3.0 - 0.0 5 0 3.0 - 0.1 5 5 3.0 0.0

80 1 1 0.1 5 1 61.4 3.2 0.1 4 0 62.0 - 0.2 5 5 61.4 1.3

80 1 2 0.0 5 0 31.4 - 0.0 5 0 31.6 - 0.1 5 5 31.4 2.6

80 1 4 0.0 5 1 16.6 6.3 0.0 5 1 15.6 6.3 0.1 5 5 16.6 4.9

80 1 8 0.0 5 0 9.0 - 0.0 5 1 8.8 0.0 0.1 5 5 9.0 8.9

80 2 1 0.1 5 1 31.4 0.0 0.1 5 0 31.0 - 0.3 5 5 31.4 2.6

80 2 2 0.0 5 0 15.8 - 0.0 5 1 16.2 6.3 0.2 5 5 15.8 5.1

80 2 4 0.0 5 2 8.6 6.3 0.0 5 0 8.8 - 0.2 5 5 8.6 7.2

80 2 8 0.0 5 0 5.0 - 0.0 5 0 5.0 - 0.1 5 5 5.0 16.0

80 3 1 0.1 5 1 21.4 4.8 0.2 5 1 21.4 4.5 0.4 5 5 21.4 3.8

80 3 2 0.0 5 1 11.0 0.0 0.0 5 1 11.0 9.1 0.3 5 5 11.0 7.3

80 3 4 0.0 5 0 6.0 - 0.0 5 0 6.0 - 0.2 5 5 6.0 16.7

80 3 8 0.0 5 0 4.0 - 0.0 5 0 4.0 - 0.2 5 5 4.0 15.0

160 1 1 0.6 5 0 120.6 - 0.8 4 0 121.8 - 1.9 5 5 120.6 1.5

160 1 2 0.1 5 1 61.6 1.6 0.1 5 1 61.2 1.6 0.5 5 5 61.6 1.0

160 1 4 0.0 5 1 30.8 3.3 0.1 5 0 31.0 - 0.3 5 5 30.8 2.0

160 1 8 0.0 5 0 16.0 - 0.0 5 2 16.0 3.1 0.3 5 5 16.0 5.0

160 2 1 0.7 5 0 62.2 - 0.7 5 0 61.0 - 2.2 5 5 62.2 1.0

160 2 2 0.1 5 0 31.2 - 0.2 5 1 31.6 0.0 0.9 5 5 31.2 2.6

160 2 4 0.0 5 1 16.2 6.3 0.1 5 0 16.2 - 0.7 5 5 16.2 3.8

160 2 8 0.0 5 0 9.0 - 0.0 5 0 9.0 - 0.7 5 5 9.0 4.4

160 3 1 0.5 5 0 41.6 - 0.6 5 1 40.8 2.5 2.1 5 5 41.6 0.5

160 3 2 0.1 5 1 20.8 4.8 0.2 5 1 21.2 4.8 1.5 5 5 20.8 4.8

160 3 4 0.1 5 0 11.2 - 0.1 5 1 11.0 9.1 1.2 5 5 11.2 5.5

160 3 8 0.0 5 0 6.0 - 0.0 5 0 6.0 - 1.1 5 5 6.0 16.7

Table 2: Problem V,Q|sd, u, ri, di|CLT (part 1)27

n V Q w-t w-w w

CPU(s) feas grSuccess CLT gapGr CPU(s) feas grSuccess CLT gapGr CPU(s) feas grSuccess CLT gapGr

