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We construct an example of a smooth convex function on the plane with a strict minimum at zero, which is real analytic except at zero, for which Thom's gradient conjecture fails both at zero and infinity. More precisely, the gradient orbits of the function spiral around zero and at infinity. Besides, the function satisfies the Lojasiewicz gradient inequality at zero.

Introduction

Answering a question of Whitney, Lojasiewicz [START_REF] Lojasiewicz | Une propriété topologique des sous-ensembles analytiques réels[END_REF] showed that every analytic variety f -1 (0), where f : U ⊂ R N → R is real-analytic (U = ∅, open), is a deformation retract of its open neighborhood. The deformation was given by the flow of the Euclidean gradient -∇(f 2 ). The main argument of Lojasiewicz was based on a famous lemma, nowadays known as the Lojasiewicz (gradient) inequality, which asserts that for some ϑ ∈ (0, 1) and c > 0 we have

∇f (x) ≥ c|f (x) -f (a)| ϑ (1.1)
for all x sufficiently close to a ∈ f -1 (0). The above inequality ensures that every bounded gradient orbit t → γ(t) (i.e., γ = ∇f (γ)) has finite length and therefore converges to a singular point γ ∞ with ∇f (γ ∞ ) = 0. Some years later, Thom conjectured that in this case, up to a change of coordinates that identifies γ ∞ to 0, the spherical part of the orbit also converges. In other words, the limit of secants

lim t→+∞ γ(t) -γ ∞ ||γ(t) -γ ∞ || exists. (1.2)
For decades, this has been known as the (Thom) gradient conjecture, see [START_REF] Arnold | Some open problems in the theory of singularities[END_REF][START_REF] Thom | Problèmes rencontrés dans mon parcours mathématique: un bilan[END_REF]. (For the more general problem of non-oscillation of trajectories, we refer to [START_REF] Cano | Nonoscillating projections for trajectories of vector fields[END_REF][START_REF] Grandjean | On restricted analytic gradients on analytic isolated surface singularities[END_REF][START_REF] Moussu | Sur la dynamique des gradients. Existence de variétés invariantes[END_REF].) The gradient conjecture makes sense for any gradient dynamics for which bounded orbits converge. Partial results revealed that (1.2) should hold in the real-analytic case, see [START_REF] Ichikawa | Thom's conjecture on singularities of gradient vector fields[END_REF][START_REF] Lin | Sur la structure des champs de gradients de fonctions analytiques réelles[END_REF][START_REF] Sanz | Non-oscillating solutions of analytic gradient vector fields[END_REF], fact that was eventually published in full generality by Kurdyka, Mostowski and Parusiński [START_REF] Kurdyka | Proof of the gradient conjecture of R. Thom[END_REF] in 2000. The proof was based on (1.1) together with concrete analytic estimations.

Lojasiewicz showed that the gradient inequality (1.1) remains valid also for C 1 semialgebraic (respectively, globally subabalytic) functions, see [START_REF] Lojasiewicz | Sur les trajectoires du gradient d'une fonction analytique[END_REF]. In 1998, Kurdyka [START_REF] Kurdyka | On gradients of functions definable in o-minimal structures[END_REF] generalized (1.1) for C 1 functions that are definable in some o-minimal structure, an axiomatic definition due to van den Dries [START_REF] Van Den Dries | Tame topology and o-minimal structures[END_REF][START_REF] Van Den Dries | Geometric categories and o-minimal structures[END_REF] which encompasses semialgebraic and globally subanalytic functions, but also larger classes that include the exponential function [START_REF] Miller | Exponentiation is hard to avoid[END_REF]. More precisely, Kurdyka showed that for every definable function f and critical value r ∞ (which is necessarily isolated) there exists δ > 0 and a continuous function Ψ :

[r ∞ , r ∞ + δ) → R which is C 1 on (r ∞ , r ∞ + δ) with Ψ > 0 such that ||∇(Ψ • f )(x)|| ≥ 1 (1.3)
for all x ∈ R N such that r ∞ < f (x) < r ∞ + δ. In addition, Kurdyka's proof showed that the function Ψ can be taken in the same o-minimal structure as f . Consequently, if f is semialgebraic or globally subanalytic, then so is Ψ and thanks to Puiseux's theorem we may take Ψ(r) = r 1-ϑ , for ϑ ∈ (0, 1). It is then straightforward to see that (1.3) actually yields (1.1) for c = (1 -ϑ) -1 .

