
HAL Id: hal-03136575
https://hal.science/hal-03136575

Submitted on 1 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Guix-HPC Activity Report 2019–2020
Lars-Dominik Braun, Ludovic Courtès, Pjotr Prins, Simon Tournier, Ricardo

Wurmus

To cite this version:
Lars-Dominik Braun, Ludovic Courtès, Pjotr Prins, Simon Tournier, Ricardo Wurmus. Guix-HPC
Activity Report 2019–2020. [Technical Report] Inria Bordeaux Sud-Ouest; Leibniz. 2020. �hal-
03136575�

https://hal.science/hal-03136575
https://hal.archives-ouvertes.fr


Reproducible software deployment for high-performance computing.

a

b
a = 10mlb = 30ml

Supplier: ACME
Temp: 22 deg C

Activity Report 2019–2020

9 February 2021
Lars-Dominik Braun, Ludovic Courtès, Pjotr Prins, Simon Tournier, RicardoWurmus



2.



3.

Guix-HPC is a collaborative effort to bring reproducible software
deployment to scientific workflows and high-performance computing
(HPC). Guix-HPC builds upon the GNU Guix1 software deployment tool and
aims tomake it a better tool for HPCpractitionersand scientistsconcerned
with reproducible research.

Guix-HPCwaslaunched inSeptember2017asa joint softwaredevelop-
ment project involving three research institutes: Inria2, theMax Delbrück
Center forMolecularMedicine(MDC)3, and theUtrechtBioinformaticsCen-
ter (UBC)4. GNUGuix for HPCand reproducible sciencehas received contri-
butionsfromadditional individualsandorganizations,includingCNRS5, the
University of TennesseeHealth ScienceCenter6 (UTHSC), the Leibniz Insti-
tute for Psychology7 (ZPID),Cray, Inc.8 (nowHPE), and TourbillionTechnol-
ogy9.

Thisreporthighlightskeyachievementsof Guix-HPCbetweenourpre-
viousreport10a year agoand today,February2021.Thisyearwasmarkedby

1https://guix.gnu.org
2https://www.inria.fr/en/
3https://www.mdc-berlin.de/
4https://ubc.uu.nl/
5https://www.cnrs.fr/en
6https://uthsc.edu/
7https://leibniz-psychology.org/
8https://www.cray.com
9http://tourbillion-technology.com/
10https://hpc.guix.info/blog/2020/02/guix-hpc-activity-report-2019/

https://guix.gnu.org
https://www.inria.fr/en/
https://www.mdc-berlin.de/
https://ubc.uu.nl/
https://www.cnrs.fr/en
https://uthsc.edu/
https://leibniz-psychology.org/
https://www.cray.com
http://tourbillion-technology.com/
https://hpc.guix.info/blog/2020/02/guix-hpc-activity-report-2019/


4.

two releases (version 1.1.0 in April 202011 and version 1.2.0 in November12)
as well as releases of the Guix Workflow Language and of Guix-Jupyter.

11https://hpc.guix.info/blog/2020/04/hpc-reproducible-research-in-guix-1.1.0/
12https://hpc.guix.info/blog/2020/11/hpc-reproducible-research-in-guix-1.2.0/

https://hpc.guix.info/blog/2020/04/hpc-reproducible-research-in-guix-1.1.0/
https://hpc.guix.info/blog/2020/11/hpc-reproducible-research-in-guix-1.2.0/


5.

Outline

Guix-HPC aims to tackle the following high-level objectives:
• Reproducible scientific workflows. Improve the GNUGuix tool set to bet-

ter support reproducible scientific workflows and to simplify sharing
and publication of software environments.

• Cluster usage. Streamlining Guix deployment on HPC clusters, and
providing interoperability with clusters not running Guix.

• Outreach & user support. Reaching out to the HPC and scientific re-
search communities and organizing training sessions.

The following sections detail work that has been carried out in each
of these areas.



6.

Reproducible Scientific Workflows

Supporting reproducible research in general remains a major
goal for Guix-HPC. The ability to reproduce and inspect computational
experiments—today’s lab notebooks—is key to establishing a rigorous sci-
entificmethod. Webelievethataprerequisitefor thisistheability torepro-
duce and inspect the software environments of those experiments.