20 1 1 0.0 5 2 20.6 5.0 0.0 5 1 19.4 5.6 0.0 5 5 20.6 4.9

20 1 2 0.0 5 1 11.2 8.3 0.0 5 1 10.6 0.0 0.0 5 5 10.8 9.3

20 1 4 0.0 5 1 5.8 16.7 0.0 5 1 5.8 16.7 0.0 5 5 5.8 14.0

20 1 8 0.0 5 0 4.0 - 0.0 5 0 4.0 - 0.0 5 5 3.8 11.7

20 2 1 0.0 5 1 10.6 10.0 0.0 5 4 10.8 7.0 0.0 5 5 10.6 4.0

20 2 2 0.0 5 1 6.0 16.7 0.0 5 3 5.8 12.2 0.0 5 5 6.0 10.0

20 2 4 0.0 5 0 4.0 - 0.0 5 0 3.8 - 0.0 5 5 4.0 10.0

20 2 8 0.0 5 0 3.0 - 0.0 5 0 2.6 - 0.0 5 5 3.0 0.0

20 3 1 0.0 5 1 7.8 0.0 0.0 5 1 8.0 0.0 0.0 5 5 7.8 7.9

20 3 2 0.0 5 0 4.4 - 0.0 5 1 4.4 0.0 0.0 5 5 4.4 20.0

20 3 4 0.0 5 0 2.6 - 0.0 5 0 3.0 - 0.0 5 5 2.6 20.0

20 3 8 0.0 5 0 2.0 - 0.0 5 0 2.0 - 0.0 5 5 2.0 50.0

40 1 1 0.0 5 0 39.2 - 0.0 5 0 41.4 - 0.0 5 5 39.2 2.5

40 1 2 0.0 5 0 20.6 - 0.0 5 1 20.8 4.8 0.0 5 5 20.6 4.9

40 1 4 0.0 5 1 11.0 9.1 0.0 5 2 10.8 5.0 0.0 5 5 11.0 3.6

40 1 8 0.0 5 0 6.0 - 0.0 5 1 6.0 16.7 0.0 5 5 6.0 13.3

40 2 1 0.0 5 1 20.8 4.8 0.0 5 1 20.4 4.8 0.1 5 5 20.8 3.9

40 2 2 0.0 5 0 10.6 - 0.0 5 2 10.6 9.5 0.0 5 5 10.6 4.0

40 2 4 0.0 5 2 6.0 8.3 0.0 5 1 6.0 0.0 0.0 5 5 6.0 13.3

40 2 8 0.0 5 0 4.0 - 0.0 5 0 4.0 - 0.0 5 5 4.0 0.0

40 3 1 0.0 5 1 14.6 0.0 0.0 5 1 14.4 0.0 0.1 5 5 14.6 2.8

40 3 2 0.0 5 0 8.0 - 0.0 5 1 7.8 12.5 0.1 5 5 8.0 2.5

40 3 4 0.0 5 0 4.4 - 0.0 5 1 4.8 0.0 0.1 5 5 4.4 10.0

40 3 8 0.0 5 0 3.0 - 0.0 5 0 3.0 - 0.1 5 5 3.0 6.7

80 1 1 0.1 5 2 80.2 0.6 0.1 5 4 80.6 1.2 0.1 5 5 80.2 0.8

80 1 2 0.0 5 1 40.4 0.0 0.0 5 4 41.0 1.2 0.1 5 5 40.4 1.5

80 1 4 0.0 5 0 20.4 - 0.0 5 1 20.8 0.0 0.1 5 5 20.4 4.9

80 1 8 0.0 5 0 10.6 - 0.0 5 1 11.0 9.1 0.1 5 5 10.6 7.6

80 2 1 0.1 5 1 41.0 4.9 0.1 5 2 40.8 1.2 0.3 5 5 41.0 2.0

80 2 2 0.0 5 1 21.0 0.0 0.0 5 2 20.8 2.5 0.2 5 5 21.0 2.9

80 2 4 0.0 5 0 10.8 - 0.0 5 0 11.0 - 0.1 5 5 10.8 7.5

80 2 8 0.0 5 0 6.0 - 0.0 5 1 6.0 16.7 0.1 5 5 6.0 16.7

80 3 1 0.1 5 0 27.6 - 0.1 5 2 28.0 1.8 0.4 5 5 27.6 2.2

80 3 2 0.0 5 1 14.8 0.0 0.0 5 2 14.6 3.6 0.2 5 5 14.8 0.0

80 3 4 0.0 5 1 7.8 12.5 0.0 5 0 8.0 - 0.2 5 5 7.8 12.9

80 3 8 0.0 5 0 5.0 - 0.0 5 0 5.0 - 0.2 5 5 5.0 4.0

160 1 1 0.3 5 1 160.2 0.0 0.3 5 2 160.6 0.9 0.6 5 5 160.2 0.5

160 1 2 0.1 5 0 80.6 - 0.1 5 1 80.8 0.0 0.4 5 5 80.6 0.7

160 1 4 0.0 5 0 40.8 - 0.1 5 3 41.0 1.6 0.3 5 5 40.8 1.0

160 1 8 0.0 5 0 20.8 - 0.0 5 1 21.0 4.8 0.3 5 5 20.8 3.9

160 2 1 0.2 5 0 81.0 - 0.3 5 2 80.2 1.3 1.2 5 5 81.0 0.7

160 2 2 0.1 5 1 41.0 0.0 0.1 5 1 40.8 0.0 0.8 5 5 41.0 1.0

160 2 4 0.0 5 1 21.0 4.8 0.0 5 0 20.4 - 0.8 5 5 21.0 2.9

160 2 8 0.0 5 0 11.0 - 0.0 5 1 11.0 9.1 0.7 5 5 11.0 7.3

160 3 1 0.2 5 0 54.6 - 0.3 5 2 54.0 1.9 1.5 5 5 54.6 0.4

160 3 2 0.1 5 0 27.8 - 0.1 5 2 28.0 1.8 1.3 5 5 27.8 1.5

160 3 4 0.0 5 0 14.8 - 0.1 5 0 15.0 - 1.1 5 5 14.8 1.4

160 3 8 0.0 5 0 8.0 - 0.0 5 0 8.0 - 1.1 5 5 8.0 5.0

Table 3: Problem V,Q|sd, u, ri, di|CLT (part 2)28

The main observation from these tables is that the model remains extremely efficient,

even when release dates and due dates are considered. Even more, solution times are much

smaller than those reported in Table 1, with almost all instances solved in less than one

second. This might be due to the fact that release and due dates reduce the solution space.

Still, the instances are not trivial to solve, as witnessed by the results related to the greedy

algorithm. Indeed, while almost all instances admit feasible solutions, the greedy algorithm

fails in finding the optimal solution for most of them. In addition, the greedy algorithm has

difficulties even in finding a feasible solution, especially for the case in which release and

due dates are tight. This shows that a solution approach smarter than the simple greedy

algorithm can provide large advantages.

6.5. Computational results for V,Q|sd, ri, di|CLT

Tables 5 and 6 report results for problem V,Q|sd, ri, di|CLT . Contrary to previous results,

demands are not forced to be unitary. optimal solutions are the ones obtained from solving

the formulation in Section 5.2. Columns are the same as in the former section. In addition,

the case with no release dates and due dates is considered in table 4.

n V Q CPU(s) feas grSuccess CLT gapGr(%)

20 1 1 0.1 5 5 13.0 1.5

20 1 2 0.1 5 5 9.8 8.2

20 1 4 0.1 5 5 8.8 11.6

20 1 8 0.1 5 5 8.2 16.9

20 2 1 0.1 5 5 6.8 2.9

20 2 2 0.1 5 5 5.4 10.9

20 2 4 0.1 5 5 5.2 13.0

20 2 8 0.1 5 5 4.8 13.0

20 3 1 0.1 5 5 4.8 9.0

20 3 2 0.1 5 5 3.8 23.3

20 3 4 0.1 5 5 3.6 26.7

20 3 8 0.1 5 5 3.2 26.7

40 1 1 0.3 5 5 25.4 1.6

40 1 2 0.2 5 5 19.0 3.2

40 1 4 1.2 5 5 17.0 12.9

40 1 8 0.5 5 5 14.6 11.0

40 2 1 0.4 5 5 13.2 1.5

40 2 2 0.3 5 5 9.8 10.4

40 2 4 0.4 5 5 8.6 6.9

40 2 8 0.7 5 5 8.8 11.4

40 3 1 0.4 5 5 9.0 4.2

40 3 2 0.4 5 5 7.2 14.0

40 3 4 0.4 5 5 6.0 14.7

40 3 8 0.3 5 5 5.0 20.3

n V Q CPU(s) feas grSuccess CLT gapGr(%)

80 1 1 2.5 5 5 46.4 1.7

80 1 2 2.9 5 5 35.6 2.8

80 1 4 15.9 5 5 30.4 9.9

80 1 8 22.9 5 5 27.6 11.9

80 2 1 2.5 5 5 23.4 1.6

80 2 2 3.9 5 5 18.2 5.6

80 2 4 5.4 5 5 15.6 9.0

80 2 8 24.4 5 5 14.2 12.8

80 3 1 3.9 5 5 15.8 3.8

80 3 2 5.8 5 5 11.8 7.0

80 3 4 6.0 5 5 10.4 13.5

80 3 8 20.2 5 5 9.8 16.6

160 1 1 17.6 5 5 87.4 0.7

160 1 2 102.9 5 5 65.4 1.2

160 1 4 227.7 5 5 54.8 10.6

160 1 8 292.3 5 5 51.6 12.5

160 2 1 30.8 5 5 44.2 1.8

160 2 2 29.7 5 5 33.2 3.0

160 2 4 213.1 5 5 27.4 11.8

160 2 8 453.7 5 5 25.4 11.0

160 3 1 39.9 5 5 29.4 2.0

160 3 2 50.3 5 5 22.2 3.6

160 3 4 86.4 5 5 19.8 10.1

160 3 8 162.7 5 5 18.4 12.1

Table 4: Problem V,Q|sd|CLT

29

n V Q t-t t-w t

CPU(s) feas grSuccess TOPT gapGr CPU(s) feas grSuccess TOPT gapGr CPU(s) feas grSuccess TOPT gapGr