We refer to (1.3) as the Kurdyka-Lojasiewicz (in short, K L) inequality and we call K Lfunction any function with (upper) isolated critical values that satisfies the K L-inequality around any of them. Similarly to the gradient inequality (1.1), bounded gradient orbits of a K L-function have finite length. There are well-known examples of C ∞ functions in R 2 with isolated critical values that are not K L-functions (they have bounded gradient orbits which fail to converge), see [START_REF] Fokin | Limit sets of trajectories of dynamical systems of gradient type[END_REF][START_REF] Palis | Geometric theory of dynamical systems[END_REF]. Bounded gradient orbits of convex functions have finite length [START_REF] Daniilidis | Rectifiability of selfcontracted curves in the Euclidean space and applications[END_REF][START_REF] Manselli | Maximum length of steepest descent curves for quasiconvex functions[END_REF] and therefore converge, but there are also examples of C 2 -smooth convex functions failing K L-property, see [3, §4.3] or [2, §5.1]. In [START_REF] Bolte | Characterizations of Lojasiewicz inequalities: subgradient flows, talweg, convexity[END_REF] we characterized the class of K L-functions (among the ones with upper isolated critical values) and gave criteria for a convex function to be K L.

In [START_REF] Kurdyka | Quasi-convex decomposition in o-minimal structures. Application to the gradient conjecture[END_REF], Kurdyka and Parusinski used K L-inequality together with a quasiconvex cell decomposition of o-minimal sets and concrete estimates to show that the gradient conjecture holds for C 1 o-minimal functions provided either N = 2 (planar case) or the structure is polynomially bounded (in particular if f is semialgebraic or globally subanalytic). On the other hand, mere convexity is not sufficient to guarantee (1.2): there exist examples of convex functions whose orbits either spiral [8, §7.2] or oscillate between two secants [START_REF] Bolte | Curiosities and counterexamples in smooth convex optimization[END_REF].

In [START_REF] Grandjean | On the limit set at infinity of a gradient trajectory of a semialgebraic function[END_REF], Grandjean considered the behavior of the secants at infinity: he showed that if f is a C 1 semialgebraic function and t → γ(t) is a gradient orbit satisfying ||γ(t)|| → ∞, as t → +∞, then the limit of secants at infinity lim t→+∞ γ(t) ||γ(t)|| exists (gradient conjecture at infinity).

(1.4)

The proof is based on a Lojasiewicz type gradient inequality at infinity previously obtained by the author together with D'Acunto in [START_REF] Didier | On gradient at infinity of semialgebraic functions[END_REF].

The behavior of secants at infinity has recently become relevant in Machine Learning. If a deep network model is unbiased and homogeneous (max-pooling, ReLu, linear and convolutional layers), then minimizing the cross-entropy or other classification losses forces the parameters of the model to diverge in norm to infinity [START_REF] Lyu | Gradient descent maximizes the margin of homogeneous neural networks[END_REF]. In this setting, convergence of the secants at infinity is important. In [START_REF] Ji | Directional convergence and alignment in deep learning[END_REF] the authors manage to establish that for a certain type of prediction functions (L-homogeneous and definable in the log-exp structure) (1.4) holds. For the time being, no further results have been reported.

In a nutshell, proving the gradient conjecture (respectively, the gradient conjecture at infinity) seems to require at least the K L-inequality (1.3) together with other properties of o-minimal functions, but it is still unknown if these conjectures are true for general o-minimal functions.

In this work we present an example of a smooth convex function in R 2 , which is real-analytic outside zero (its unique critical point), it satisfies the Lojasiewicz inequality (1.1) and fails the gradient conjecture both at zero and at infinity. In particular, all gradient orbits spiral both at zero and at infinity, underlying in this way the two failures of o-minimality of the function, despite the fact that the function is convex and satisfies the Lojasiewicz gradient inequality.

Theorem 1.1 (main result). For every k ∈ N, there exists a C k -convex function f : R 2 → R with a unique minimum at O := (0, 0) such that:

-f is real analytic on R 2 \ {O} ; -f satisfies the Lojasiewicz inequality at O and -every maximal gradient orbit γ : (-∞, T ) → R 2 of f spirals infinitely many times both when t → -∞ (around the origin O) and t → T (at infinity). As we show in Lemma 4.1, T < +∞, i.e., maximal orbits blow up in finite positive time.

Throughout the manuscript, by gradient orbits (or gradient trajectories) we refer to maximal solutions of the ordinary differential equation:

γ (t) = ∇f (γ(t)).
In our example, the function f will be convex, with unique critical point (global minimizer) at O, where we tacitly assume that γ(0) = O (avoiding stationary orbits).

Let us briefly describe our strategy for the construction of this example: in Section 2 we prescribe a family of convex sets, all being delimited by ellipses, centered at the origin, and obtained via rotations and size adjustments of a basic ellipse E(0). This is done in a way that convex foliation is obtained, which can be represented by some (quasiconvex) function.