We have made further progress to ensure Guix addresses this use
case. Wework not only on deployment issues, but alsoupstream—ensuring
source code is archived at Software Heritage—and downstream—devising
tools and workflows for scientists to use.

The Guix Workflow Language

The Guix Workflow Language13 (or GWL) is a scientific computing
extension to GNUGuix’s declarative language for packagemanagement. It
allows for the declaration of scientific workflows,which will always run in
reproducible environments that GNU Guix automatically prepares. In the
past year theGWLhasseen further development to refine the languageand
its integrationwith the Guix environmentmanagement features.

The GWL was always intended to be used as an extension to Guix,
but this presented unique problems. Extensions to Guix may use the Guile
modules it provides as a library in addition to accessing Guix package def-
initions. With the exact version of Guix under user control via guix pull

this put extension developersbetween a rock and a hard place: they could
either dynamically bind to the version of Guix currently in use and hope
that theAPIof futureversionsof Guix remainsunchanged compared to the
version theyusedduringdevelopment,or they could restrict theextension
to a well-known version of Guix with the unfortunate side effect that any
reference to packages would be outdated compared to those available in
the variant of Guix currently installed by the user.

13https://workflows.guix.info

https://workflows.guix.info


7.

Neither of theseoptionsappealed to thedevelopersof theGuixWork-
flow Language, so they implemented a third option based on the Guix API
for inferiors14. The result is that any package requested by users of the Guix
Workflow Languagewill be resolvedwith the currently installed variant of
Guix, including any defined channels or time travel settings15. For all other
features, the Workflow Language binds to a well-known version of Guix
as a library, thereby satisfying the seemingly conflicting expectations and
requirements of users and developers.

The requirements of the GWL motivated the implementation of a
generic mechanism in Guix to discover extensions, as well as performance
improvements in the inferiormechanism.

Version 0.3.0 of the GuixWorkflow Languagewas announced in early
February 202116.

Guix-Jupyter

We announced Guix-Jupyter17 a bit more than a year ago, with two
goals: makingnotebooksself-containedor “deployment-aware”sothat they
automatically deploy the software (and data!) that they need, and making
said deployment bit-reproducible.

In essence, Guix-Jupyter treats software deployment and data as a
first-class input to the computation described in the notebook. One can
run thenotebook on onemachineor another, today or twoyears fromnow,
and be sure it’s running in the exact same software environment.

This Jupyter “kernel” builds on Guix support for reproducible builds
and for “time travel”. That very first version demonstrated what can be
achieved, and it addressed what remains a very relevant issue in the
Jupyter world, as is clear to anyone who has tried to run a notebook pub-
lished in one of themany public galleries.

14https://guix.gnu.org/manual/en/html_node/Inferiors.html
15https://guix.gnu.org/manual/en/html_node/Invoking-guix-time_002dmachine.html
16https://lists.gnu.org/archive/html/gwl-devel/2021-02/msg00000.html
17https://hpc.guix.info/blog/2019/10/towards-reproducible-jupyter-notebooks/

https://guix.gnu.org/manual/en/html_node/Inferiors.html
https://guix.gnu.org/manual/en/html_node/Invoking-guix-time_002dmachine.html
https://lists.gnu.org/archive/html/gwl-devel/2021-02/msg00000.html
https://hpc.guix.info/blog/2019/10/towards-reproducible-jupyter-notebooks/


8.

Version 0.2.1 was announced in January 202118. Among the user in-
terface changes and bug fixes it provides, ;;guix describe and ;;guix

search “magic”commandshave been added, providing the same function-
ality as the same-named guix commands. Build and download progress is
now reported in the cell that triggered it, which improves the user experi-
ence. While we still consider it “beta”,we believe it already smoothly cov-
ers a wide range of use cases.

From Source Code to Research Article

GWL and Guix-Jupyter are both tools designed for a scientific au-
dience, as close as possible to the actual scientific experiments and work-
flows. In thesamevein,weparticipated in theTenYearsReproducibilityChal-
lenge19 organized by ReScience C, an open-access, peer-reviewed journal
that targets computational research and encourages the replication of al-
ready published research.