20 1 1 0.0 0 0 - - 0.0 1 0 13.0 - 0.0 5 5 13.6 7.5

20 1 2 0.0 0 0 - - 0.0 4 0 11.3 - 0.0 5 5 11.0 13.6

20 1 4 0.0 1 1 9.0 11.1 0.0 4 0 10.0 - 0.0 5 5 10.6 16.9

20 1 8 0.0 2 0 9.0 - 0.0 3 1 10.0 20.0 0.0 5 5 10.0 16.6

20 2 1 0.0 0 0 - - 0.0 1 0 8.0 - 0.0 5 5 7.0 17.9

20 2 2 0.0 1 0 6.0 - 0.0 4 0 6.0 - 0.0 5 5 5.6 21.5

20 2 4 0.0 2 0 6.0 - 0.0 3 0 5.7 - 0.0 5 5 5.8 24.7

20 2 8 0.0 4 0 5.8 - 0.0 5 0 5.0 - 0.0 5 5 5.4 26.7

20 3 1 0.0 0 0 - - 0.0 1 0 4.0 - 0.0 5 5 5.2 17.3

20 3 2 0.0 3 0 4.3 - 0.0 5 0 4.6 - 0.0 5 5 4.4 15.0

20 3 4 0.0 2 0 4.0 - 0.0 5 0 4.2 - 0.0 5 5 4.0 32.3

20 3 8 0.0 4 0 4.3 - 0.0 5 1 4.2 0.0 0.0 5 5 4.2 9.0

40 1 1 0.0 0 0 - - 0.0 1 0 24.0 - 0.2 5 5 26.8 4.8

40 1 2 0.0 1 0 21.0 - 0.1 3 0 20.7 - 0.1 5 5 20.2 9.3

40 1 4 0.0 3 0 18.7 - 0.1 3 0 19.0 - 0.2 5 5 19.2 12.4

40 1 8 0.0 4 0 17.8 - 0.0 4 0 17.8 - 0.1 5 5 18.0 14.5

40 2 1 0.0 0 0 - - 0.0 2 0 13.0 - 0.2 5 5 13.6 7.6

40 2 2 0.0 1 0 10.0 - 0.1 4 0 10.0 - 0.2 5 5 10.2 13.8

40 2 4 0.0 4 0 9.3 - 0.1 5 0 9.8 - 0.2 5 5 9.4 13.9

40 2 8 0.1 4 0 10.5 - 0.0 5 0 10.0 - 0.2 5 5 10.4 12.3

40 3 1 0.0 0 0 - - 0.0 4 0 9.0 - 0.3 5 5 9.2 13.2

40 3 2 0.0 3 0 7.3 - 0.0 4 0 8.0 - 0.2 5 5 7.4 16.4

40 3 4 0.0 4 1 6.8 16.7 0.0 4 0 7.0 - 0.1 5 5 6.8 14.9

40 3 8 0.0 4 0 6.5 - 0.0 5 0 6.4 - 0.1 5 5 6.4 22.4

80 1 1 0.0 0 0 - - 0.2 4 0 47.5 - 1.3 5 5 47.8 4.2

80 1 2 0.4 3 0 39.3 - 1.2 5 0 37.2 - 2.2 5 5 38.2 10.0

80 1 4 0.2 3 0 34.3 - 12.2 5 1 35.2 11.4 2.7 5 5 34.6 11.6

80 1 8 0.4 5 0 32.6 - 0.8 5 0 33.6 - 2.2 5 5 32.2 11.7

80 2 1 0.0 0 0 - - 0.2 3 0 24.3 - 2.0 5 5 24.0 4.2

80 2 2 0.5 5 0 19.4 - 2.0 5 0 18.8 - 2.4 5 5 18.8 14.9

80 2 4 7.4 5 0 17.2 - 1.2 5 0 17.6 - 9.2 5 5 17.0 11.7

80 2 8 0.2 5 0 17.2 - 0.8 5 0 17.2 - 1.8 5 5 17.2 6.9

80 3 1 0.1 0 0 - - 0.3 4 0 16.3 - 2.4 5 5 16.2 5.0

80 3 2 1.0 5 0 13.2 - 0.4 5 0 12.4 - 1.4 5 5 13.2 9.1

80 3 4 0.2 5 0 12.0 - 1.7 5 0 12.0 - 1.3 5 5 12.0 13.3

80 3 8 0.5 5 1 12.0 9.1 0.6 5 0 11.6 - 1.6 5 5 11.8 15.3

160 1 1 0.4 0 0 - - 7.8 5 0 88.4 - 45.6 5 5 88.6 3.8

160 1 2 179.5 5 0 69.4 - 38.5 5 0 69.2 - 346.4 5 5 69.2 6.5

160 1 4 15.3 5 0 64.8 - 22.0 5 0 63.4 - 27.2 5 5 64.6 7.1

160 1 8 18.6 5 0 63.4 - 8.6 5 0 63.4 - 17.4 5 5 63.4 7.0

160 2 1 0.3 0 0 - - 4.1 5 0 44.8 - 28.5 5 5 44.2 2.2

160 2 2 87.7 5 0 34.4 - 25.9 5 0 34.4 - 44.9 5 5 34.4 6.9

160 2 4 365.6 5 0 32.3 - 9.2 5 0 33.4 - 44.5 5 5 32.0 10.6

160 2 8 12.0 5 0 32.0 - 71.6 5 0 32.2 - 20.5 5 5 31.8 8.8

160 3 1 0.3 0 0 - - 4.0 5 0 29.6 - 49.8 5 5 29.8 6.0

160 3 2 51.5 5 0 23.2 - 17.2 5 0 23.0 - 26.5 5 5 23.2 9.5

160 3 4 20.4 5 0 22.4 - 24.8 5 0 22.0 - 362.2 5 5 22.2 10.8

160 3 8 92.8 5 0 21.8 - 5.7 5 0 21.8 - 56.4 5 5 21.8 8.3

Table 5: Problem V,Q|sd, ri, di|CLT (part 1)30

n V Q w-t w-w w

CPU(s) feas grSuccess TOPT gapGr CPU(s) feas grSuccess TOPT gapGr CPU(s) feas grSuccess TOPT gapGr