In Section 3, we further calibrate the parameters so that we can apply a criterium due to de Finetti [START_REF] De | Sulle stratificazioni convesse[END_REF] and Crouzeix [START_REF] Crouzeix | Conditions for convexity of quasiconvex functions[END_REF] that guarantees that the aforementioned quasiconvex function is in fact convex. The construction yields that the function is real-analytic on R 2 \ O, which of course cannot be further improved to real analycity on the whole space, due to the proof of Thom's gradient conjecture [START_REF] Kurdyka | Proof of the gradient conjecture of R. Thom[END_REF]. Instead, we are able to show that the function can be taken C k -smooth at O for arbitrary large k ∈ N. Still our construction fails to ensure C ∞ . Finally, applying a result of [START_REF] Bolte | Characterizations of Lojasiewicz inequalities: subgradient flows, talweg, convexity[END_REF] which gives conditions for a convex function to satisfy (1.3), we show that our function satisfies K L-inequality and in fact even (1.1) (the Lojasiewicz inequality).

Gradient orbits are perpendicular to the foliation and explicit calculations, conducted in Section 4, show that the orbits turn around both at the origin and at infinity, which disproves the conjecture. An additional difficulty to establish spirality is that the evolution of the spherical part of the orbit (the rotation angle α(t) of γ(t) in polar coordinates) is not monotone in time, so that the decrease rate is established in average, see Figure 3 and Figure 4. For a study of monotonic spiraling of orbits of general analytic vector fields in dimensions 2 and 3, we refer to [START_REF] Sanz | Balanced coordinates for spiraling dynamics[END_REF].

2 Construction of a convex real analytic foliation in R 2 \ {O}.

Let us first consider two smooth increasing functions a, b : R → (0, +∞) for which we assume:

         lim t→+∞ a(t) = lim t→+∞ b(t) = +∞ lim t→-∞ a(t) = lim t→-∞ b(t) = 0 and a(t) ≥ b(t), for all t ∈ R. (2.1)
The exact definition of the functions a(t) and b(t) will be given in Lemma 3.1 (Section 3). We also consider the rotation matrix by an angle t denoted by:

R(t) = cos t -sin t sin t cos t (2.2) For t ∈ R and θ ∈ T := R/2πZ we set m(t, θ) := (x(t, θ), y(t, θ)) = (a(t) cos θ, b(t) sin θ), and 
M (t, θ) := R(t) m(t, θ) = (X(t, θ), Y (t, θ)). (2.3) Therefore X(t, θ) = x(t, θ) cos t -y(t, θ) sin t = a(t) cos t cos θ -b(t) sin t sin θ Y (t, θ) = x(t, θ) sin t + y(t, θ) cos t = a(t) sin t cos θ + b(t) cos t sin θ . (2.4)
The subset

E(t) := {M (t, θ) : θ ∈ T} (2.5)
is an ellipse with major axis of length a(t) and minor axis of length b(t) (see Figure 1 for illustration). Notice that E(t) is the rotation by angle t of the ellipse

E(t) := m(t, θ) : θ ∈ T = (x, y) ∈ R 2 : x 2 a 2 (t) + y 2 b 2 (t) = 1 .
Under an additional condition on the functions a, b, the family of ellipses {E(t)} t∈R defined in (2.5) is disjoint with union equal to R 2 \{O}. More precisely, denoting by a , b the derivatives of the functions a, b respectively, we have the following result: Lemma 2.1 (Convex foliation by ellipses). Let a, b : R → (0, +∞) satisfy (2.1) and assume

4 a(t) b(t) a (t) b (t) > (a(t) 2 -b(t) 2 ) 2 , for all t ∈ R. (2.6) 
Then (E(t)) t∈R defines an analytic convex foliation of R 2 \ {O}.

Proof. The proof is divided in three steps:

Step 

1. The map M : R × T → R 2 \
O m(0,θ) m(t, θ) M (t, θ) a(0) b(0) a(t) b(t) φ φ t t x y E(t) E(t)
where n(t, θ) = -R( π 2 ) ∂M ∂θ = ( ∂Y ∂θ , -∂X ∂θ ) is the outer unit normal to the convex set conv E(t) (convex envelope of E(t)) at M (t, θ). Recalling that M (t, θ) = R(t) m(t, θ) (see (2.3)) and that the rotation matrix (2.2) satisfies into the above equality, we end up with the expression:

R (t) = R(t + π 2 ), R(t) -1 = R(t) T = R(-t) and R(t) R(s) = R(t + s), we deduce ∂M ∂t , n = ∂ ∂t (R(t)m), -R( π 2 ) ∂ ∂θ (R(t)m) = R (t)m + R(t) ∂m ∂t , -R( π 2 ) R(t) ∂m ∂θ = R(t + π 2 ) m + R(t) ∂m ∂t , R(t - π 2 ) ∂m ∂θ = R(t - π 2 ) T R(t + π 2 )m, ∂m ∂θ + R(t - π 2 ) T R(t) ∂m ∂t , ∂m ∂θ = -m, ∂m ∂θ + R( π 2 
det(J M ) = ∂M ∂t , n = a b cos 2 θ + ab sin 2 θ + (a 2 -b 2 ) cos θ sin θ. (2.8)
This is a quadratic expression with respect to cos θ and sin θ, which is positive for all θ ∈ T if and only if the discriminant (a 2 -b 2 ) 2 -4aa bb is negative. The result follows in view of (2.6).