Participantswere invited topick a scientificarticletheyhadpublished
at least ten years earlier, and to try and reproduce its results. Needless to
say, participants encountered many difficulties, most of which boil down
to: finding the code, getting it to build, and getting it to run in an environ-
ment as close as possible to the original one.

This last challenge—re-deploying software—is of particular interest
to Guix, which has to goal of supporting bit-reproducible deployments in
time. Of course, the chosen articleswere published before Guix even exist-
ed, butwe thought it was a good opportunity todemonstratehowGuixwill
allow users to address these challenges from now on. Among the fifty par-
ticipants, somechose to address deployment issuesusing Docker or virtual
machines (VMs), and several chose Guix. The challenge and its contribu-
tions, including a discussionof softwaredeployment issuesandGuix, led to
an article in Nature20 (Jeffrey M. Perkel, Challenge to scientists: does your ten-
year-old code still run?, August 2020).

18https://hpc.guix.info/blog/2021/01/guix-jupyter-0.2.1-released/
19https://rescience.github.io/ten-years/

https://hpc.guix.info/blog/2021/01/guix-jupyter-0.2.1-released/
https://rescience.github.io/ten-years/


9.

The replication work by Ludovic Courtès21 is an attempt to show
the best one could provide: a complete, end-to-end reproducible research
article pipeline, from source code to PDF. The articles shows how to bridge
together code that deploysthe softwareevaluated in thepaper, scripts that
run the evaluation and produce plots, and scripts that produce the final
PDF file from LaTeX source and plots. The end result is approximately 400
lines of code that allow Guix to rebuild thewhole article and the experiment
it depends onwith a well-specified, reproducible software environment.

The article concludes on our vision:

We hope our work could serve as the basis of a template for re-
producible papers in the spirit of Maneage22. We are aware that, in its
current form, our reproduciblepipeline requiresa relatively high lev-
el of Guix expertise—although, to be fair, it should be compared with
thewide variety of programming languages and tools conventionally
used for similar purposes. We think that,withmore experience, com-
mon build processes and idioms could be factorized as libraries and
high-level programming constructs,making it more approachable.

[…] We look forward to a future where reproducible scientific
pipelines become commonplace.

This is just the beginning. We plan to keep working closely with
scientists and journals such as ReScienceC to investigateways tomake this
approachmorewidely applicable.

Soon after the challenge, we organized a one-day on-line hackathon
to collectively work on providing missing bits so more scientific experi-
ments can be reproduced. This led to improved coverage of historic pack-

20https://www.nature.com/articles/d41586-020-02462-7
21https://doi.org/10.5281/zenodo.3886739
22http://maneage.org/

https://www.nature.com/articles/d41586-020-02462-7
https://doi.org/10.5281/zenodo.3886739
http://maneage.org/


10.

age versions in the new Guix-Past channel23, which was created for the
challenge.

Ensuring Source Code Availability

Guix, for instance with guix time-machine, allows you to travel back
in time and to re-deploy software reproducibly. It is a great step forward
in support of reproducible research. But there is still an important piece
to make this viable: a stable source code archive. The collaboration with
SoftwareHeritage (SWH) initiated in 201924 is continued.

Since March 201925, Guix eases the request submission to SWH for
long-termarchiving via guix lint -c archival.Once thepackage is ready,
linting ensures the sourcecode is saved on SWH.Later, if original upstream
source code vanishes, Guix falls back to SWH. This aforementioned arti-
cle read:

Our plan is to extend Software Heritage26 such that it would
periodically archive the source code of software packaged by Guix.

This is now the case: Guix serves the file sources.json27, which con-
tains references to all the source code packages refer to; this is periodi-
cally ingested by Software Heritage via the SWH nixguix28 “loader”. As a
result, more packages are continuously archived. This work was done by
Tweag for the benefit of the Nix and Guix projects; the Guix team helped
review it.