20 1 1 0.0 0 0 - - 0.0 2 0 14.0 - 0.0 5 5 14.0 11.4

20 1 2 0.0 2 1 12.0 9.1 0.0 4 0 12.5 - 0.0 5 5 12.2 18.0

20 1 4 0.0 2 0 11.0 - 0.0 1 0 15.0 - 0.0 5 5 11.8 11.9

20 1 8 0.0 2 0 11.5 - 0.0 4 1 11.8 10.0 0.0 5 5 11.4 13.9

20 2 1 0.0 0 0 - - 0.0 3 0 7.0 - 0.0 5 5 8.4 7.9

20 2 2 0.0 4 0 7.0 - 0.0 4 1 6.5 33.3 0.0 5 5 6.4 15.9

20 2 4 0.0 2 0 7.0 - 0.0 4 1 6.8 16.7 0.0 5 5 6.6 15.4

20 2 8 0.0 5 0 6.4 - 0.0 5 0 6.2 - 0.0 5 5 6.4 12.4

20 3 1 0.0 1 0 5.0 - 0.0 2 0 5.5 - 0.0 5 5 5.6 14.0

20 3 2 0.0 3 0 4.3 - 0.0 5 0 4.6 - 0.0 5 5 4.6 18.0

20 3 4 0.0 4 0 5.0 - 0.0 5 3 4.6 15.0 0.0 5 5 5.0 22.0

20 3 8 0.0 5 1 4.4 25.0 0.0 5 0 4.8 - 0.0 5 5 4.4 23.0

40 1 1 0.0 1 0 26.0 - 0.0 2 0 26.0 - 0.1 5 5 27.0 6.2

40 1 2 0.0 4 0 22.8 - 0.0 5 0 22.6 - 0.1 5 5 21.6 7.4

40 1 4 0.0 4 0 23.5 - 0.0 5 0 23.4 - 0.1 5 5 22.0 10.1

40 1 8 0.0 5 0 21.2 - 0.0 5 0 21.8 - 0.1 5 5 20.8 10.7

40 2 1 0.0 1 0 13.0 - 0.0 3 0 13.7 - 0.2 5 5 14.0 8.8

40 2 2 0.0 4 0 11.5 - 0.0 5 0 11.4 - 0.1 5 5 11.2 10.8

40 2 4 0.0 4 0 11.8 - 0.0 5 0 11.4 - 0.1 5 5 11.6 12.3

40 2 8 0.0 4 1 11.0 10.0 0.0 5 0 11.2 - 0.1 5 5 11.0 14.6

40 3 1 0.0 1 0 9.0 - 0.0 5 0 9.6 - 0.2 5 5 9.0 13.7

40 3 2 0.0 5 0 8.4 - 0.0 5 0 8.4 - 0.1 5 5 8.2 14.7

40 3 4 0.0 5 0 8.2 - 0.0 5 0 8.0 - 0.1 5 5 8.0 12.5

40 3 8 0.0 5 0 7.8 - 0.0 5 0 8.0 - 0.1 5 5 7.8 17.9

80 1 1 0.1 2 0 47.5 - 0.2 4 0 48.8 - 0.8 5 5 48.0 7.5

80 1 2 0.1 5 0 43.6 - 0.3 5 0 42.6 - 0.4 5 5 43.4 6.5

80 1 4 0.1 5 0 41.2 - 0.2 5 0 41.8 - 0.3 5 5 41.2 6.8

80 1 8 0.1 5 0 41.8 - 0.1 5 0 41.2 - 0.3 5 5 41.8 4.7

80 2 1 0.1 4 0 24.0 - 0.3 5 0 24.8 - 1.3 5 5 23.8 7.5

80 2 2 0.1 5 0 22.2 - 0.2 5 1 22.0 4.5 0.7 5 5 22.2 5.7

80 2 4 0.1 5 1 21.4 4.5 0.1 5 0 21.4 - 0.4 5 5 21.2 5.7

80 2 8 0.1 5 0 21.4 - 0.1 5 0 21.4 - 0.4 5 5 21.4 5.6

80 3 1 0.1 2 0 16.5 - 0.2 5 0 17.0 - 1.4 5 5 16.8 8.4

80 3 2 0.1 5 0 15.0 - 0.1 5 0 14.8 - 0.5 5 5 15.0 9.3

80 3 4 0.1 5 0 15.0 - 0.1 5 0 15.2 - 0.4 5 5 15.0 5.3

80 3 8 0.1 5 0 15.0 - 0.1 5 0 14.8 - 0.5 5 5 15.0 4.0

160 1 1 2.7 5 0 91.4 - 4.5 5 0 91.2 - 17.0 5 5 91.2 6.4

160 1 2 1.7 5 0 83.6 - 3.6 5 0 83.6 - 5.0 5 5 83.6 3.3

160 1 4 0.4 5 0 81.6 - 0.5 5 0 81.4 - 1.7 5 5 81.6 2.5

160 1 8 0.3 5 0 82.0 - 0.4 5 0 81.4 - 1.4 5 5 81.8 1.7

160 2 1 1.7 5 0 46.4 - 3.5 5 0 45.8 - 12.3 5 5 46.4 5.2

160 2 2 0.8 5 0 42.4 - 2.1 5 0 41.8 - 2.6 5 5 42.2 4.3

160 2 4 0.5 5 0 42.0 - 0.9 5 0 41.8 - 2.4 5 5 42.0 3.3

160 2 8 0.4 5 0 40.8 - 0.6 5 1 41.2 2.4 3.2 5 5 40.8 3.9

160 3 1 1.7 5 0 30.2 - 2.8 5 0 30.8 - 21.1 5 5 30.0 9.3

160 3 2 0.6 5 0 27.6 - 1.2 5 0 28.6 - 4.7 5 5 27.6 5.8

160 3 4 1.0 5 0 28.2 - 0.4 5 0 28.4 - 3.3 5 5 28.2 1.4

160 3 8 0.3 5 0 27.6 - 0.4 5 1 27.8 3.7 3.4 5 5 27.6 2.9

Table 6: Problem V,Q|sd, ri, di|CLT (part 2)31

These tables confirm the good-quality of the formulation but also exhibit larger computing

times. Largest instances regularly require a few minutes for getting the optimal solution, with

or without release dates and due dates. The reason is related to the larger number of variables

due to the disaggregated capacity constraints. These instances are also specially difficult for

the greedy algorithm. In fact, it fails in finding a feasible solution for most of the instances

and shows larger gaps compared to instances with unitary demands, when feasible solution

are found. The additional complexity implied by the packing of non-unitary requests makes

the greedy algorithm not effective.

7. Conclusions and perspectives

In this paper we introduced a new class of Pickup and Delivery problems where the

stations are located on rings. We first proposed a classification scheme. Then, we investigated

the complexity of the variants in which the vehicles are allowed to move in a single direction

and the objective is the minimization of the maximum number of tours. We described a

polynomial time algorithm for some variants and we proved the NP-hardness of the remaining

variants.

For the NP-hard variants, we proposed MILP formulations and computational tests to

evaluate these formulations. Experiments on a large number of instance show the impressive

efficiency of our formulations. All instances, with up to 160 requests, could be solved in a few

minutes. Comparisons with a simple and practically relevant greedy algorithm also confirmed

the intrinsic difficulty of the problems/instances and the usefulness of applying exact solution

schemes.

Different future research directions are possible. In parallel to this work, we started

addressing other variants of these problems, e.g., problems where vehicles are allowed to move

in different directions or problems with alternative objective functions. Another interesting

direction would be to consider different network topologies such as lines or other geometric

shapes that can be encountered in practice. Also, autonomous vehicles are bound to use

electric engines. A future step of our research should be to investigate the issues implied by

the limited autonomy of electric vehicles (range anxiety, recharging policies. . .).

References

(2018). Keolis deploys electric autonomous shuttles at two university cam-

puses in France. https://www.keolis.com/en/media/newsroom/press-releases/

keolis-deploys-electric-autonomous-shuttles-two-university-campuses. [On-

line; accessed 04-October-2019].

32

https://www.keolis.com/en/media/newsroom/press-releases/keolis-deploys-electric-autonomous-shuttles-two-university-campuses
https://www.keolis.com/en/media/newsroom/press-releases/keolis-deploys-electric-autonomous-shuttles-two-university-campuses

(2019). Paris-Saclay Autonomous Lab: new autonomous, electric and

shared mobility services. https://www.transdev.com/en/press-release/

paris-saclay-autonomous-lab/. [Online; accessed 04-October-2019].

(2020). Projet AVENUE : Navettes autonomes en milieu urbain. http://www.lgi.

centralesupelec.fr/en/node/328. [Online; accessed 22-January-2021].

Anily, S., & Pfeffer, A. (2013). The uncapacitated swapping problem on a line and on a

circle. Discrete Applied Mathematics, 161 , 454–465.

Antonialli, F. (2019). International benchmark on experimentations with autonomous shuttles

for collective transport. In 27th International Colloquium of Gerpisa.

Atallah, M. J., & Kosaraju, S. R. (1988). Efficient solutions to some transportation problems

with applications to minimizing robot arm travel. SIAM Journal on Computing , 17 , 849–

869.

Bäıou, M., Colares, R., & Kerivin, H. (2018). The stop number minimization problem:

Complexity and polyhedral analysis. In International Symposium on Combinatorial Opti-

mization (pp. 64–76). Springer.

Battarra, M., Cordeau, J.-F., & Iori, M. (2014). Chapter 6: pickup-and-delivery problems for

goods transportation. In Vehicle Routing: Problems, Methods, and Applications, Second

Edition (pp. 161–191). SIAM.

Berbeglia, G., Cordeau, J.-F., Gribkovskaia, I., & Laporte, G. (2007). Static pickup and

delivery problems: a classification scheme and survey. Top, 15 , 1–31.

Berbeglia, G., Cordeau, J.-F., & Laporte, G. (2010). Dynamic pickup and delivery problems.

European journal of operational research, 202 , 8–15.

Bonomo, F., Durán, G., & Marenco, J. (2009). Exploring the complexity boundary between

coloring and list-coloring. Annals of Operations Research, 169 , 3.

Cordeau, J.-F., & Laporte, G. (2007). The dial-a-ride problem: models and algorithms.