Step 2. The map M : R × T → R 2 \ {O} is injective.

Fix t ∈ R. From (2.7)-(2.8), using compactness of E(t) and smoothness of M , we deduce the existence of δ t , ρ t > 0 such that, for all s ∈ [t, t

+ δ t ], θ ∈ T, ∂M ∂t (s, θ), n(t, θ) ≥ ρ t > 0,
which yields

M (s, θ) -M (t, θ), n(t, θ) ≥ ρ t (s -t) > 0, for t < s ≤ t + δ t and θ ∈ T.
It follows that conv E(t) ⊂ int conv E(s) for all s > t. Therefore, the family (conv E(t)) t∈R is nested and the map M is injective.

Step 3. The map

M : R × T → R 2 \ {O} is surjective. Fix (x, y) ∈ R 2 \ {O} and set, for t ∈ R and D(t) = a(t) 0 0 b(t) , ρ(t) := ||D(t) -1 R(t) -1 (x, y)|| 2 = 1 a 2 (t) (x cos t + y sin t) 2 + 1 b 2 (t) (-x sin t + y cos t) 2 .
We claim that ρ is a smooth decreasing function with lim

-∞ ρ = +∞ and lim +∞ ρ = 0.
Indeed, since (x, y) = (0, 0), we get R(t) -1 (x, y) = (0, 0) and either x cos t + y sin t = 0 or -x sin t + y cos t = 0. Recalling that a(t), b(t) → 0 as t → -∞, we deduce lim -∞ ρ = +∞. We also observe that lim +∞ ρ = 0 is a direct consequence of the fact a(t), b(t) → +∞ as t → +∞.

It remains to prove that ρ is negative. To this end, set q(t) := x cos t + y sin t and notice that ρ = a -2 q 2 + b -2 (q ) 2 . Using that q = -q, we infer

ρ (t) = -2a a -3 q 2 + 2a -2 q q -2b b -3 (q ) 2 + 2b -2 q q = -2a -2 b -2 a a -1 b 2 q 2 + (a 2 -b 2 )qq + b b -1 a 2 (q ) 2 .
The quadratic expression a a -1 b 2 q 2 +(a 2 -b 2 )qq +b b -1 a 2 (q ) 2 with respect to q and q is positive if and only if its discriminant is negative, which is equivalent, once again, to assume (2.6). Thus ρ is strictly decreasing and the claim follows.

Using the claim, we infer that there exists a unique t ∈ R such that

ρ(t) = ||D(t) -1 R(t) -1 (x, y)|| 2 = 1.
Therefore, there exists a unique θ ∈ T such that D(t) -1 R(t) -1 (x, y) = (cos θ, sin θ). It follows that M (t, θ) = (x, y), which proves that M is onto.

A typical instance where Lemma 2.1 applies is to take a = µb for some constant µ > 1. Then for b(t) = e νt with ν > µ 2 -1 2µ , it is straightforward to check that a, b satisfy (2.1) and (2.6). Figure 2 

Defining the convex function and regularity properties

In this section we shall show that for a more precise choice of the functions a(t), b(t) we can construct a convex function whose level sets are exactly the foliation {E(t)} t∈R . Moreover, we shall show that this convex function is smooth, real-analytic on R 2 \ {O} and satisfies (1.1).

Concretely, let us denote by ϕ : R → R a smooth strictly increasing function satisfying ϕ(-∞) := lim 

∈ R 2 f (M ) = 0 , if M = (0, 0), ϕ(t), if M ∈ E(t), (3.1) 
where E(t) is the ellipse given in (2.5). We shall now show that we can adjust the parameters and choose ϕ in a way that (3.1) gives a well-defined convex function.

Lemma 3.1 (Construction of the convex function). Setting for t ∈ R

a(t) = √ 2 exp(t), b(t) = exp(t) in (2.4), ϕ(t) = exp(t/τ ), τ ∈ (0, 1 10 ), in (3.1), (3.2) 
the function f defined by (3.1) is convex, with level sets the ellipses E(t) and argmin f = {O}.

Proof. Since the functions a, b satisfy (2.1) and (2.6), we deduce by Lemma 2.1 that conv(E(t)) t∈R is a convex foliation. In particular, the function f is well defined from (3.1) with sublevel sets

[f ≤ λ] := {M ∈ R 2 : f (M ) ≤ λ} = conv [E(ϕ -1 (λ))] = conv [E(τ log λ)]
compact and convex. Therefore f is a coercive, quasiconvex function.