23https://gitlab.inria.fr/guix-hpc/guix-past
24 https://www.softwareheritage.org/2019/04/18/software-heritage-and-gnu-guix-join-forces-to-
enable-long-term-reproducibility/
25 https://hpc.guix.info/blog/2019/03/connecting-reproducible-deployment-to-a-long-term-source-
code-archive/
26https://forge.softwareheritage.org/T1352
27http://guix.gnu.org/sources.json
28https://docs.softwareheritage.org/devel/_modules/swh/loader/package/nixguix.html

https://gitlab.inria.fr/guix-hpc/guix-past
https://www.softwareheritage.org/2019/04/18/software-heritage-and-gnu-guix-join-forces-to-enable-long-term-reproducibility/
https://hpc.guix.info/blog/2019/03/connecting-reproducible-deployment-to-a-long-term-source-code-archive/
https://forge.softwareheritage.org/T1352
http://guix.gnu.org/sources.json
https://docs.softwareheritage.org/devel/_modules/swh/loader/package/nixguix.html


11.

The primary issue that remains before SWH covers all the needs of
Guix is the availability of source code “tarballs” (archives such as tar.gz

files). SWH archives the contents of version control repositories and
tarballs—not tarballs themselves. This makes sense from an engineering
viewpoint, but it means that tools such as Guix that depend on those tar-
balls cannot simply fetch themby hash. However,most Guix packagescur-
rently refer to tarballs rather than version-control system (VCS) reposito-
ries. For these, the automatic SWH fallback in Guix will be of little help.

Guix developer Timothy Sample started working on a solution to ad-
dress this issue. Sample developed a tool called Disarchive that aims to
create a link between tarballs and their contents29. Concretely, Guix would
maintain a Disarchive databasemapping source code tarball hashes to their
content hash along with tarball metadata. This would allow Guix to fetch
content fromSWHwhile still being able to reconstruct theexpected tarball
and check that it corresponds to the hash contained in the package defini-
tion. This work is still in a prototyping phase but is already promising.

Package Transformations

HPCpractitionersare often demandingwhen it comes to customizing
software they deploy: choosing dependencies, versions, build flags, and so
on. Guix caters to theseneeds through itsprogramming interfacesbut also
via its easy-to-use package transformation options30.

Over the past year, several of them were added. The --with-c-

toolchain option allows users to build a package and all its dependents
with a given C toolchain; this is useful for thosewilling to benefit from the
latest improvements in optimizing compilers. The --with-patch option
applies a patch to a package and rebuilds it along with its dependent. The

--with-debug-info rebuilds a package in a way that preserves its debug-
ging info (if it wasn’t already available) and without requiring a rebuild of
its dependents.

29https://issues.guix.gnu.org/42162#15
30https://guix.gnu.org/manual/en/html_node/Package-Transformation-Options.html

https://issues.guix.gnu.org/42162#15
https://guix.gnu.org/manual/en/html_node/Package-Transformation-Options.html


12.

Furthermore,packagetransformationoptionspassedtoguix install

and similar commands are now recorded in profiles and replayed when
running guix upgrade, thereby ensuring user customization is preserved.
Another novelty is that package transformations now apply to “implicit
inputs” (packagedependenciesprovided by the build system), giving users
evenmore flexibility.

The Guix reference manual now includes a section discussing the
variousways to define package variants31.

Declarative Deployment with Manifests

In addition to the “imperative” management style where one runs
guix install and related commands, Guix supports a declarative style
where theuser providesa code snippet, called amanifest, that describes the
packages to deploy. The declarative approach has the advantage of being
explicit and stateless: the manifest file can be put under version control
and shared with others. It is also flexible because users have access to the
whole programming environment of Guix fromwithin themanifest.

Toreducethe learningcurveandmakeit easier toswitch tothedeclar-
ativestyle,wemadetwoimprovements. First,userscannowexportamani-
fest froman existing profileby running guix package --export-manifest.
The output can be stored in a file and users can switch to running guix

package --manifestwith that file right away.
Second, there is now a high-level programming interface giving

access to package transformations, with a one-to-one mapping to their
command-line syntax. This interface can be used in manifests. In fact, the
manifest produced by --export-manifestuses it when needed.

Packaging

The package collection that comes with Guix keeps growing. It now
contains16,000packages, includingmany scientificpackagesranging from

31https://guix.gnu.org/manual/en/html_node/Defining-Package-Variants.html

https://guix.gnu.org/manual/en/html_node/Defining-Package-Variants.html


13.

run-timesupport softwaresuchasimplementationsof theMessagePassing
Interface (MPI), to linear algebra software, to statistics and bioinformatics
modules for R. In addition to packages in Guix proper, we have been main-
taining channels, which provide additional packages, usually specialized in
one application domain.