Annals of operations research, 153 , 29–46.

Desaulniers, G., Desrosiers, J., Erdmann, A., Solomon, M. M., & Soumis, F. (2002). Vrp

with pickup and delivery. In The Vehicle Routing Problem (pp. 225–242). SIAM.

Doerner, K. F., & Salazar-González, J.-J. (2014). Chapter 7: Pickup-and-delivery prob-

lems for people transportation. In Vehicle Routing: Problems, Methods, and Applications,

Second Edition (pp. 193–212). SIAM.

33

https://www.transdev.com/en/press-release/paris-saclay-autonomous-lab/
https://www.transdev.com/en/press-release/paris-saclay-autonomous-lab/
http://www.lgi.centralesupelec.fr/en/node/328
http://www.lgi.centralesupelec.fr/en/node/328

Gendreau, M., Laporte, G., & Vigo, D. (1999). Heuristics for the traveling salesman problem

with pickup and delivery. Computers & Operations Research, 26 , 699–714.

Gökay, S., Heuvels, A., & Krempels, K.-H. (2019). A high-level category survey of dial-a-ride

problems. In VEHITS (pp. 594–600).

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979). Optimization and

approximation in deterministic sequencing and scheduling: a survey. In Annals of discrete

mathematics (pp. 287–326). Elsevier volume 5.

Ho, S. C., Szeto, W., Kuo, Y.-H., Leung, J. M., Petering, M., & Tou, T. W. (2018). A

survey of dial-a-ride problems: Literature review and recent developments. Transportation

Research Part B: Methodological , 111 , 395–421.

Ilani, H., Shufan, E., & Grinshpoun, T. (2015). A fixed route dial-a-ride problem. Pro-

ceedings of the 7th Multidisciplinary International Conference on Scheduling : Theory and

Applications (MISTA 2015), 25 - 28 Aug 2015, Prague, Czech Republic, (pp. 313–324).

Itai, A., Perl, Y., & Shiloach, Y. (1982). The complexity of finding maximum disjoint paths

with length constraints. Networks, 12 , 277–286.

Jungnickel, D. (2013). Algorithms and complexity. In Graphs, Networks and Algorithms (pp.

35–63). Springer.

Molenbruch, Y., Braekers, K., & Caris, A. (2017). Typology and literature review for dial-a-

ride problems. Annals of Operations Research, 259 , 295–325.

Parragh, S. N., Doerner, K., & Hartl, R. F. (2008). A survey on pickup and delivery models

part i: Transportation between customers and depot. Journal für Betriebswirtschaft , 58 ,

21–51.

Parragh, S. N., Doerner, K. F., & Hartl, R. F. (2007). A survey on pickup and delivery

problems. Part II: Transportation between pickup and delivery locations, to appear: Journal

für Betriebswirtschaft , .

Pimenta, V., Quilliot, A., Toussaint, H., & Vigo, D. (2017). Models and algorithms for

reliability-oriented dial-a-ride with autonomous electric vehicles. European Journal of Op-

erational Research, 257 , 601–613.

Rüther, C., & Rieck, J. (2020). A grouping genetic algorithm for multi depot pickup and

delivery problems with time windows and heterogeneous vehicle fleets. In European Con-

34

ference on Evolutionary Computation in Combinatorial Optimization (Part of EvoStar)

(pp. 148–163). Springer.

Toth, P., & Vigo, D. (2014). Vehicle routing: problems, methods, and applications. SIAM.

Tzoreff, T. E., Granot, D., Granot, F., & Sošić, G. (2002). The vehicle routing problem

with pickups and deliveries on some special graphs. Discrete Applied Mathematics, 116 ,

193–229.

Wahlström, M. (2018). Euler digraphs. In Classes of Directed Graphs (pp. 173–205). Springer.

Wu, J., Zheng, L., Huang, C., Cai, S., Feng, S., & Zhang, D. (2019). An improved hybrid

heuristic algorithm for pickup and delivery problem with three-dimensional loading con-

straints. In 2019 IEEE 31st International Conference on Tools with Artificial Intelligence

(ICTAI) (pp. 1607–1612). IEEE.

35

Appendix A. Complexity of problem V, 1|sd, u|CLT

In this Appendix, we prove that problem V, 1|sd, u|CLT is NP-hard. We consider the

decision version of the problem and prove that it is NP-complete. In the decision version of

V, 1|sd, u|CLT , one searches for a feasible solution with route lengths not longer than a given

threshold CLT .

The proof is in two steps:

1. We introduce the Eulerian Path Partition Problem (EPP) and prove that it is NP-

complete. This is done through a polynomial-time reduction from the well-known 3-

SAT problem, which is NP-complete.

2. We then propose a polynomial-time reduction from EPP to the decision version of

V, 1|sd, u|CLT . Given that EPP is NP-complete, this proves that V, 1|sd, u|CLT is

NP-hard.

The EPP is defined as follows.

Definition 9. Let us consider a directed acyclic graph G = (X,E), together with 2 nodes

s ∈ X and p ∈ X and 2 integer numbers K and T . We suppose that, for any node x ∈ X,

a path from s to x and a path from x to p exist in G. The EPP consists in determining if a

partition of E into K arc-disjoint paths can be found, with exactly T arcs in each path. In

this case, we say that G is (K,T)− EPP .

Appendix A.1. Reduction of 3-SAT to EPP

We will follow an approach very similar to the construction procedure which was proposed

in Itai et al. (1982). We consider a 3-SAT instance Z = {z1, ..., zN} (variable set) and

C = {c1, ..., cS} (3-clause set), with N variables and S clauses. We suppose that for any

j = 1, ..., N , the number of occurrences of zj in C is equal to the number of occurrences

of ¬zj and we denote it by u(j). We call this assumption the Well-Balanced Hypothesis.

We know from Lemma 3.1 Itai et al. (1982) that the resulting restriction of 3-SAT remains

NP-Complete. We set U =
∑N

j=1 u(j) and see that the total number of literals in the clauses

is 3S = 2U . In what follows, we assume that each occurrence of any literal yi in a clause

(variable zj or its negation) is associated with a number in {1, . . . , u(j)}.

We build a graph H = (V, F) such that the 3-SAT instance is feasible if and only if a

graph which is slightly modified with respect to H is (3S+ 2U, 11)-EPP . H is acyclic and is

composed of six layers. The construction is illustrated on Figures A.8 and A.9 for an instance

with 3 variables and 2 clauses c1 = (z1 ∨¬z2 ∨ z3), c2 = (¬z1 ∨ z2 ∨¬z3). Node set V is given

by Table A.7. Each line defines a given category of nodes, at a given layer, and introduces

36

both a name and a notation for the nodes of the category. The total number of nodes in each

category is reported in the last column. All nodes are visible in Figure A.8. One can notice

that layers 3 and 4 contain exactly 2U nodes, that is, the number of literals in the clauses.