We shall now use a result due to de Finetti and Crouzeix [START_REF] Crouzeix | Conditions for convexity of quasiconvex functions[END_REF][START_REF] De | Sulle stratificazioni convesse[END_REF] which asserts that the quasiconvex function f is convex if and only if

λ → σ [f ≤λ] (p) is concave for every p ∈ R 2 ,
where σ A (p) = max M ∈A p, M is the support function to the subset A. Without loss of generality, we may restrict to unit vectorss p ∈ R 2 , which results in assuming that p = (cos α, sin α), for some α ∈ T. Therefore, we are led to prove that the function

G α (λ) := sup (x, y), (cos α, sin α) : f (x, y) ≤ λ = sup M (t, θ), (cos α, sin α) : f (M (t, θ)) = ϕ(t) ≤ λ = max M (t, θ), (cos α, sin α) : θ ∈ T, t = t(λ) = ϕ -1 (λ)
is concave. To this, end, after straightforward calculations we obtain whence we deduce

M (t, θ), (cos α, sin α) = R(t) m(t,
G α (λ) = a(t(λ)) cos(α -t(λ)), b(t(λ)) sin(α -t(λ)) = g α (λ) (3.3) with g α (λ) = a(t(λ)) 2 cos 2 (t(λ) -α) + b(t(λ)) 2 sin 2 (t(λ) -α). (3.4)
Calculating the second derivative of G α in (3.3) yields

G α = 2g α g α -(g α ) 2 4g 3/2 α .
Therefore, the functions {G α } α∈T are concave provided we establish:

2g α g α -(g α ) 2 ≤ 0, for all α ∈ T . (3.5)
At this step, we replace in (3.4) the choice for a, b and ϕ given in (3.2):

a(t) = √ 2 e t , b ( 
t) = e t and λ = ϕ(t) = e t/τ , for all t ∈ R, and we seek for the values of τ > 0 that ensure inequality (3.5). In particular, t := t(λ) = τ log λ, whence t (λ) = τ λ and t (λ) = -τ λ 2 < 0.

After tedious computations, we get

g α = e 2t cos 2 (t-α) + 1 , g α = 2 e 2t t cos 2 (t-α) + 1 -cos(t-α) sin(t-α)
and

g α = 2e 2t (t ) 2 3 -4 cos(t-α) sin(t-α) + t cos 2 (t-α) + 1 -cos(t-α) sin(t-α) . Hence 2g α g α -(g α ) 2 = = 4e 4t (t ) 2 cos 2 (t-α) + 1 3 -4 cos(t-α) sin(t-α) -cos 2 (t-α) + 1 -cos(t-α) sin(t-α) 2 + 4 e 4t t cos 2 (t-α) + 1 cos 2 (t-α) + 1 -cos(t-α) sin(t-α) ≤ 4e 4t 5(t ) 2 + 1 2 t ≤ 2τ (10τ -1)e 4t λ 2 ,
which is negative provided we choose τ < 1/10.

We fix M : R × T → R 2 \{O} under the choice made in Lemma 3.1, that is, 

M (t, θ) = (X(t, θ), Y (t, θ)) = e t √
Setting f : R × T → R f (t, θ) = ϕ(t) = exp(t/τ ) (3.7)
we observe that the convex function f defined in (3.1) satisfies:

f (x, y) = ( f • M -1 )(x, y), if (x, y) = O, 0 , if (x, y) = O. (3.8)
With the next couple of lemmas we show that the function f , apart from being convex, enjoys several other good properties. (ii). For all (x, y) ∈ R 2 , it holds

1/ √ 2 1/τ (x, y) 1/τ ≤ f (x, y) ≤ (x, y) 1/τ . (3.9)
In particular, f is coercive.

(iii). f is real analytic on R 2 \ {O} and f ∈ C 1 (R 2 ) .
(iv). f satisfies the Lojasiewicz inequality (1.1)

with ϑ = 1 -τ , c = τ / √ 2, a ≡ O and f (O) = 0, that is ∇f (x, y) ≥ τ √ 2 f (x, y) 1-τ , for all (x, y) ∈ R 2 . (3.10)
Proof. (i). It is straightforward from the definition of f in (3.1) and the choice of ϕ.

(ii). From Lemma 2.1, for every (x, y) ∈ R 2 \ {O}, there exists a unique t ∈ R such that (x, y) ∈ E(t) and we have

x 2 + y 2 a 2 (t) ≤ 1 a 2 (t) (x cos t + y sin t) 2 + 1 b 2 (t) (-x sin t + y cos t) 2 = 1 ≤ x 2 + y 2 b 2 (t) , whence e t = b(t) ≤ (x, y) ≤ a(t) = √ 2e t .
We deduce easily that

2 -1/(2τ ) (x, y) 1/τ ≤ f (x, y) = ϕ(t) = e t/τ ≤ (x, y) 1/τ . (iii). It follows from (3.1) that f = ϕ • p 1 • M -1 on R 2 \ {O}, where p 1 : R × T → R with p 1 (t, θ) = t. By Lemma 2.1, the map M : R × T → R 2 \ {O} given in (3.6
) is a real analytic diffeomorphism. Since p 1 and ϕ are analytic, the first part of the assertion follows. In particular, the function f is C ∞ -smooth on R 2 \ {O}. Since 1/τ > 1, the function (x, y) → (x, y) 1/τ is C 1 over R 2 and (3.9) yields that f is differentiable at O with ∇f (O) = 0. Therefore f is differentiable everywhere in R 2 and, since it is convex, it is C 1 (see for instance, [27, p. 20]).