As part of the aforementioned Ten Years Reproducibility Challenge and
subsequent reproducible research hackathon, we created the Guix-Past
channel32, with the goal of collecting versions of software older than Guix
itself, for use in reproducible research experiments. It now contains six-
ty packages, including Python 2.4 (from 2008), Perl 5.14 (from 2011), and
2006-era versions of the GNU “Autotools”. As an example, Guix-Past al-
lowed Genenetwork administrators to migrate a 20-year old web service33

from a 12-year old CentOSand it is now running in amodern Guix contain-
er. We expect Guix-Past will serve as the basis for future reproducible re-
search endeavors.

A new Guix Science channel34 has been established to collaborate on
packaging and maintaining recent scientific software that currently can-
not be included into Guix proper. JASP, RStudio and JupyterLab are avail-
able. A substitute server continuously builds these packagesand servesbi-
nary substitutes for them.

SinceGuix is trivially extensible,usersdonotneed towait for thecom-
munity to prepare missing packages they may need right now. Tools like
the new package importer and installer for R35 let users of the R program-
ming language install any R package—from CRAN, Bioconductor, or any
Mercurial or Git repository—by leveraging the recursive package import-
ing facilities that Guix provides from within a running R session. This re-
places theneed for installers like devtools and exposes reproduciblepack-
agemanagement features through a familiar interfacewithin R.

32https://gitlab.inria.fr/guix-hpc/guix-past
33http://gn1.genenetwork.org
34https://hpc.guix.info/blog/2021/01/guix-science/
35https://git.elephly.net/software/r-guix-install.git

https://gitlab.inria.fr/guix-hpc/guix-past
http://gn1.genenetwork.org
https://hpc.guix.info/blog/2021/01/guix-science/
https://git.elephly.net/software/r-guix-install.git


14.

Cluster Usage and Deployment

Over the last fewyears,wehavebeendevelopingguix pack tosupport
userswhotargetsupercomputerswhereGuix isunavailable. guix packcre-
ates “application bundles” as Docker or Singularity images, or as plain self-
contained tarballs. We previously implemented relocatable packs: archives
that can beextracted anywhereon the file systemwhile still allowing users
to run the software therein. The appeal of this option is that it allowsusers
to runpackaged softwareonmachinesthat provideneitherGuix nor a con-
tainer run-time.

Relocatable packs were initially implemented by using the Linux
“unprivileged user namespace” feature, with a fallback to PRoot when un-
privileged user namespaces are unavailable. In the latter case though, the
overhead can be prohibitively high for some applications. To address that,
guix pack cannowbuild fasterrelocatablepacks36 that relyona customiza-
tionof therun-time linker (ld.so)alongwith theuseof Fakechroot. It pro-
vides the flexibility of packswith negligible overhead.

Guix deployment on scientific clusters continues. A notable example
is work-in-progress to support Guix out-of-the-box on Grid’500037, a major
French grid and HPC environment. Installing Guix on Grid’5000 is quite
different from installing it on a “regular” HPC cluster due to the unusual
natureof thisenvironment: Grid’5000usershavetheoptiontodeploy their
own operating system images on compute nodes and have administration
privilegeson them. Thishasrequired adjustmentscompared toour cluster
installation guide38. This should be in production in the coming weeks.

This fall at UTHSC, Memphis TN, we have installed an 11-node HPC
Octopuscluster (264cores)39 forpangenomeandgeneticsresearch. Notable
about this HPC is that it is administered by the users, thanks to GNU Guix:

36https://hpc.guix.info/blog/2020/05/faster-relocatable-packs-with-fakechroot/
37https://www.grid5000.fr/
38https://hpc.guix.info/blog/2017/11/installing-guix-on-a-cluster/
39https://genenetwork.org/facilities/

https://hpc.guix.info/blog/2020/05/faster-relocatable-packs-with-fakechroot/
https://www.grid5000.fr/
https://hpc.guix.info/blog/2017/11/installing-guix-on-a-cluster/
https://genenetwork.org/facilities/


15.

we install, run and manage the cluster as researchers. UTHSC IT manages
the infrastructure, i.e., physical placement, routers and firewalls, but be-
yond that there arenodemandson IT.Thanks to out-of-band accesswe can
completely (re)install machines remotely. Octopus runs GNU Guix on top
of a minimal Debian install and we are experimentingwith pure GNUGuix
nodes that can be run on demand. Lizardfs is used for distributed network
storage. Almost all deployed softwarehas been packaged in GNUGuix and
can be installed by regular users on the cluster without root access.