Layer Category Symbol Number

1 Source node s 1

2 Clause nodes c1, ..., cS S

Low layer variable nodes (j, u) (j ∈ {1, . . . , N}, u ∈ {1, . . . , u(j)}) U

3 First middle nodes (j, u, ε) (j ∈ {1, . . . , N}, u ∈ {1, . . . , u(j)}, ε ∈

{0, 1})

2U

4 Second middle nodes (j, u, ε)∗ (j ∈ {1, . . . , N}, u ∈ {1, . . . , u(j)}, ε ∈

{0, 1})

2U

5 Bottleneck node Q 1

Top layer variable nodes (j, u)* (j ∈ {1, . . . , N}, u ∈ {1, . . . , u(j)}) U

6 Sink node p 1

Table A.7: Node set V

Arc set F includes clause-related and variable-related arcs. Figure A.8 reports all these

arcs for our illustrative example.

s

c1

(1, 1)

(2, 1)

(3, 1)

c2

(1, 1, 1)

(1, 1, 0)

(2, 1, 1)

(2, 1, 0)

(3, 1, 1)

(3, 1, 0)

(1, 1, 1)∗

(1, 1, 0)∗

(2, 1, 1)∗

(2, 1, 0)∗

(3, 1, 1)∗

(3, 1, 0)∗

Q

(1, 1)∗

(2, 1)∗

(3, 1)∗

p

Figure A.8: A Graph H = (V, F), with 2 clauses c1, c2 and 3 variables z1, z2, z3

Clause-related arcs are defined in Table A.8 and are shown in figures A.8 and A.9, with

information on arc lengths on the latter. The structure of the table is similar to that of

Table A.7, with an additional column for arc lengths. Given a clause ck and a literal yi

37

in this clause, notation lit(ck, i) in the table indicates a triplet composed of: the index

of the associated variable, the occurrence number of the literal, 0 or 1 if the variable is

in its negative or positive form in the literal, respectively. For example, the three literals

associated with clause c1 = (z1 ∨ ¬z2 ∨ z3) are lit(c1, 1) = (1, 1, 1), lit(c1, 2) = (2, 1, 0),

and lit(c1, 3) = (3, 1, 1). Consequently, the three c-variable arcs for the clause are arcs

(c1, (1, 1, 1)), (c1, (2, 1, 0)) and (c1, (3, 1, 1)). Note that first middle nodes have exactly one

in-going clause-related arc each. Note also that the notation introduced in the table does not

always enable to distinguish between parallel arcs (c-default arcs, good bottleneck arcs, bad

bottleneck arcs are not distinguished). We keep this notation to ease readability. Clause-

related arcs represent exactly 3S arcs between every successive layers except between layers

3 and 4 where no clause-related arcs are introduced (remembering that 3S = 2U).

Layers Category Symbol Length Number

(1, 2) c-id arcs (s, ck)Id (k ∈ {1, . . . , S}) 5 S

first c-def arcs (s, ck)Def (k ∈ {1, . . . , S}) 1 S

second c-def arcs (s, ck)Def (k ∈ {1, . . . , S}) 1 S

(2, 3) first c-variable arcs (ck, (j, u, ε)) (k ∈ {1, . . . , S}, (j, u, ε) = lit(ck, 1)) 1 S

second c-variable arcs (ck, (j, u, ε)) (k ∈ {1, . . . , S}, (j, u, ε) = lit(ck, 2)) 1 S

third c-variable arcs (ck, (j, u, ε)) (k ∈ {1, . . . , S}, (j, u, ε) = lit(ck, 3)) 1 S

(4, 5) bottleneck arcs ((j, u, ε)∗, Q) (j ∈ {1, . . . , N}, u ∈ {1, . . . , u(j)}, ε ∈

{0, 1})

1 2U

(5, 6) good bottleneck arcs (Q, p)good S copies 3 S

bad bottleneck arcs (Q, p)bad,Id U − S copies 7 U − S

bad bottleneck arcs (Q, p)bad,Def 3S − U copies 6 3S − U

Table A.8: Clause-related arcs in Set F

38

s

c1

(1, 1)

(2, 1)

(3, 1)

c2

(1, 1, 1)

(1, 1, 0)

(2, 1, 1)

(2, 1, 0)

(3, 1, 1)

(3, 1, 0)

(1, 1, 1)∗

(1, 1, 0)∗

(2, 1, 1)∗

(2, 1, 0)∗

(3, 1, 1)∗

(3, 1, 0)∗

Q

(1, 1)∗

(2, 1)∗

(3, 1)∗

p

1
1

5

1
1

5

1

1

1

1

1

1

1

1

1

1

1

1

3
7

6
6

6

Figure A.9: Arc lengths for clause-related arcs of graph H = (V, F) of Figure A.8

Variable-related arcs are defined in Table A.9. This table reads as Table A.8. Arcs can

be seen on Figure A.8 for our example. Top-second arcs induce what we call a Saw Pattern.

This pattern cannot clearly be observed on Figure A.8 because u(j) = 1 for every variable

zj . We illustrate the pattern on figure A.10, with a variable having three occurrences in the

clauses. In the definition of these arcs, notation u+ε is assumed to give value 1 when u = u(j)

and ε = 1. The Saw Pattern is needed to have consistency among different occurrences of

the same variable. As shown in Figure A.8, it defines two complementary perfect matchings

between the three second middle nodes having the same value for ε and the three top layer

variable nodes. Similarly to clause-related arcs, variable-related arcs involve exactly 2U arcs

(that is, 3S) between every successive layers except between layers 3 and 4, with 4U arcs.

Considering the two sets of arcs, the graph contains exactly 4U arcs between every successive

layers.

39

Layers Category Symbol Length Number

(1, 2) low-first-id arcs (s, (j, u))Id (j ∈ {1, . . . , N}, u ∈ {1, . . . , u(j)}) 7 U

low-first-def arcs (s, (j, u))Def (j ∈ {1, . . . , N}, u ∈ {1, . . . , u(j)}) 3 U

(2, 3) low-second arcs ((j, u)), (j, u, ε)) (j ∈ {1, . . . , N}, u ∈ {1, . . . , u(j)}, ε ∈

{0, 1})

1 2U

(3, 4) middle-id arcs ((j, u, ε), (j, u, ε)∗)Id (j ∈ {1, . . . , N}, u ∈ {1, . . . , u(j)}, ε ∈

{0, 1})

1 2U

middle-def arcs ((j, u, ε), (j, u, ε)∗)Def (j ∈ {1, . . . , N}, u ∈ {1, . . . , u(j)}, ε ∈

{0, 1})

2 2U

(4, 5) top-second ((j, u, ε)∗, (j, u+ ε)∗) (j ∈ {1, . . . , N}, u ∈ {1, . . . , u(j)}, ε ∈

{0, 1})

1 2U

(5, 6) top-first-id arcs ((j, u)∗, p)Id (j ∈ {1, . . . , N}, u ∈ {1, . . . , u(j)}) 1 U

top-first-def arcs ((j, u)∗, p)Def (j ∈ {1, . . . , N}, u ∈ {1, . . . , u(j)}) 4 U

Table A.9: Variable-related arcs in Set F

s

(j, 1)

(j, 2)

(j, 3)

(j, 1, 1)

(j, 1, 0)

(j, 2, 1)

(j, 2, 0)

(j, 3, 1)

(j, 3, 0)

(j, 1, 1)∗

(j, 1, 0)∗

(j, 2, 1)∗

(j, 2, 0)∗

(j, 3, 1)∗

(j, 3, 0)∗

(j, 1)∗

(j, 2)∗

(j, 3)∗

p

3

7

3
7

7

3

1

1

1

1

1

1

1
2

1
2

1
2

1
2

1
2

1
2

1

1

1

1

1

1

4

1

1
4

1

4

Figure A.10: Variable-related arcs for a given variable zj with u(j) = 3, with the Saw Pattern between layers

4 and 5.

From graph H = (V, F), we define a second graph H∗ = (V ∗, F ∗) by replacing every arc

of length h > 1 with a chain of h arcs of length 1. This new graph is useful to meet the

definition of EPP in which the length of a path is given by its number of arcs. Then, finding

a partition of F ∗ in K arc-disjoint paths with T arcs in each path is equivalent to finding a

partition of F in K arc-disjoint paths with length T .