(iv) Since S := argmin f = {O}, we have dist S (M ) = M for all M = (x, y) ∈ R 2 . Therefore, the first inequality in (3.9) can be written

f (M ) ≥ m(dist S (M )) for all M ∈ R 2 ,
where m(r) = 2 -1/(2τ ) r 1/τ . Since

m -1 (s) s = √ 2 s τ -1 ∈ L 1 loc ((0, +∞)),
we deduce from [3, Theorem 30] that the K L-inequality

∇(ψ • f )(M ) ≥ 1, holds for all M ∈ [f > 0] := R 2 \ {O}, where 
ψ(s) = s 0 m -1 (σ) σ dσ = √ 2 τ s τ .
A straightforward calculation shows that (3.10) holds. 

that k < 1 τ . Then f ∈ C k (R 2 ) and f ∈ C k+1 (R 2 ).
Proof. Recalling that f is real analytic in R 2 \ {O} with f (O) = 0 and ∇f (O) = 0, in order to prove that f is C k , it is sufficient to show that all the partial derivatives

∂ l 1 +l 2 f ∂x l 1 ∂y l 2 , l 1 + l 2 ≤ k, (3.11) 
which exist in R 2 \ {O}, converge to 0 at O. To this end, it is more convenient to start by computating the partial derivatives of f defined in (3.7). We have

f (t, θ) := f (M (t, θ)) = e t/τ = f (x, y) for (x, y) = M (t, θ) = (X(t, θ), Y (t, θ)),
and by differentiation, we obtain 

∂ f ∂t ∂ f ∂θ = 1 τ e t/
-∂Y ∂t -∂X ∂θ ∂X ∂t 1 τ e t/τ 0 Since 0 < e 2t ( √ 2 - 1 2 ) ≤ ∂X ∂t ∂Y ∂θ - ∂Y ∂t ∂X ∂θ = e 2t ( √ 2 + cos θ sin θ) ≤ e 2t ( √ 2 + 1 2 ),
we obtain

∂f ∂x ∂f ∂y = e ( 1 τ -1)t P 2,1 (t, θ), (3.13) 
from which we infer that ∂f ∂x , ∂f ∂y → 0 as (x, y) → O or equivalently as t → -∞, since 1 τ > 1. We then recover the fact that f is C 1 , with ∇f (O) = (0, 0).

To prove that f is C 2 (when 1 τ > 2), we differentiate again (3.12) to obtain

    ∂ 2 f ∂t 2 ∂ 2 f ∂t∂θ ∂ 2 f ∂θ 2     =   1 τ 2 e t/τ 0 0   = e 2t P 3,3 (t, θ)     ∂ 2 f ∂x 2 ∂ 2 f ∂x∂y ∂ 2 f ∂y 2     + e t P 3,2 (t, θ) ∂f ∂x ∂f ∂y , (3.14) 
where the coefficients of e 2t P 3,3 (t, θ) are of the form

Z 1 Z 2 , with Z 1 , Z 2 ∈ D 1 := ∂X ∂t , ∂Y ∂t , ∂X ∂θ , ∂Y ∂θ
and the coefficients of e t P 3,2 (t, θ) are second derivatives of X, Y . The matrix

P 3,3 (t, θ) is invertible since (t, θ) ∈ R × T → M (t, θ) := (x, y) ∈ R 2 \ {O} is an analytic diffeomorphism.
Finally, we get

    ∂ 2 f ∂x 2 ∂ 2 f ∂x∂y ∂ 2 f ∂y 2     = e ( 1 τ -2)t P 3,1 (t, θ) + e ( 1 τ -1)t B 3,1 (t, θ),
which proves that the second derivatives of f converge to 0 as (x, y)

→ O if 1 τ > 2. Therefore f is C 2 with ∇ 2 f (O) = 0 2×2 .
Continuing along the same lines, when differentiating l times, the invertible matrix in front of the l-th order derivatives of f has coefficients of the form

Z 1 Z 2 • • • Z l with Z 1 , • • • , Z l ∈ D 1
and, after tedious computations, we obtain