Guix is also the foundation for the data analysis platform PsychNote-
book40, which assists researchers and students in the preparation, analysis,
and transparent documentation of psychological data. While a modern
web interface hides most aspects of Guix from the user, under the hood
channel files and manifests are used to create shareable and reproducible
environments, which then can be shared with other users of the platform
or exported and run on local hardware. After a testing period in theprevi-
ous semester with about 15 students the system is now live and currently
used to teach about 20 students the basics of R using RStudioWeb.

40https://www.psychnotebook.org

https://www.psychnotebook.org


16.

Outreach and User Support

Guix-HPC is in part about “spreading the word” about our approach
to reproducible software environments and how it can help further the
goals of reproducible research and high-performancecomputing develop-
ment. This section summarizes articles, talks, and training sessions given
this year.

Articles

The following articles were published in the Ten Years Reproducibility
Challenge special issue of the ReScience C journal41 (volume 6, issue 1); they
present different ways of using Guix to reproduce the software environ-
ment associated with a past computational experiment:
• Andreas Enge, [Re] Volume computation for polytopes: Vingt ans après42

• Konrad Hinsen, [Rp] Structural flexibility in proteins — impact of the
crystal environment43

• Ludovic Courtès, [Re] Storage Tradeoffs in a Collaborative Backup Service
for Mobile Devices44

Hinsen also wrote about “staged computations”, their use as part of
reproducible research workflows, and how Guix can help:
• Konrad Hinsen, Staged computation: the technique you didn’t know you

were using45, Computing in Science and Engineering (CISE), 22 (4)

41https://rescience.github.io/read/#issue-1-ten-years-reproducibility-challenge
42http://dx.doi.org/10.5281/zenodo.4242972
43http://dx.doi.org/10.5281/zenodo.3886447
44http://dx.doi.org/10.5281/zenodo.3886739
45https://hal.archives-ouvertes.fr/hal-02877319

https://rescience.github.io/read/#issue-1-ten-years-reproducibility-challenge
http://dx.doi.org/10.5281/zenodo.4242972
http://dx.doi.org/10.5281/zenodo.3886447
http://dx.doi.org/10.5281/zenodo.3886739
https://hal.archives-ouvertes.fr/hal-02877319


17.

We published 8 articles on the Guix-HPC blog46 touching topics such
as fast relocatable packs, reproducible research article workflows, and
Jupyter integration.

Talks

Since last year, we gave the following talks at the following venues:
• JDEV conference (on-line), July 202047 (Ludovic Courtès)

• on-line seminar of theBelgiumResearch SoftwareEngineers commu-
nity (BE-RSE), Nov. 202048 (Ludovic Courtès)

• on-line Guix Days, Nov. 202049 (Lars-Dominik Braun)

• FOSDEMHPC track, Feb. 202150 (RicardoWurmus)

We also organised the following events:
• an online reproducible research hackathon51, where 15 people were

connected to tackle issues inspired by contributions from the Ten
Years Reproducibility Challenge52 organized by ReScience53;

• the first online GNU Guix Day54, which attracted more than 50 people
all around theworld;