Theorem 6. 3-SAT instance (Z,C) is feasible iff H∗ = (V ∗, F ∗) is (3S + 2U, 11)-EPP .

40

Proof. Let us first assume that our 3-SAT instance is positive, that is, it admits a feasible

solution z = (ε1, . . . , εN). Then we show how we can partition the arcs of H∗ into 3S + 2U

paths with 11 arcs or equivalently the arcs of H into 3S + 2U paths with length 11. The

construction is illustrated in Figures A.11 and A.12, pursuing with the same two clauses c1

and c2, and considering assignment z = {1, 1, 1}. The partition is as follows:

• We first generate a path for every occurrence u of literal zj and a path for every

occurrence u of literal ¬zj in the clauses, for a total of 2× U paths:

– (j,u)-identifier path: s
Id−→ (j, u) −→ (j, u,¬εj)

Id−→ (j, u,¬εj)∗ −→ (j, u+(¬εj))∗
Id−→

p; (the red paths in fig. A.11)

– (j,u)-default path: s
Def−−→ (j, u) −→ (j, u, εj)

Def−−→ (j, u, εj)
∗ −→ (j, u+ εj)

∗ Def−−→ p;

(the green paths in fig. A.11)

These paths cover all variable-related arcs, except middle-id arcs ((j, u, εj), (j, u, εj)
∗)Id

and middle-def arcs ((j, u,¬εj), (j, u,¬εj)∗)Def . They all have a length equal to 11.

Figure A.11 shows these paths.

s

c1

(1, 1)

(2, 1)

(3, 1)

c2

(1, 1, 1)

(1, 1, 0)

(2, 1, 1)

(2, 1, 0)

(3, 1, 1)

(3, 1, 0)

(1, 1, 1)∗

(1, 1, 0)∗

(2, 1, 1)∗

(2, 1, 0)∗

(3, 1, 1)∗

(3, 1, 0)∗

Q

(1, 1)∗

(2, 1)∗

(3, 1)∗

p

Figure A.11: (j, u)−identifier and (j, u)−default paths in graph H

• We then generate three paths for every clause ck, for a total of 3 × S paths. A clause

involves three literals that can be matched to a variable zj and an occurrence u. Each

path visits, in sequence, nodes s, ck, (j, u, ε), (j, u, ε)∗, Q and p, where ε = 1 if the

literal is zj and ε = 0 if the literal is ¬zj (see definition of clause-variables arcs). The

arcs traversed depend on the type of path as follows.

41

– c-identifier path: among the three literals, at least one confirms the validity of

the clause, i.e., its assignment is such that the clause is satisfied; we arbitrarily

choose one such literal (in case there is more than one literal that satisfies the

clause) and we generate path s
Id−→ ck −→ (j, u, ε)

Id−→ (j, u, ε)∗ −→ Q
Good−−−→ p; (in red

in figure A.12)

– two c-default paths: a path is generated for every of the two remaining literals;

the literals can satisfy the clause or not; the path is s
Def−−→ ck −→ (j, u, ε)

Id−→

(j, u, ε)∗ −→ Q
Bad,Id−−−−→ p if the literal satisfies the clause, s

Def−−→ ck −→ (j, u, ε)
Def−−→

(j, u, ε)∗ −→ Q
Bad,Def−−−−−→ p otherwise (with the same definition as above for ε). (in

green in figure A.12)

Figure A.12 shows the c−identifier and the c−default paths.

s

c1

(1, 1)

(2, 1)

(3, 1)

c2

(1, 1, 1)

(1, 1, 0)

(2, 1, 1)

(2, 1, 0)

(3, 1, 1)

(3, 1, 0)

(1, 1, 1)∗

(1, 1, 0)∗

(2, 1, 1)∗

(2, 1, 0)∗

(3, 1, 1)∗

(3, 1, 0)∗

Q

(1, 1)∗

(2, 1)∗

(3, 1)∗

p

Figure A.12: c−identifier and c−default paths in graph H

All paths have a length equal to 11. They cover all remaining middle-id and middle-def

arcs. Indeed, an arc ((j, u, ε), (j, u, ε)∗)Id is traversed when the literal is true in the

clause, that is, when ε = εj . They also cover all clause-related arcs. Especially, for

every clause, the c-id and the two c-def arcs are covered, as well as one good bottleneck

arc and two bad bottleneck arcs. Furthermore, thanks to the well-balanced assumption,

exactly U literals satisfy their clause and U literals do not. So, U literals cover the U

bad bottlenecks arcs with cost 6, the other bottleneck arcs being covered by the other

literals (S for the good bottleneck arcs, U -S for the remaining bad bottleneck arcs).

All together, the 3S + 2U paths partition F in paths of length 11, which proves that H∗ is

42

(3S + 2U, 11)-EPP .

Conversely, let us now assume that H∗ is (3S + 2U, 11)-EPP . We will show that 3-SAT

is positive. Indeed, if H∗ is (3S + 2U, 11)-EPP , it means that there exists a partition of the

arcs of H into M = 3S + 2U paths with length 11, which we denote by Γ1, ...,ΓM . Then

we see that those paths, which all contain one first middle node (j, u, ε), can be split into 4

categories:

1. Those who reach node (j, u, ε) with a sub-path s
Id−→ (j, u) −→ (j, u, ε) of length 8. To

have a length 11, they must have the form of (j,u)-identifier paths. Every such path

contains arc ((j, u, ε), (j, u, ε)∗)Id.

2. Those who reach node (j, u, ε) with a sub-path s
Def−−→ (j, u) −→ (j, u, ε) of length 4. They

must be (j,u)-default paths. Every such path contains arc ((j, u, ε), (j, u, ε)∗)Def .

3. Those who reach node (j, u, ε) with a sub-path s
Id−→ ck −→ (j, u, ε) of length 6. They

must finish with good bottleneck arcs and be c-identifier paths.

4. Those who reach node (j, u, ε) with a sub-path s
Def−−→ ck −→ (j, u, ε) of length 2. They

should finish with bad bottleneck arcs. They are c-default paths. Furthermore,

U − S of them contain bad bottleneck arcs of size 7, and, so, also contain an arc

((j, u, ε), (j, u, ε)∗)Id.

Every node (j, u, ε) is traversed by two paths:

• One path Γm which is either a (j,u)-identifier path or a (j,u)-default path. We call

this path the representative path of (j, u, ε). We see that if the representative

path of (j, u, ε) is a (j,u)-default path then the representative path of (j, u,¬ε) is a

(j,u)-identifier path and vice-versa. Indeed, one path starts with sequence s
Id−→ (j, u),

the other with sequence s
Def−−→ (j, u).

• One path Γm∗ which is either a c-default or a c-identifier path for some clause ck.

We now derive from paths Γ1, ...,ΓM , an assignment of {0, 1} values to variables zj . For

every clause ck, we consider the node (j, u, ε) traversed by the c-identifier path. We give value

ε to variable zj . After this first step, it is possible that not all variables are assigned. We

complete with random values for other variables. We prove that these values are consistent,

i.e., the resulting assignment makes 3-SAT positive.

We use the following property of the Saw Pattern that we call the Saw Pattern Property.