           ∂ l f ∂x l . . . ∂ l f ∂x l-i ∂y i . . . ∂ l f ∂y l            = e ( 1 τ -l)t P l+1,1 (t, θ) + e ( 1 τ -(l-1))t B l+1,1 (t, θ), (3.15) 
which converges to 0 as (x, y) → O as long as 1 τ > l. Therefore f is C l and all the l-th order derivatives of f are zero at O and we conclude that f ∈ C k (R 2 ), where k is the biggest integer such that k < 1 τ . Let us now assume, towards a contradiction, that f is C k+1 . Then we can write a Taylor expansion of f up to the order k + 1 at O. Since ∇ l f (O) = 0 for l ≤ k, we obtain that

f (x, y) = O(||(x, y)|| k+1 ) in a neighborhood of O, (3.16) 
where O(r k+1 )/r k+1 is bounded near 0. If 1 τ ∈ N, then k+1 > 1 τ , and we obtain a straightforward contradiction with the first inequality in (3.9). If now k + 1 = 1 τ ∈ N, then (3.16) is not anymore contradictory with (3.9). But writing (3.15) 

with l = k + 1, we get      ∂ k+1 f ∂x k+1 . . . ∂ k+1 f ∂y k+1      = P k+2,1 (t, θ) + e t B k+2,1 (t, θ).
The second term above converges to zero as t → -∞, or equivalently as (x, y) → O, but P k+2,1 (t, θ) is a periodic nonconstant matrix with respect to t and θ so cannot converge as t → -∞, contradicting our assumption. This ends the proof.

Oscillating gradient trajectories

Let us start by showing that maximal gradient orbits blow up in finite positive time (and converge to the unique minimum O of the convex function f as t → -∞). Lemma 4.1 (Gradient trajectories of the convex function). Let f be the convex function defined in Lemma 3.1. Then the ordinary differential equation for the gradient orbits 

γ (t) = ∇f (γ(t)), t ∈ R, γ(0) = γ 0 ∈ R 2 \ {O}.
T ≤ 2 1/2τ ( 1 τ -2) γ 0 1 τ -2 (0 < τ < 1 10 is introduced in (3.2)), i.e., lim t T γ(t) = +∞. Proof. Since f is C k with k ≥ 2 (Lemma 3.
3), there exists a unique maximal solution of (4.1), denoted by γ ∈ C k ((S, T )), where -∞ ≤ S < 0 < T ≤ +∞. The function f being convex and coercive with a unique minimum at O, we infer that S = -∞ and γ(t) → O as t → -∞. In particular, γ(t) = O for every t ∈ (-∞, T ) and consequently the function t → z(t) := γ(t) is differentiable. Using the convexity of f and (3.9), we deduce:

d dt γ(t) = γ (t), γ(t) γ(t) = ∇f (γ(t)), γ(t) γ(t) ≥ f (γ(t)) γ(t) ≥ 2 -1 2τ γ(t) 1 τ -1 .
It follows that

γ(t) ≥ 1 γ 0 2-1 τ -2 -1 2τ ( 1 τ -2)t τ 1-2τ
, where the above right-hand side is the exact solution to the scalar ordinary differential equation

z (t) = 2 -1 2τ z(t) 1 τ -1 , z(0) = γ 0 .
We conclude that the maximal solution γ blows up in finite positive time.

In fact, finding gradient orbits is a geometric problem. We seek the unique curve γ passing through γ 0 , which is orthogonal to the level sets of f . It is convenient to parametrize γ as

γ(s) = M (t(s), θ(s)) = (X(t(s), θ(s)), Y (t(s), θ(s))), s ∈ R (4.2)
using the notations (2.3)-(2.4). Under this parametrization γ(s) ∈ E(t(s)), for every s ∈ R and γ (s) is a normal vector at γ(s) to the (convex) sublevel set [f ≤ f (γ(s))] = conv E(t(s)). Therefore:

γ (s) ⊥ ∂ θ M (t(s), θ(s)), for all s ∈ R. (4.3) 
We define the rotation angle s → α(s) as the angle between the x-axis and the secant γ(s) γ(s)

(spherical part of the orbit) varying in a continuous way. Therefore

     cos α(s) = X(t,θ) √ X(t,θ) 2 +Y (t,θ) 2 , sin α(s) = Y (t,θ) √ X(t,θ) 2 +Y (t,θ) 2 .
In particular, according to the notation used in (2.3)-(2.5), if φ(s) is the angle in polar coordinates of the point m(t, θ), then we have (see Figure 1): α(s) = t(s) + φ(s), for all s ∈ R. The goal is to compute α(s) using the orthogonality condition (4.3), which is equivalent to γ (s), ∂ θ M (t(s), θ(s)) = 0, for all s ∈ R. Since for every θ ∈ R we have

0 < 1 √ 2 + 1 2 ≤ 1 + sin 2 θ √ 2 -cos θ sin θ ≤ 2 √ 2 -1 2 ,
we get

- 1 √ 2 + 1 2 θ (s) ≤ t (s) ≤ - 2 √ 2 -1 2 θ (s).
Therefore, from (4.5) we deduce θ (s) < 0, θ(s) → Consider the convex foliation by ellipses {E(t)} t∈R given by Lemma 2.1. Let k ≥ 1 be any integer and f be the convex function defined by Lemma 3.1 for 0 < τ < min{1/10, 1/k}. Then, by Lemma 3.2, the function f is coercive, has its unique minimum at the origin O, is real analytic in R 2 \ {O} and satisfies the Lojasiewicz inequality (1.1). Further, Lemma 3.3, ensures that f is C k -smooth. Finally, Lemma 4.2 asserts that all nontrivial gradient orbits spiral infinitely many times both near the origin (bounded part) and at infinity.
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 2 Figure 2: The convex foliation (E(t)) t∈R for a(t) = 2b(t) = 2e t .