• GNU Guix Days55

46https://hpc.guix.info/blog/
47http://devlog.cnrs.fr/jdev2020/t4
48https://www.be-rse.org/seminars
49https://guix.gnu.org/en/blog/2020/online-guix-day-announce-2/
50https://fosdem.org/2021/schedule/event/guix_workflow/
51https://hpc.guix.info/blog/2020/07/reproducible-research-hackathon-experience-report
52https://rescience.github.io/ten-years/
53https://rescience.github.io/
54https://guix.gnu.org/en/blog/2020/online-guix-day-announce-2
55https://libreplanet.org/wiki/Group:Guix/FOSDEM2021

https://hpc.guix.info/blog/
http://devlog.cnrs.fr/jdev2020/t4
https://www.be-rse.org/seminars
https://guix.gnu.org/en/blog/2020/online-guix-day-announce-2/
https://fosdem.org/2021/schedule/event/guix_workflow/
https://hpc.guix.info/blog/2020/07/reproducible-research-hackathon-experience-report
https://rescience.github.io/ten-years/
https://rescience.github.io/
https://guix.gnu.org/en/blog/2020/online-guix-day-announce-2
https://libreplanet.org/wiki/Group:Guix/FOSDEM2021


18.

Training Sessions

JDEV, the annual conference gather research engineers from all the
French research institutes and universities, took place on-line in July
202056. It included an presentation of Guix along with an introductory
workshop.

The User Tools for HPC (UST4HPC)57 workshop took place in January
2021. It is organized as part of the training sessionsprogram of the French
national scientific research center (CNRS). It included talks and hands-on
session about Guix and Guix-Jupyter.

56http://devlog.cnrs.fr/jdev2020/t4
57https://calcul.math.cnrs.fr/2021-01-anf-ust4hpc-2021.html

http://devlog.cnrs.fr/jdev2020/t4
https://calcul.math.cnrs.fr/2021-01-anf-ust4hpc-2021.html


19.

Personnel

GNUGuix is a collaborative effort, receiving contributions frommore
than 60peopleeverymonth—a 50% increasecompared to last year. Aspart
of Guix-HPC, participating institutions have dedicated work hours to the
project, which we summarize here.
• CNRS: 0.25 person-year (Konrad Hinsen)

• Inria: 2person-years(LudovicCourtès,MauriceBrémond,andthecon-
tributors to theGuix-HPCchannel: EmmanuelAgullo,Florent Pruvost,
Gilles Marait, Nathalie Furmento, Marek Felšöci, Adrien Guilbaud,
Philippe Swartvagher,Matthieu Simonin)

• Max Delbrück Center for Molecular Medicine (MDC): 2 person-years
(RicardoWurmus and Mădălin Ionel Patraşcu)

• Tourbillion Technology: 0.8 person-year (Paul Garlick)

• Université de Paris: 0.5 person-year (Simon Tournier)

• University of Tennessee Health Science Center (UTHSC): 1.0 person-
year (Efraim Flashner, Bonface Munyoki, Erik Garrison and Pjotr
Prins)

• Utrecht Bioinformatics Center (UBC): 0.1 person-year (Roel Janssen)



20.

Perspectives

Guix availabilityon scientific computing clustersremainsa toppriori-
ty. Wehaveseen increasedadoptionand interestamongcluster systemad-
ministrators. The latest guix pack improvements should bewelcomed by
those targeting clusters not running Guix. We expect to continuework on
these two complementary fronts: reaching out to system administrators,
notably through training sessions, and streamlining the use of packs and
non-root deployment in general.

Upstream, we will continue to work with Software Heritage with
the goal of achieving complete archive coverage of the source code Guix
refers to. We have identified challenges related to source code “tarball”
availability; thiswill probably be one of themain efforts in this area for the
coming year.

Downstream, a lot of work has happened in the area of reproducible
research tools. First, our package collections have grown to include more
and more scientific tools; the new Guix Science and Guix-Past channels
cater to additional use cases. Second, the Guix Workflow Language, Guix-
Jupyter, havematured; along with the PsychNotebook service, they bridge
thegapbetweenreproduciblesoftwaredeploymentandreproduciblescien-
tific tools and workflows. Likewise, our participation in the “Ten YearsRe-
producibility Challenge” demonstrated very concretely what Guix brings
to scientific workflows. It showed that fully reproducible research article
workflows are indeed a possibility.

Working on the tools and workflows directly in the hands of scien-
tists will be a major focus of the coming year. We want to contribute to
raising the bar of what scientists come to expect in terms of reproducible
workflows.

There’s a lot we can do and we’d love to hear your ideas58!

58https://hpc.guix.info/about

https://hpc.guix.info/about


21.



22.



23.



24.