Given a variable zj , we know that paths Γ1, ...,ΓM contain u(j) (j, u)-default paths and that

each of these (j, u)-default paths reaches one of the u(j) nodes (j, u)∗. The Saw Pattern

imposes that the latter are reached from nodes (j, u, εu) with all εu equal (using the arcs of

43

one of the two perfect-matchings that compose the Saw Pattern). This also implies that,

if variable zj gets value ε, then all arcs ((j, u,¬ε), (j, u,¬ε)∗)Id have to be in (j, u)-identifier

paths and all arcs ((j, u, ε), (j, u, ε)∗)Def have to be in (j, u)-default paths. For example, in

Figure A.10, the first occurrence of variable zj is negative (i.e. takes value 0), if and only

if node (j, 1, 1) is reached with a (j, u)-identifier path, that must therefore finish with arc

((j, 2)∗, p) of length 1. It means that arc ((j, 2)∗, p) of length 4 must be in a (j, u)-default

path together with arc ((j, 2, 0), (j, 2, 0)∗)Def , forcing also arc ((j, 2, 1), (j, 2, 1)∗)Id to be in a

(j, u)-identifier path and thus forcing the second occurrence of variable j to get value 0. The

same happens for the third occurrence.

Assume now that a variable zj receives two values ε and ε′ from two clauses c and c′.

It means that arcs ((j, u, ε), (j, u, ε)∗)Id and ((j, u′, ε′), (j, u′, ε′)∗)Id are in the c-identifier

path and the c′-identifier path, respectively. It implies that arcs ((j, u, ε), (j, u, ε)∗)Def and

((j, u′, ε′), (j, u′, ε′)∗)Def are in the (j, u)-default path and (j, u′)-default paths, respectively.

Equality ε = ε′ follows from the Saw Pattern Property.

By construction, we also know that all clauses are satisfied for these values, which con-

cludes the proof.

Appendix A.2. Reduction of EPP to V, 1|sd, u|CLT

In this section we prove that EPP can be reduced to V, 1|sd, u|CLT .

Theorem 7. EPP can be reduced to V, 1|sd, u|CLT .

Proof. Let IEPP = (G(X,E), s, p,K, T) be a non trivial instance of EPP, i.e., the problem of

determining whether there exists K disjoint paths of length T from s to t in G. Non trivial

means that G has the following properties:

1. d−(x) = d+(x) for any node x 6= s, p, where d−(x) denotes the in-degree of x and d+(x)

denotes its out-degree

2. d+(s) = K

3. |E| = KT

This implies that d+(s) = d−(p). It is easy to see that any instance that does not meet these

requirements is trivially not (K,T) − EPP . Note that it is enough to consider non-trivial

instances in the reduction because if non-trivial instances could be solved with the reduction

then all instances would be solved.

We build an instance I of V, 1|sd, u|CLT as follows. We introduce a ring with m =

|X| + 1 stations. We first define station 0, the depot. The other stations have a one-to-one

44

correspondence with the vertices in X as follows. We first sort the nodes in X in a topological

order (we can do that because G is a directed acyclic graph) and reverse this order. Node

p is then the first node and node s the last. We then associate one station with each node

following this order, thus having station 1 representing node p and station |X| representing

node s. We denote stat(x) the station associated with node x ∈ X. We define unitary

distances between successive stations, which gives a tour length L = |X| + 1. For every arc

(x, y) ∈ E, we introduce a request in R defined by si = stat(x), ti = stat(y). This request is

denoted r(x, y). Since we considered nodes in a reversed topological order, all requests cover

the depot. We complete R by adding K requests (0, stat(s)) and K requests (stat(p), 0).

This way, |R| = KT + 2K. We finally set V = K and CLT = L × (T + 1). Note that this

construction is polynomial.

We illustrate this construction on a simple example. We consider the graph G of figure

A.13.

s x y p

Figure A.13: Graph G

The resulting ring and set of requests are shown in Figure A.14.

0

s

x

y

p

(a) Ring and requests from arcs in E

0

s

x

y

p

(b) Ring and complete set of requests

Figure A.14: Ring and requests constructed from G

Assume first that IEPP is positive. This means that set E can be partitioned into K

arc-disjoint paths Pk, each of length T . We build a feasible schedule for I in the following

way. Every vehicle k (1 ≤ k ≤ V) starts from the depot by serving request (0, stat(s)). Then,

it serves all requests r(x, y) for (x, y) ∈ Pk, in the order defined by this path. It finally serves

45

request (stat(p), 0). This sequence starts from the depot, finishes at the depot and is such

that the ending station of every request is the starting station of the next request. It thus

defines a feasible schedule without any intermediate empty traveling between requests. The

schedule traverses exactly T times the depot, once for every request r(x, y) with (x, y) ∈ Pk.

So, the number of tours is T + 1. All KT + 2K requests are covered by the V vehicles, which

proves that I is positive.

Assume now that I is feasible. This means that there exists a schedule with the K(T +2)

requests assigned to the K vehicles, each vehicle making T + 1 tours. We first show that

vehicles never travel empty in this schedule.

Segment [0, 1] of the ring is covered by the KT requests r(x, y) with (x, y) ∈ E and K

requests (0, stat(s)), that is, K(T + 1) requests. We show that all other segments are covered

by the same number of requests. We can easily check that at every station stat(x) exactly

K requests stop, either because d−(x) = K or because x = s and the K requests (0, stat(s))

stop (remember that d−(s) = 0 so no other request stops). Similarly, exactly K requests start

from every station stat(x), either because d+(x) = K or because x = p and the K requests

(stat(p), 0) start. This shows that every segment is covered by exactly K(T + 1) requests

which, in turn, means that none of these segments is traveled empty in a schedule composed

of K(T + 1) tours.

We now consider the schedule of a given vehicle k. It executes T + 1 tours so it covers

at most T requests r(x, y) with (x, y) ∈ E. As the KT requests r(x, y) with (x, y) ∈ E are

shared by the K vehicles, every vehicle exactly fulfills T of these requests. Also, every vehicle

starts and ends at the depot, and given that the vehicle never travels empty, this means

that it starts with a request (0, stat(s)) and ends with a request (stat(p), 0). Given the total

number K of (0, stat(s)) requests and (stat(p), 0) requests, each vehicle exactly fulfills one

request (0, stat(s)) and one request (stat(p), 0).

One can conclude that every vehicle starts from the depot with a request (0, stat(s)),

continues with T requests r(x, y) with (x, y) ∈ E and finishes with request (stat(p), 0),

without any segment traveled empty in between. It also means that the arcs (x, y) ∈ E

associated with the requests in the vehicle schedule form a path in G, starting from s, ending

at p and composed of T arcs. It proves that IEPP is positive.

46

	Pickup and delivery problems with autonomous vehicles on rings.pdf
	Introduction
	Problem description, classification and scope of the paper
	General problem description
	A classification scheme
	Scope of the paper and related definitions

	Problems with unitary requests and no release/due dates
	 Problem 1,1 sd,u CLT
	Problems sd,u CLT, with = V,1 or 1,Q or V,Q or V,Qv
	An integer linear programming formulation for problem V,Q sd,u CLT

	Problems with unitary requests and release/due dates
	Problem 1,1 sd,u,ri,di CLT
	Integer linear programming formulation for problem V,Q sd,u,ri,di CLT

	Problems with non-unitary requests
	Alternative complexity proof for problem 1,Q sd CLT
	An integer linear programming model

	Computational tests
	Instance sets
	Greedy algorithm
	Computational results for V,Q|sd,u|CLT
	Computational results for V,Q|sd,u,ri,di|CLT
	Computational results for V,Q|sd,ri,di|CLT

	Conclusions and perspectives
	Complexity of problem V,1|sd,u|CLT
	Reduction of 3-SAT to EPP
	Reduction of EPP to V,1|sd,u|CLT