  t→-∞ ϕ(t) = 0 (the concrete definition of the function ϕ will be given in (3.2), see Lemma 3.1) and let us set for all M

  θ), (cos α, sin α) = (a(t) cos θ, b(t) sin θ), R(-t) (cos α, sin α) = (cos θ, sin θ), (a(t) cos(α -t), b(t) sin(α -t))
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 32 Properties of the convex function). Let f : R 2 → [0, +∞) be the convex function defined by (3.6)-(3.8) for 0 < τ < 1/10. Then (i). f is strictly positive on R 2 \ {O} with f (O) = 0 .
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 33 C k -smoothness of the convex function). Let f be the convex function defined by (3.7)-(3.8) for 0 < τ < 1/10. Let k ∈ N be the biggest integer such
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 1 admits a unique maximal solution γ defined in (-∞, T ) such that lim t→-∞ γ(t) = O and γ blows up in a finite time
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 3 Figure 3: Gradient orbit γ(s) with initial point γ(0) = (2, 0), then zoom and extra-zoom.
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 42 Spiraling around the origin). Let f be the convex function defined in (3.1) under the assumption (3.2) and let s → γ(s) be a maximal orbit of the convex foliation (E(t)) t∈R . Then the rotation angle s → α(s) satisfies lim s→±∞ α(s) = ±∞. (4.4) See Figure 3 for a generic numerical simulation of the maximal orbit of the function f associated with the convex foliation of Figure 2. Proof. We use the parametrization given by (4.2). Since lim s→+∞ γ(s) = +∞ and lim t→-∞ γ(s) = O, we can assume that the function s → t(s) satisfies t (s) > 0 and lim s→±∞ t(s) = ±∞. (4.5)

(4. 6 ) 2 = 2 - 2 -

 6222 Using the notations of Section 2, we haveγ (s) = d ds M (t(s), θ(s)) = t ∂ t (Rm) + θ ∂ θ (Rm) = t (R m + R∂ t m) + θ R∂ θ m and ∂ θ M = ∂ θ (Rm) = R∂ θ m. It follows γ (s), ∂ θ M = t R m, R∂ θ m + t R∂ t m, R∂ θ m + θ R∂ θ m, R∂ θ m = t R( π 2 )m, ∂ θ m + t ∂ t m, ∂ θ m + θ ∂ θ m tab + (bb -aa ) cos θ sin θ + θ a 2 sin 2 θ + b 2 cos 2 θ . By (4.3), we have γ (s), ∂ θ M = 0 and after substitution a(t) = √ 2e t and b(t) = e t we get t e 2t ( √ cos θ sin θ) + θ e 2t (1 + sin 2 θ) = 0 whence we deduce the following relation between t(s) and θ(s): t (s) = -1 + sin 2 θ(s) √ cos θ(s) sin θ(s) θ (s). (4.7)

= a cos θ a 2 cos 2 θ + b 2 sin 2 θ = √ 2 cos θ 2 cos 2 θ + sin 2 θ , sin φ = b sin θ a 2 - 1 + sin 2 θ √ 2 -

 212 establish the relation between θ(s) and φ(s), see Figure 1. We have cos φ cos 2 θ + b 2 sin 2 θ = sin θ 2 cos 2 θ + sin 2 θ . Differentiating cos φ and plugging the result in the second expression, we end up with cos θ sin θ θ =: h(θ)θ . (4.10)The function h is analytic and 2π-periodic, see Figure4. We can expand it in Fourier series and integrate (4.10) to obtain )dθ -0.84 < 0.We finally conclude from (4.11) and (4.5) that (4.4) holds.

Figure 4 : 1 + cos 2 θ - 1 + sin 2 θ √ 2 -

 4112 Figure 4: Plot of h(θ) = √ 2 1 + cos 2 θ -1 + sin 2 θ √ 2 -cos θ sin θ .

  {O} is a local analytic diffeomorphism.

	Indeed, let us first notice that the map M , defined by (2.3)-(2.4), is real-analytic as composition
										∂X	∂X
	of analytic functions. Therefore, if we show that the Jacobian matrix J M =	∂t ∂Y	∂θ ∂Y
										∂t	∂θ
	is invertible at each point (t, θ) ∈ R × T, the assertion follows from the local analytic inverse
	function theorem [15, Theorem 2.5.1]. To this end, we shall prove that	
	det(J M ) =	∂X ∂t	∂Y ∂θ	-	∂Y ∂t	∂X ∂θ	=	∂M ∂t	, n > 0,		(2.7)

Figure 1: The ellipse E(t) and the map (t, θ) → M (t, θ)
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